# HG changeset patch
# User drosofff
# Date 1403621933 14400
# Node ID f9032a86667566332fc70b4feded940b4897c9e2
# Parent f777cbc82f982ddfe70a908c707320c055e71283
Deleted selected files
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/FeaturesParser.py
--- a/mississippi_gcc/FeaturesParser.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-#!/usr/bin/python
-# python parser module to analyse Features in sRbowtie alignments (guided by a GFF3 file)
-# version 0.9
-# Usage FeaturesParser.py <1:index source> <2:extraction directive> <3:output> <4:GFF3 guide file> <5:6:7 filePath:FileExt:FileLabel> <.. ad lib>
-
-import sys
-from smRtools import *
-from collections import *
-
-IndexSource = sys.argv[1]
-ExtractionDirective = sys.argv[2]
-if ExtractionDirective == "--do_not_extract_index":
- genomeRefFormat = "fastaSource"
-elif ExtractionDirective == "--extract_index":
- genomeRefFormat = "bowtieIndex"
-Output = sys.argv[3]
-GFF3_file = sys.argv[4]
-Triplets = [sys.argv[5:][i:i+3] for i in xrange(0, len(sys.argv[5:]), 3)]
-MasterListOfGenomes = {}
-FeatureDict = defaultdict(dict)
-
-for [filePath, FileExt, FileLabel] in Triplets:
- MasterListOfGenomes[FileLabel] = HandleSmRNAwindows (filePath, FileExt, IndexSource, genomeRefFormat)
- FeatureDict[FileLabel] = MasterListOfGenomes[FileLabel].CountFeatures(GFF3=GFF3_file)
-
-# add some code to pick up the GFF3 features in their order of appearence.
-F = open(GFF3_file, "r")
-featureList = []
-for line in F:
- if line[0] == "#": continue
- feature = line.split()[2]
- if feature not in featureList:
- featureList.append(feature)
-F.close()
-
-header = ["#Feature"]
-for [filePath, FileExt, FileLabel] in Triplets:
- header.append(FileLabel)
-
-F = open (sys.argv[3], "w")
-print >> F, "\t".join(header)
-for feature in featureList:
- line=[feature]
- for sample in header[1:]:
- count = str (FeatureDict[sample][feature])
-# uncomment to get percentage in addition to counts
-# percent = float(FeatureDict[sample][feature]) / MasterListOfGenomes[sample].alignedReads
-# value = "%s | %0.2f" % (count, percent)
-# line.append(value)
- line.append(count)
- print >> F, "\t".join(line )
-line = ["Unfeatured"]
-for sample in header[1:]:
- matched = 0
- for feature in FeatureDict[sample]:
- matched += FeatureDict[sample][feature]
- unmatched = MasterListOfGenomes[sample].alignedReads - matched
-# uncomment to get percentage in addition to counts
-# percent = float (unmatched) / (matched + unmatched)
-# value = "%s | %0.2f" % (unmatched, percent)
-# line.append(value)
- line.append("%s" % unmatched)
-print >> F, "\t".join(line)
-F.close()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/FeaturesParser.xml
--- a/mississippi_gcc/FeaturesParser.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,61 +0,0 @@
-
- in sRbowtie alignment
- bowtie-inspect
-
-
- FeaturesParser.py
- #if $refGenomeSource.genomeSource == "history":
- $refGenomeSource.ownFile ## index source ## 1
- --do_not_extract_index ## 2
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $input_list.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- $reference ## index source ## 1
- --extract_index ## 2
- #end if
- $output ## 3
- $gff3 ## 4
- #for $i in $refGenomeSource.input_list
- $i $i.ext "$i.name"
- #end for
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-Parses Features Counts from one or several sRBowtie alignments (in tabular, Sam or Bam format).
-
-Both sense and antisense alignments are counted
-
-The library labels are infered from the input dataset names in the galaxy history.
-
-**It is thus essential that input datasets are appropriately renamed**
-
-**it is preferable that you do not put any space in this input dataset names. You may edit these names in the history**
-
-
-
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/MDS_wrapper.py
--- a/mississippi_gcc/MDS_wrapper.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-#!/usr/bin/env python
-# mirdeep* python wrapper
-# refactoring a python version of the MDS_wrapper.pl
-# Usage MDS_wrapper.py
-
-import sys, re, os, subprocess, shlex, tempfile, shutil
-
-def stop_err( msg ):
- sys.stderr.write( '%s\n' % msg )
- sys.exit()
-
-MDS_path = "/home/galaxy/bin/MDS_command_line_v32/MDS_command_line"
-
-input_full_path = sys.argv[1]
-MDS_genome = sys.argv[2]
-gff3_output = sys.argv[3]
-dataresult = sys.argv[4]
-datacluster = sys.argv[5]
-
-tmp_MDS_work_dir = tempfile.mkdtemp(dir = MDS_path) # make temp directory for MDS analysis
-os.symlink(input_full_path, tmp_MDS_work_dir+"/data.fa" ) # symlink between the fasta source file and the required "data.fa" input
-os.symlink(MDS_path+"/MDS_command_line.jar", tmp_MDS_work_dir+"/MDS_command_line.jar" ) # symlink to jar source in working directory
-os.symlink(MDS_path+"/genome", tmp_MDS_work_dir+"/genome")
-os.symlink(MDS_path+"/targetScan", tmp_MDS_work_dir+"/targetScan")
-os.symlink(MDS_path+"/targetScan_files", tmp_MDS_work_dir+"/targetScan_files")
-
-# execute MirDeep*
-command_line = "java -Xmx4g -jar " + MDS_path + "/MDS_command_line.jar -r 5 -g " + MDS_genome + " data.fa" # -Xmx12g
-print command_line
-#tmp = tempfile.NamedTemporaryFile( dir=tmp_MDS_work_dir ).name
-#tmp_stderr = open( tmp, 'wb' )
-
-try:
- os.chdir(tmp_MDS_work_dir)
- p = subprocess.Popen(args=command_line, cwd=tmp_MDS_work_dir, shell=True, stderr=sys.stderr)
- returncode = p.wait()
- shutil.copy2 ("data.result", dataresult)
- shutil.copy2 ("data.cluster", datacluster)
- dataFILE = open("data.result", "r")
- datafile = dataFILE.readlines()
- dataFILE.close()
- GFF3OUT = open(gff3_output, "w")
- print >> GFF3OUT,"##gff-version 3"
- print >> GFF3OUT, "##Seqid Source Type Start End Score Strand Phase Attributes"
- print >> GFF3OUT, "##"
- for line in datafile[1:]:
- fields = line.split("\t")
- Seqid, Source, Type, Start, End, Score, Strand, Phase = fields[2], "MirDeep*", "hairPin_loci", fields[4].split("-")[0], fields[4].split("-")[1], fields[1], fields[3], "."
- ID = "ID=%s;%s_reads;%s;%s;mature_seq:%s" % (fields[0],fields[5],fields[7],fields[8],fields[9])
- print >> GFF3OUT, "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (Seqid, Source, Type, Start, End, Score, Strand, Phase, ID)
- GFF3OUT.close()
- if os.path.exists( tmp_MDS_work_dir ):
- shutil.rmtree( tmp_MDS_work_dir )
- else:
- print "Error in cleaning tmp working directory"
-
-except Exception, e:
- # clean up temp dir
- if os.path.exists( tmp_MDS_work_dir ):
- shutil.rmtree( tmp_MDS_work_dir )
- stop_err( 'Error running MDS_command_line.jar\n' + str( e ) )
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/MirDeepStar.xml
--- a/mississippi_gcc/MirDeepStar.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,32 +0,0 @@
-
-
-MDS_wrapper.py $input $genome $output $output2 $output3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-MirDeep* wrapper
-
-
-
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/MirParser.py
--- a/mississippi_gcc/MirParser.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,81 +0,0 @@
-#!/usr/bin/python
-# python parser module for pre-mir and mature miRNAs, guided by mirbase.org GFF3
-# version 0.0.9 (1-6-2014)
-# Usage MirParser.py <1:index source> <2:extraction directive> <3:output pre-mir> <4: output mature miRs> <5:mirbase GFF3>
-# <6:pathToLatticeDataframe or "dummy_dataframe_path"> <7:Rcode or "dummy_plotCode"> <8:latticePDF or "dummy_latticePDF">
-# <9:10:11 filePath:FileExt:FileLabel> <.. ad lib>
-
-import sys, subprocess
-from smRtools import *
-
-IndexSource = sys.argv[1]
-ExtractionDirective = sys.argv[2]
-if ExtractionDirective == "--do_not_extract_index":
- genomeRefFormat = "fastaSource"
-elif ExtractionDirective == "--extract_index":
- genomeRefFormat = "bowtieIndex"
-OutputPre_mirs = sys.argv[3]
-OutputMature_Mirs = sys.argv[4]
-GFF3_file = sys.argv[5]
-lattice = sys.argv[6]
-Rcode = sys.argv[7]
-latticePDF = sys.argv[8]
-Triplets = [sys.argv[9:][i:i+3] for i in xrange(0, len(sys.argv[9:]), 3)]
-MasterListOfGenomes = {}
-
-for [filePath, FileExt, FileLabel] in Triplets:
- print FileLabel
- MasterListOfGenomes[FileLabel] = HandleSmRNAwindows (alignmentFile=filePath, alignmentFileFormat=FileExt, genomeRefFile=IndexSource, genomeRefFormat=genomeRefFormat, biosample=FileLabel)
-
-header = ["gene"]
-for [filePath, FileExt, FileLabel] in Triplets:
- header.append(FileLabel)
-
-hit_table = ["\t".join(header)] # table header: gene, sample1, sample2, sample3, etc. separated by tabulation
-
-## read GFF3 to subinstantiate
-gff3 = open (GFF3_file, "r")
-lattice_dataframe = []
-for line in gff3:
- if line[0] == "#": continue
- gff_fields = line[:-1].split("\t")
- chrom = gff_fields[0]
- gff_name = gff_fields[-1].split("Name=")[-1].split(";")[0] # to isolate the GFF Name
- item_upstream_coordinate = int(gff_fields[3])
- item_downstream_coordinate = int(gff_fields[4])
- if gff_fields[6] == "+":
- item_polarity = "forward"
- else:
- item_polarity = "reverse"
- item_line = [gff_name]
- for sample in header[1:]:
- count = MasterListOfGenomes[sample].instanceDict[chrom].readcount(upstream_coord=item_upstream_coordinate, downstream_coord=item_downstream_coordinate, polarity=item_polarity)
- item_line.append(str(count))
- ## subtreatement for lattice
- if lattice != "dummy_dataframe_path":
- if ("5p" not in gff_name) and ("3p" not in gff_name):
- lattice_dataframe.append(MasterListOfGenomes[sample].instanceDict[chrom].readcoverage(upstream_coord=item_upstream_coordinate, downstream_coord=item_downstream_coordinate, windowName=gff_name+"_"+sample) )
- ## end of subtreatement for lattice
- hit_table.append("\t".join(item_line) )
-gff3.close()
-
-Fpremirs = open (OutputPre_mirs, "w")
-print >> Fpremirs, hit_table[0]
-finalPreList = [ i for i in sorted(hit_table[1:]) if ("5p" not in i) and ("3p" not in i)]
-print >> Fpremirs, "\n".join(finalPreList )
-Fpremirs.close()
-
-Fmaturemires = open (OutputMature_Mirs, "w")
-print >> Fmaturemires, hit_table[0]
-finalMatureList = [ i for i in sorted(hit_table[1:]) if ("5p" in i) or ("3p" in i)]
-print >> Fmaturemires, "\n".join(finalMatureList )
-Fmaturemires.close()
-
-if lattice != "dummy_dataframe_path":
- Flattice = open(lattice, "w")
- print >> Flattice, "%s\t%s\t%s\t%s\t%s\t%s\t%s" % ("sample", "mir", "offset", "offsetNorm", "counts","countsNorm", "polarity")
- print >> Flattice, "\n".join(lattice_dataframe)
- Flattice.close()
- R_command="Rscript "+ Rcode
- process = subprocess.Popen(R_command.split())
- process.wait()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/MirParser.xml
--- a/mississippi_gcc/MirParser.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,148 +0,0 @@
-
- from sRbowtie aligment
- bowtie-inspect
-
-
- MirParser.py
- #if $refGenomeSource.genomeSource == "history":
- $refGenomeSource.ownFile ## index source sys.arg[1]
- --do_not_extract_index ## sys.argv[2]
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $input_list.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- $reference ## sys.argv[1]
- --extract_index ## sys.argv[2]
- #end if
- $output1 ## for pre-mirs ## sys.argv[3]
- $output2 ## for mature mirs ## sys.argv[4]
- $GFF3 ## sys.argv[5]
- #if $plotting.plottingOption == "yes":
- $lattice_dataframe ## sys.argv[6]
- $plotCode ## sys.argv[7]
- $latticePDF ## sys.argv[8]
- #else:
- "dummy_dataframe_path" ## sys.argv[6]
- "dummy_plotCode" ## sys.argv[7]
- "dummy_latticePDF" ## sys.argv[8]
- #end if
- #for $i in $refGenomeSource.input_list
- $i $i.ext "$i.name" ## sys.argv[9,10,11] modulo 3
- #end for
- #silent plottingoption = $plotting.plottingOption
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- #if $plotting.plottingOption == "yes":
- graph_type = "${plotting.display}" ## "relative" or "absolute"
- ## Setup R error handling to go to stderr
- options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
- library(lattice)
- coverage = read.delim("${lattice_dataframe}", header=T)
- Numb_of_biosamples = length(levels(coverage\$sample))
- if (graph_type=="relative") {
- graph = xyplot(countsNorm~offsetNorm | mir, data=coverage, groups=polarity, col=c("red", "blue"), type="l", lwd=1,
- scales=list(x=list(cex=.5), y=list(cex=.5)), par.strip.text=list(cex=.5), strip=strip.custom(which.given=1, bg="lightblue"), layout=c(Numb_of_biosamples,15), as.table=TRUE, main="miRNA coverage maps")
- } else {
- graph = xyplot(counts~offset | mir, data=coverage, groups=polarity, col=c("red", "blue"), type="l", lwd=1,
- scales=list(x=list(cex=.5), y=list(cex=.5)), par.strip.text=list(cex=.5), strip=strip.custom(which.given=1, bg="lightblue"), layout=c(Numb_of_biosamples,15), as.table=TRUE, main="miRNA coverage maps")
- }
- ## pdf output
- pdf(file="${latticePDF}", paper="special", height=11.69, width=8.2677)
- plot(graph, newpage = T)
- dev.off()
- #end if
-
-
-
-
-
-
-
- plotting['plottingOption'] == "yes"
-
-
- plotting['plottingOption'] == "yes"
-
-
-
-
-**What it does**
-
-This tool uses a specie-specific GFF3 file from mirBase_ to guide the parsing of an alignment file produced with the sRbowtie tool.
-
-.. _mirBase: ftp://mirbase.org/pub/mirbase/CURRENT/genomes/
-
-------
-
-.. class:: warningmark
-
-the Guide GFF3 file must be in the following format:
-
-2L . miRNA_primary_transcript 243035 243141 . - . ID=MI0005821;Alias=MI0005821;Name=dme-mir-965
-
-2L . miRNA 243055 243076 . - . ID=MIMAT0005480;Alias=MIMAT0005480;Name=dme-miR-965-3p;Derives_from=MI0005821
-
-2L . miRNA 243096 243118 . - . ID=MIMAT0020861;Alias=MIMAT0020861;Name=dme-miR-965-5p;Derives_from=MI0005821
-
-2L . miRNA_primary_transcript 857542 857632 . + . ID=MI0005813;Alias=MI0005813;Name=dme-mir-375
-
-2L . miRNA 857596 857617 . + . ID=MIMAT0005472;Alias=MIMAT0005472;Name=dme-miR-375-3p;Derives_from=MI0005813
-
-2L . miRNA 857556 857579 . + . ID=MIMAT0020853;Alias=MIMAT0020853;Name=dme-miR-375-5p;Derives_from=MI0005813
-
-2L . miRNA_primary_transcript 1831685 1831799 . - . ID=MI0011290;Alias=MI0011290;Name=dme-mir-2280
-
-With name for mature miRNA (3rd column = miRNA) containing either the -3p or -5p string in the attribute Name (Name=dme-miR-965-3p, for instance)
-
-------
-
-**Input formats**
-
-1. One or sereral alignment files generated with sRbowtie tool and **renamed** according to the name of the biosample (avoid spaces in biosample labels)
-
-.. class:: warningmark
-
-Alignment datasets generated with sRbowtie must be renamed according to a biosample name
-
-2. A GFF3 file retrieved from mirBase_
-
-------
-
-**Outputs**
-
-Two count list files for counts of reads aligned to pre-mir or mature miRNA
-
-A pdf of pre-mir coverages. Red coverages indicate that the mir gene is in the genomic up strand, blue coverages indicate that the mir gene is in the genomic down strand.
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/annotation_collector.py
--- a/mississippi_gcc/annotation_collector.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-#By, drosofff@gmail.com
-# command: annotation_collector.py $output input1, label1, input2, label2, etc...
-
-import sys, os
-
-def countlineinfile(file):
- F = open (file, "r")
- count = 0
- for line in F:
- count += 1
- F.close()
- return count/2
-results = []
-
-for file, label in zip (sys.argv[2:-1:2], sys.argv[3:-1:2]):
- results.append ( (countlineinfile(file), label) )
-
-Fout = open (sys.argv[1], "w")
-
-print >> Fout, "# %s" % (sys.argv[-1])
-for filecount, label in results:
- print >> Fout, "%s\t%s\t%.2f %%" % (label, filecount, filecount/float(results[0][0])*100 )
-print >> Fout
-Fout.close()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/bowtie_indices.loc.sample
--- a/mississippi_gcc/bowtie_indices.loc.sample Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,37 +0,0 @@
-#This is a sample file distributed with Galaxy that enables tools
-#to use a directory of Bowtie indexed sequences data files. You will
-#need to create these data files and then create a bowtie_indices.loc
-#file similar to this one (store it in this directory) that points to
-#the directories in which those files are stored. The bowtie_indices.loc
-#file has this format (longer white space characters are TAB characters):
-#
-#
-#
-#So, for example, if you had hg18 indexed stored in
-#/depot/data2/galaxy/bowtie/hg18/,
-#then the bowtie_indices.loc entry would look like this:
-#
-#hg18 hg18 hg18 /depot/data2/galaxy/bowtie/hg18/hg18
-#
-#and your /depot/data2/galaxy/bowtie/hg18/ directory
-#would contain hg18.*.ebwt files:
-#
-#-rw-r--r-- 1 james universe 830134 2005-09-13 10:12 hg18.1.ebwt
-#-rw-r--r-- 1 james universe 527388 2005-09-13 10:12 hg18.2.ebwt
-#-rw-r--r-- 1 james universe 269808 2005-09-13 10:12 hg18.3.ebwt
-#...etc...
-#
-#Your bowtie_indices.loc file should include an entry per line for each
-#index set you have stored. The "file" in the path does not actually
-#exist, but it is the prefix for the actual index files. For example:
-#
-#hg18canon hg18 hg18 Canonical /depot/data2/galaxy/bowtie/hg18/hg18canon
-#hg18full hg18 hg18 Full /depot/data2/galaxy/bowtie/hg18/hg18full
-#/orig/path/hg19 hg19 hg19 /depot/data2/galaxy/bowtie/hg19/hg19
-#...etc...
-#
-#Note that for backwards compatibility with workflows, the unique ID of
-#an entry must be the path that was in the original loc file, because that
-#is the value stored in the workflow for that parameter. That is why the
-#hg19 entry above looks odd. New genomes can be better-looking.
-#
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/piRNAsignature.py
--- a/mississippi_gcc/piRNAsignature.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,78 +0,0 @@
-#!/usr/bin/python
-# script for computing overlap signatures from a bowtie output
-# Christophe Antoniewski
-# Usage piRNAsignature.py <1:input> <2:format of input> <3:minsize query> <4:maxsize query> <5:minsize target> <6:maxsize target>
-# <7:minscope> <8:maxscope> <9:output> <10:bowtie index> <11:procedure option> <12: graph (global or lattice)>
-# <13: R code>
-
-import sys, subprocess
-from smRtools import *
-from collections import defaultdict # test whether it is required
-
-if sys.argv[11] == "--extract_index":
- if sys.argv[2] == "tabular":
- Genome = HandleSmRNAwindows (sys.argv[1],"tabular",sys.argv[10],"bowtieIndex")
- elif sys.argv[2] == "sam":
- Genome = HandleSmRNAwindows (sys.argv[1],"sam",sys.argv[10],"bowtieIndex")
- else:
- Genome = HandleSmRNAwindows (sys.argv[1],"bam",sys.argv[10],"bowtieIndex")
-else:
- if sys.argv[2] == "tabular":
- Genome = HandleSmRNAwindows (sys.argv[1],"tabular",sys.argv[10],"fastaSource")
- elif sys.argv[2] == "sam":
- Genome = HandleSmRNAwindows (sys.argv[1],"sam",sys.argv[10],"fastaSource")
- else:
- Genome = HandleSmRNAwindows (sys.argv[1],"bam",sys.argv[10],"fastaSource")
-# this decisional tree may be simplified if sam and bam inputs are treated the same way by pysam
-
-# replace objDic by Genome.instanceDict or... objDic = Genome.instanceDict
-objDic = Genome.instanceDict
-
-minquery = int(sys.argv[3])
-maxquery = int(sys.argv[4])
-mintarget = int(sys.argv[5])
-maxtarget = int(sys.argv[6])
-minscope = int(sys.argv[7])
-maxscope = int(sys.argv[8]) + 1
-general_frequency_table = dict ([(i,0) for i in range(minscope,maxscope)])
-general_percent_table = dict ([(i,0) for i in range(minscope,maxscope)])
-OUT = open (sys.argv[9], "w")
-
-if sys.argv[12] == "global":
- ###### for normalized summing of local_percent_table(s)
- readcount_dic = {}
- Total_read_in_objDic = 0
- for item in objDic:
- readcount_dic[item] = objDic[item].readcount(minquery, maxquery)
- Total_read_in_objDic += readcount_dic[item]
- ######
- for x in (objDic):
- local_frequency_table = objDic[x].signature( minquery, maxquery, mintarget, maxtarget, range(minscope,maxscope) )
- local_percent_table = objDic[x].hannon_signature( minquery, maxquery, mintarget, maxtarget, range(minscope,maxscope) )
- try:
- for overlap in local_frequency_table.keys():
- general_frequency_table[overlap] = general_frequency_table.get(overlap, 0) + local_frequency_table[overlap]
- except:
- pass
- try:
- for overlap in local_percent_table.keys():
- general_percent_table[overlap] = general_percent_table.get(overlap, 0) + (1./Total_read_in_objDic*readcount_dic[x]*local_percent_table[overlap])
- except:
- pass
- print >> OUT, "overlap\tnum of pairs\tprobability"
- for classe in sorted(general_frequency_table):
- print >> OUT, "%i\t%i\t%f" % (classe, general_frequency_table[classe], general_percent_table[classe])
-
-else:
- print >> OUT, "overlap\tnum of pairs\tprobability\titem"
- for x in (objDic):
- local_frequency_table = objDic[x].signature( minquery, maxquery, mintarget, maxtarget, range(minscope,maxscope) )
- local_percent_table = objDic[x].hannon_signature( minquery, maxquery, mintarget, maxtarget, range(minscope,maxscope) )
- for classe in range(minscope,maxscope):
- print >> OUT, "%i\t%i\t%f\t%s" % (classe, local_frequency_table[classe], local_percent_table[classe], x)
-
-OUT.close()
-
-## Run the R script that is defined in the xml using the Rscript binary provided with R.
-R_command="Rscript "+ sys.argv[13]
-process = subprocess.Popen(R_command.split())
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/piRNAsignature.xml
--- a/mississippi_gcc/piRNAsignature.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,122 +0,0 @@
-
-
-
- piRNAsignature.py $refGenomeSource.input $refGenomeSource.input.ext $minquery $maxquery $mintarget $maxtarget $minscope $maxscope $output
- #if $refGenomeSource.genomeSource == "history":
- $refGenomeSource.ownFile
- --do_not_extract_index
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $input.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- $reference
- --extract_index
- #end if
- $graph_type
- $sigplotter
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- graph_type = "${graph_type}"
-
- globalgraph = function () {
- ## Setup R error handling to go to stderr
- options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
- signature = read.delim("${output}", header=TRUE)
- ## Open output1 PDF file
- pdf( "${output1}" )
- signaturez=(signature[,2] -mean(signature[,2]))/sd(signature[,2])
- plot(signaturez, type = "b", main="signature", cex.main=2, xlab="overlap (nt)", ylab="z-score", pch=19, cex=0.8, col="darkslateblue", lwd=3, cex.lab=1.5, cex.axis=1.4, xaxt="n")
- axis(1, at=seq(from=1, to=length(signature[,1]), by=3) )
- devname = dev.off()
- ## Close the PDF file
- ## Open output2 PDF file
- pdf( "${output2}" )
- YLIM=max(signature[,2])
- plot(signature[,1:2], type = "h", xlab="overlap (nt)", ylim=c(0,YLIM), ylab="number of pairs", col="darkslateblue", lwd=7)
- devname = dev.off()
- ## Close the PDF file
- ## Open output3 PDF file
- pdf( "${output3}" )
- plot(signature[,1], signature[,3]*100, type = "l", main="ping-pong Signature of ${minquery}-${maxquery} against ${mintarget}-${maxtarget}nt small RNAs",
- cex.main=1, xlab="overlap (nt)", ylab="ping-pong signal [%]", ylim=c(0,50),
- pch=19, col="darkslateblue", lwd =4, cex.lab=1.2, cex.axis=1, xaxt="n")
- axis(1, at=seq(from=1, to=length(signature[,1]), by=3) )
- devname = dev.off()
- ## Close the PDF file
- }
-
- treillisgraph = function () {
- ## Open output3 PDF file
- pdf( "${output3}", paper="special", height=11.69, width=8.2677 )
- signature = read.delim("${output}", header=TRUE)
- options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
- library(lattice)
- print (xyplot(signature[,3]*100~signature[,1]|signature[,4], type = "l", xlim=c(1,26), main="ping-pong Signature of ${minquery}-${maxquery} against ${mintarget}-${maxtarget}nt small RNAs",
- par.strip.text=list(cex=.5), strip=strip.custom(which.given=1, bg="lightblue"), scales=list(cex=0.5),
- cex.main=1, cex=.5, xlab="overlap (nt)", ylab="ping-pong signal [%]",
- pch=19, col="darkslateblue", lwd =1.5, cex.lab=1.2, cex.axis=1.2,
- layout=c(4,12), as.table=TRUE, newpage = T) )
- devnname = dev.off()
- }
-
- if (graph_type=="global") {
- globalgraph()
-
- }
- if(graph_type=="lattice") {
- treillisgraph()
- }
-
-
-
-
-
-
- (graph_type == "global")
-
-
- (graph_type == "global")
-
-
-
-
-
-
-**What it does**
-
-This tool computes the number of pairs by overlap classes (in nt) from a bowtie output file, the z-score calculated from these numbers of pairs, and the ping-pong signal as described in Brennecke et al (2009) Science.
-The numerical options set the min and max size of both the query small rna class and the target small rna class
-Three type of signals are plotted in separate pdf files, the number of pairs founds, the z-score calculated from these numbers of pairs, and the ping-pong signal as described in Brennecke et al (2009) Science.
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/readmap.py
--- a/mississippi_gcc/readmap.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,116 +0,0 @@
-#!/usr/bin/python
-# python parser module for for readmaps and size distributions, guided by GFF3
-# version 0.9.1 (1-6-2014)
-# Usage readmap.py <1:index source> <2:extraction directive> <3:output pre-mir> <4: output mature miRs> <5:mirbase GFF3>
-# <6:pathToLatticeDataframe or "dummy_dataframe_path"> <7:Rcode or "dummy_plotCode"> <8:latticePDF or "dummy_latticePDF">
-# <9:10:11 filePath:FileExt:FileLabel> <.. ad lib>
-
-import sys, subprocess, argparse
-from smRtools import *
-from collections import OrderedDict, defaultdict
-import os
-
-def Parser():
- the_parser = argparse.ArgumentParser()
- the_parser.add_argument('--output_readmap', action="store", type=str, help="readmap dataframe")
- the_parser.add_argument('--output_size_distribution', action="store", type=str, help="size distribution dataframe")
- the_parser.add_argument('--reference_fasta', action="store", type=str, help="output file")
- the_parser.add_argument('--reference_bowtie_index',action='store', help="paths to indexed or fasta references")
- the_parser.add_argument('--input',nargs='+', help="paths to multiple input files")
- the_parser.add_argument('--ext',nargs='+', help="input file type")
- the_parser.add_argument('--label',nargs='+', help="labels of multiple input files")
- the_parser.add_argument('--normalization_factor',nargs='+', type=float, help="Normalization factor for input file")
- the_parser.add_argument('--gff', type=str, help="GFF containing regions of interest")
- the_parser.add_argument('--minquery', type=int, help="Minimum readsize")
- the_parser.add_argument('--maxquery', type=int, help="Maximum readsize")
- the_parser.add_argument('--rcode', type=str, help="R script")
- args = the_parser.parse_args()
- return args
-
-args=Parser()
-if args.reference_fasta:
- genomeRefFormat = "fastaSource"
- genomeRefFile = args.reference_fasta
-if args.reference_bowtie_index:
- genomeRefFormat = "bowtieIndex"
- genomeRefFile = args.reference_bowtie_index
-readmap_file=args.output_readmap
-size_distribution_file=args.output_size_distribution
-minquery=args.minquery
-maxquery=args.maxquery
-Rcode = args.rcode
-filePath=args.input
-fileExt=args.ext
-fileLabel=args.label
-normalization_factor=args.normalization_factor
-
-MasterListOfGenomes = OrderedDict()
-
-def process_samples(filePath):
- for i, filePath in enumerate(filePath):
- norm=normalization_factor[i]
- print fileLabel[i]
- MasterListOfGenomes[fileLabel[i]] = HandleSmRNAwindows (alignmentFile=filePath, alignmentFileFormat=fileExt[i], genomeRefFile=genomeRefFile, genomeRefFormat=genomeRefFormat,\
- biosample=fileLabel[i], size_inf=minquery, size_sup=maxquery, norm=norm)
- return MasterListOfGenomes
-
-def write_readplot_dataframe(readDict, readmap_file):
- with open(readmap_file, 'w') as readmap:
- print >>readmap, "gene\tcoord\tcount\tpolarity\tsample"
- for sample in readDict.keys():
- if args.gff:
- dict=readDict[sample]
- else:
- dict=readDict[sample].instanceDict
- for gene in dict.keys():
- plottable = dict[gene].readplot()
- for line in plottable:
- print >>readmap, "%s\t%s" % (line, sample)
-
-def write_size_distribution_dataframe(readDict, size_distribution_file):
- with open(size_distribution_file, 'w') as size_distrib:
- print >>size_distrib, "gene\tpolarity\tsize\tcount\tsample"
- for sample in readDict.keys():
- if args.gff:
- dict=readDict[sample]
- else:
- dict=readDict[sample].instanceDict
- for gene in dict.keys():
- histogram = dict[gene].size_histogram()
- for polarity in histogram.keys():
- for item in histogram[polarity].iteritems():
- print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, item[0], item[1], sample)
-
-def gff_item_subinstances(readDict, gff3):
- GFFinstanceDict=OrderedDict()
- with open(gff3) as gff:
- for line in gff:
- if line[0] == "#": continue
- gff_fields = line[:-1].split("\t")
- chrom = gff_fields[0]
- gff_name = gff_fields[-1].split("Name=")[-1].split(";")[0] # to isolate the GFF Name
- item_upstream_coordinate = int(gff_fields[3])
- item_downstream_coordinate = int(gff_fields[4])
- item_polarity = gff_fields[6]
- for sample in readDict.keys():
- if not GFFinstanceDict.has_key(sample):
- GFFinstanceDict[sample]={}
- subinstance=extractsubinstance(item_upstream_coordinate, item_downstream_coordinate, readDict[sample].instanceDict[chrom])
- if item_polarity == '-':
- subinstance.readDict={key*-1:value for key, value in subinstance.readDict.iteritems()}
- subinstance.gene=gff_name
- GFFinstanceDict[sample][gff_name]=subinstance
- return GFFinstanceDict
-
-MasterListOfGenomes=process_samples(filePath)
-
-if args.gff:
- MasterListOfGenomes=gff_item_subinstances(MasterListOfGenomes, args.gff)
-
-write_readplot_dataframe(MasterListOfGenomes, readmap_file)
-write_size_distribution_dataframe(MasterListOfGenomes, size_distribution_file)
-
-R_command="Rscript "+ Rcode
-process = subprocess.Popen(R_command.split())
-process.wait()
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/readmap.xml
--- a/mississippi_gcc/readmap.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,225 +0,0 @@
-
- from sRbowtie aligment
- bowtie-inspect
-
-
- readmap.py
- #if $refGenomeSource.genomeSource == "history":
- --reference_fasta ## sys.argv[2]
- $refGenomeSource.ownFile ## index source
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $refGenomeSource.series[0].input.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- --reference_bowtie_index
- $reference
- #end if
- --rcode
- $plotCode
- --output_readmap
- $readmap_dataframe
- --output_size_distribution
- $size_distribution_dataframe
- --minquery
- $minquery
- --maxquery
- $maxquery
- --input
- #for $i in $refGenomeSource.series
- $i.input
- #end for
- --ext
- #for $i in $refGenomeSource.series
- $i.input.ext
- #end for
- --label
- #for $i in $refGenomeSource.series
- "$i.input.name"
- #end for
- --normalization_factor
- #for $i in $refGenomeSource.series
- $i.norm
- #end for
- #if $gff:
- --gff
- $gff
- #end if
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- ## Setup R error handling to go to stderr
- options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
- library(RColorBrewer)
- library(lattice)
- library(latticeExtra)
- library(grid)
- library(gridExtra)
- ##cheetahtemplate data frame implementation
-
- rm=read.delim("${readmap_dataframe}", header=T, row.names=NULL)
- pdf(file="${readmap_PDF}", paper="special", height=11.69, width=8.2677)
- n_samples=length(unique(rm\$sample))
-
- genes=unique(levels(rm\$gene))
- per_gene_readmap=lapply(genes, function(x) subset(rm, gene==x))
- n_genes=length(per_gene_readmap)
-
-
- par.settings.readmap=list(layout.heights=list(top.padding=0, bottom.padding=-3), fontsize = list(text=96/${rows_per_page}, points=8))
- par.settings.size=list(layout.heights=list(top.padding=-1, bottom.padding=-3), fontsize = list(text=96/${rows_per_page}, points=8))
- par.settings.combination.readmap=list(layout.heights=list(top.padding=0, bottom.padding=-3), fontsize = list(text=96/${rows_per_page}, points=8))
- par.settings.combination.size=list(layout.heights=list(top.padding=-2, bottom.padding=-0.5), fontsize = list(text=96/${rows_per_page}, points=8))
-
-
- plot_readmap=function(df, ...) {
- combineLimits(xyplot(count~coord|factor(sample, levels=unique(sample))+reorder(gene, count, function(x) -sum(abs(x))),
- data=df,
- type='h',
- scales= list(relation="free", x=list(rot=0, cex=0.75, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.75)),
- xlab=NULL, main=NULL, ylab=NULL,
- as.table=T,
- origin = 0,
- horizontal=FALSE,
- group=polarity,
- col=c("red","blue"),
- ...))
- }
-
- plot_size_distribution= function(df, ...) {
- smR.prepanel=function(x,y,...){; yscale=c(-max(abs(y)), max(abs(y)));list(ylim=yscale);}
- bc= barchart(count~as.factor(size)|factor(sample, levels=unique(sample))+gene, data = df, origin = 0,
- horizontal=FALSE,
- group=polarity,
- stack=TRUE,
- col=c('red', 'blue'),
- cex=0.75,
- scales=list(y=list(tick.number=4, rot=90, relation="free"), cex=0.75),
- prepanel=smR.prepanel,
- xlab = NULL,
- ylab = NULL,
-# par.settings=list(layout.heights=list(top.padding=-2, bottom.padding=-3), fontsize = list(text=8, points=8)),
- main = NULL , as.table=TRUE, newpage = T, ...)
- combineLimits(bc)
- }
-
- for (i in seq(1,n_genes,${rows_per_page})) {
- start=i
- end=i+${rows_per_page}-1
- if (end>n_genes) {end=n_genes}
- readmap_plot.list=lapply(per_gene_readmap[start:end], function(x) plot_readmap(x, par.settings=par.settings.readmap))
- args.list=c(readmap_plot.list, list(nrow=${rows_per_page}, ncol=1, main="${title}", left="${ylabel}", sub="readmap coordinate"))
- do.call(grid.arrange, args.list)
- }
-
- devname=dev.off()
-
- size=read.delim("${size_distribution_dataframe}", header=T, row.names=NULL)
- per_gene_size=lapply(genes, function(x) subset(size, gene==x))
-
- pdf(file="${size_PDF}", paper="special", height=11.69, width=8.2677)
-
- for (i in seq(1,n_genes,${rows_per_page})) {
- start=i
- end=i+${rows_per_page}-1
- if (end>n_genes) {end=n_genes}
- plot.list=lapply(per_gene_size[start:end], function(x) plot_size_distribution(x, par.settings=par.settings.size))
- args.list=c(plot.list, list(nrow=${rows_per_page}, ncol=1, main="${title}", left="${ylabel}", sub="readsize in nucleotides"))
- do.call(grid.arrange, args.list)
- }
-
- devname=dev.off()
-
- pdf(file="${combi_PDF}", paper="special", height=11.69, width=8.2677)
-
- for (i in seq(1,n_genes,${rows_per_page}/2)) {
- start=i
- end=i+${rows_per_page}/2-1
- if (end>n_genes) {end=n_genes}
- read_plot.list=lapply(per_gene_readmap[start:end], function(x) plot_readmap(x, par.settings=par.settings.combination.readmap))
- size_plot.list=lapply(per_gene_size[start:end], function(x) plot_size_distribution(x, strip=FALSE, par.settings=par.settings.combination.size))
- plot.list=rbind(read_plot.list, size_plot.list )
- args.list=c(plot.list, list(nrow=${rows_per_page}, ncol=1, main="${title}", left="${ylabel}", sub="${xlabel}"))
- do.call(grid.arrange, args.list)
- }
-
- devname=dev.off()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-Takes one or more alignment files (BAM, SAM or tabular bowtie output) as input and produces a "Readmap",
-where by default for each "chromosome" the position of the read is recorded on the x-axis, and the y-axis indicates
-the number of reads per position. Reads that map in sense are on the top, reads that map antisense are on the bottom.
-
-
-.. class:: warningmark
-
-'''TIP''' The input data can be produced using the sRbowtie tool.
-
-----
-
-'''Example'''
-
-Query sequence::
-For a SAM file as the following:
-
- 5 16 2L_79 24393 255 17M * 0 0 CCTTCATCTTTTTTTTT IIIIIIIIIIIIIIIII XA:i:0 MD:Z:17 NM:i:0
-
- 11 0 2R_1 12675 255 21M * 0 0 AAAAAAAACGCGTCCTTGTGC IIIIIIIIIIIIIIIIIIIII XA:i:0 MD:Z:21 NM:i:0
-
- 2 16 2L_5 669 255 23M * 0 0 TGTTGCTGCATTTCTTTTTTTTT IIIIIIIIIIIIIIIIIIIIIII XA:i:0 MD:Z:23 NM:i:0
-
-produce a plot like this:
-
-----
-
-.. image:: static/images/readmap.png
- :height: 800
- :width: 500
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtie.py
--- a/mississippi_gcc/sRbowtie.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-#!/usr/bin/env python
-# small RNA oriented bowtie wrapper
-# version 1.01 29-5-2014
-# Usage sRbowtie.py <1 input_fasta_file> <2 alignment method> <3 -v mismatches> <4 out_type> <5 buildIndexIfHistory> <6 fasta/bowtie index> <7 bowtie output> <8 ali_fasta> <9 unali_fasta> <10 --num-threads \${GALAXY_SLOTS:-4}>
-# current rev: for bowtie __norc, move from --supress 2,6,7,8 to --supress 6,7,8. Future Parser must be updated to take into account this standardisation
-# To Do:
-# implement an arg parser
-# Christophe Antoniewski
-
-import sys, os, subprocess, tempfile, shutil
-
-def stop_err( msg ):
- sys.stderr.write( '%s\n' % msg )
- sys.exit()
-
-def bowtieCommandLiner (alignment_method, v_mis, out_type, aligned, unaligned, input, index, output, pslots="12"):
- if alignment_method=="RNA":
- x = "-v %s -M 1 --best --strata -p %s --norc --suppress 6,7,8" % (v_mis, pslots)
- elif alignment_method=="unique":
- x = "-v %s -m 1 -p %s --suppress 6,7,8" % (v_mis, pslots)
- elif alignment_method=="multiple":
- x = "-v %s -M 1 --best --strata -p %s --suppress 6,7,8" % (v_mis, pslots)
- elif alignment_method=="k_option":
- x = "-v %s -k 1 --best -p %s --suppress 6,7,8" % (v_mis, pslots)
- elif alignment_method=="n_option":
- x = "-n %s -M 1 --best -p %s --suppress 6,7,8" % (v_mis, pslots)
- elif alignment_method=="a_option":
- x = "-v %s -a --best -p %s --suppress 6,7,8" % (v_mis, pslots)
- if aligned == "None" and unaligned == "None": fasta_command = ""
- elif aligned != "None" and unaligned == "None": fasta_command= " --al %s" % aligned
- elif aligned == "None" and unaligned != "None": fasta_command = " --un %s" % unaligned
- else: fasta_command = " --al %s --un %s" % (aligned, unaligned)
- x = x + fasta_command
- if out_type == "tabular":
- return "bowtie %s %s -f %s > %s" % (x, index, input, output)
- elif out_type=="sam":
- return "bowtie %s -S %s -f %s > %s" % (x, index, input, output)
- elif out_type=="bam":
- return "bowtie %s -S %s -f %s |samtools view -bS - > %s" % (x, index, input, output)
-
-def bowtie_squash(fasta):
- tmp_index_dir = tempfile.mkdtemp() # make temp directory for bowtie indexes
- ref_file = tempfile.NamedTemporaryFile( dir=tmp_index_dir )
- ref_file_name = ref_file.name
- ref_file.close() # by default, delete the temporary file, but ref_file.name is now stored in ref_file_name
- os.symlink( fasta, ref_file_name ) # symlink between the fasta source file and the deleted ref_file name
- cmd1 = 'bowtie-build -f %s %s' % (ref_file_name, ref_file_name ) # bowtie command line, which will work after changing dir (cwd=tmp_index_dir)
- try:
- FNULL = open(os.devnull, 'w')
- tmp = tempfile.NamedTemporaryFile( dir=tmp_index_dir ).name # a path string for a temp file in tmp_index_dir. Just a string
- tmp_stderr = open( tmp, 'wb' ) # creates and open a file handler pointing to the temp file
- proc = subprocess.Popen( args=cmd1, shell=True, cwd=tmp_index_dir, stderr=FNULL, stdout=FNULL ) # both stderr and stdout of bowtie-build are redirected in dev/null
- returncode = proc.wait()
- tmp_stderr.close()
- FNULL.close()
- sys.stdout.write(cmd1 + "\n")
- except Exception, e:
- # clean up temp dir
- if os.path.exists( tmp_index_dir ):
- shutil.rmtree( tmp_index_dir )
- stop_err( 'Error indexing reference sequence\n' + str( e ) )
- # no Cleaning if no Exception, tmp_index_dir has to be cleaned after bowtie_alignment()
- index_full_path = os.path.join(tmp_index_dir, ref_file_name) # bowtie fashion path without extention
- return tmp_index_dir, index_full_path
-
-def bowtie_alignment(command_line, flyPreIndexed=''):
- # make temp directory just for stderr
- tmp_index_dir = tempfile.mkdtemp()
- tmp = tempfile.NamedTemporaryFile( dir=tmp_index_dir ).name
- tmp_stderr = open( tmp, 'wb' )
- # conditional statement for sorted bam generation viewable in Trackster
- if "samtools" in command_line:
- target_file = command_line.split()[-1] # recover the final output file name
- path_to_unsortedBam = os.path.join(tmp_index_dir, "unsorted.bam")
- path_to_sortedBam = os.path.join(tmp_index_dir, "unsorted.bam.sorted")
- first_command_line = " ".join(command_line.split()[:-3]) + " -o " + path_to_unsortedBam + " - "
- # example: bowtie -v 0 -M 1 --best --strata -p 12 --suppress 6,7,8 -S /home/galaxy/galaxy-dist/bowtie/Dmel/dmel-all-chromosome-r5.49 -f /home/galaxy/galaxy-dist/database/files/003/dataset_3460.dat |samtools view -bS -o /tmp/tmp_PgMT0/unsorted.bam -
- second_command_line = "samtools sort %s %s" % (path_to_unsortedBam, path_to_sortedBam) # generates an "unsorted.bam.sorted.bam file", NOT an "unsorted.bam.sorted" file
- p = subprocess.Popen(args=first_command_line, cwd=tmp_index_dir, shell=True, stderr=tmp_stderr.fileno()) # fileno() method return the file descriptor number of tmp_stderr
- returncode = p.wait()
- sys.stdout.write("%s\n" % first_command_line + str(returncode))
- p = subprocess.Popen(args=second_command_line, cwd=tmp_index_dir, shell=True, stderr=tmp_stderr.fileno())
- returncode = p.wait()
- sys.stdout.write("\n%s\n" % second_command_line + str(returncode))
- if os.path.isfile(path_to_sortedBam + ".bam"):
- shutil.copy2(path_to_sortedBam + ".bam", target_file)
- else:
- p = subprocess.Popen(args=command_line, shell=True, stderr=tmp_stderr.fileno())
- returncode = p.wait()
- sys.stdout.write(command_line + "\n")
- tmp_stderr.close()
- ## cleaning if the index was created in the fly
- if os.path.exists( flyPreIndexed ):
- shutil.rmtree( flyPreIndexed )
- # cleaning tmp files and directories
- if os.path.exists( tmp_index_dir ):
- shutil.rmtree( tmp_index_dir )
- return
-
-def __main__():
- F = open (sys.argv[7], "w")
- if sys.argv[5] == "history":
- tmp_dir, index_path = bowtie_squash(sys.argv[6])
- else:
- tmp_dir, index_path = "dummy/dymmy", sys.argv[6]
- command_line = bowtieCommandLiner(sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[8], sys.argv[9], sys.argv[1], index_path, sys.argv[7], sys.argv[10])
- bowtie_alignment(command_line, flyPreIndexed=tmp_dir)
- F.close()
-if __name__=="__main__": __main__()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtie.xml
--- a/mississippi_gcc/sRbowtie.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-
- for FASTA small reads
-
- bowtie
-
-
- sRbowtie.py $input
- $method
- $v_mismatches
- $output_type
- $refGenomeSource.genomeSource
- ## the very source of the index (indexed or fasta file)
- #if $refGenomeSource.genomeSource == "history":
- $refGenomeSource.ownFile
- #else:
- $refGenomeSource.index.fields.path
- #end if
- $output
- $aligned
- $unaligned
- \${GALAXY_SLOTS:-4} ## number of processors to be handled by bowtie
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- additional_fasta == "al" or additional_fasta == "al_and_unal"
-
-
- additional_fasta == "unal" or additional_fasta == "al_and_unal"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-Bowtie_ is a short read aligner designed to be ultrafast and memory-efficient. It is developed by Ben Langmead and Cole Trapnell. Please cite: Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25.
-
-.. _Bowtie: http://bowtie-bio.sourceforge.net/index.shtml
-
-A generic "Map with Bowtie for Illumina" Galaxy tool is available in the main Galaxy distribution.
-
-However, this Bowtie wrapper tool only takes FASTQ files as inputs.
-
-The sRbowtie wrapper specifically works with short reads FASTA inputs (-v bowtie mode)
-
-------
-
-**OPTIONS**
-
-.. class:: infomark
-
-This script uses Bowtie to match reads on a reference index.
-
-Depending on the type of matching, different bowtie options are used:
-
-**Match on sense strand RNA reference index, multiple mappers randomly matched at a single position**
-
-Match on RNA reference, SENSE strand, randomly attributing multiple mapper to target with least mismatches, the polarity column is suppressed in the bowtie tabular report:
-
-*-v [0,1,2,3] -M 1 --best --strata -p 12 --norc --suppress 2,6,7,8*
-
-**Match unique mappers on DNA reference index**
-
-Match ONLY unique mappers on DNA reference index
-
-*-v [0,1,2,3] -m 1 -p 12 --suppress 6,7,8*
-
-Note that using this option with -v values other than 0 is questionnable...
-
-**Match on DNA, multiple mappers randomly matched at a single position**
-
-Match multiple mappers, randomly attributing multiple mapper to target with least mismatches, number of mismatch allowed specified by -v option:
-
-*-v [0,1,2,3] -M 1 --best --strata -p 12 --suppress 6,7,8*
-
-**Match on DNA as fast as possible, without taking care of mapping issues (for raw annotation of reads)**
-
-Match with highest speed, not guaranteeing best hit for speed gain:
-
-*-v [0,1,2,3] -k 1 --best -p 12 --suppress 6,7,8*
-
-
------
-
-**Input formats**
-
-.. class:: warningmark
-
-*The only accepted format for the script is a raw fasta list of reads, clipped from their adapter*
-
------
-
-**OUTPUTS**
-
-If you choose tabular as the output format, you will obtain the matched reads in standard bowtie output format, having the following columns::
-
- Column Description
- -------- --------------------------------------------------------
- 1 FastaID fasta identifier
- 2 polarity + or - depending whether the match was reported on the forward or reverse strand
- 3 target name of the matched target
- 4 Offset O-based coordinate of the miR on the miRBase pre-miR sequence
- 5 Seq sequence of the matched Read
-
-If you choose SAM, you will get the output in unordered SAM format.
-
-.. class:: warningmark
-
-if you choose BAM, the output will be in sorted BAM format.
-To be viewable in Trackster, several condition must be fulfilled:
-
-.. class:: infomark
-
-Reads must have been matched to a genome whose chromosome names are compatible with Trackster genome indexes
-
-.. class:: infomark
-
-the database/Build (dbkey) which is indicated for the dataset (Pencil - Database/Build field) must match a Trackster genome index.
-
-Please contact the Galaxy instance administrator if your genome is not referenced
-
-**Matched and unmatched fasta reads can be retrieved, for further analyses**
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtieCascade.py
--- a/mississippi_gcc/sRbowtieCascade.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,136 +0,0 @@
-#!/usr/bin/env python
-# small RNA oriented bowtie wrapper in cascade for small RNA data set genome annotation
-# version 0.9 13-6-2014
-# Usage sRbowtie_cascade.py see Parser() for valid arguments
-# Christophe Antoniewski
-
-import sys, os, subprocess, tempfile, shutil, argparse
-from collections import defaultdict
-
-def Parser():
- the_parser = argparse.ArgumentParser()
- the_parser.add_argument('--output', action="store", type=str, help="output file")
- the_parser.add_argument('--num-threads', dest="num_threads", action="store", type=str, help="number of bowtie threads")
- the_parser.add_argument('--mismatch', action="store", type=str, help="number of mismatches allowed")
- the_parser.add_argument('--indexing-flags', dest="indexing_flags", nargs='+', help="whether the index should be generated or not by bowtie-buid")
- the_parser.add_argument('--index',nargs='+', help="paths to indexed or fasta references")
- the_parser.add_argument('--indexName',nargs='+', help="Names of the indexes")
- the_parser.add_argument('--input',nargs='+', help="paths to multiple input files")
- the_parser.add_argument('--label',nargs='+', help="labels of multiple input files")
- args = the_parser.parse_args()
- return args
-
-def stop_err( msg ):
- sys.stderr.write( '%s\n' % msg )
- sys.exit()
-
-def bowtie_squash(fasta):
- tmp_index_dir = tempfile.mkdtemp() # make temp directory for bowtie indexes
- ref_file = tempfile.NamedTemporaryFile( dir=tmp_index_dir )
- ref_file_name = ref_file.name
- ref_file.close() # by default, delete the temporary file, but ref_file.name is now stored in ref_file_name
- os.symlink( fasta, ref_file_name ) # symlink between the fasta source file and the deleted ref_file name
- cmd1 = 'bowtie-build -f %s %s' % (ref_file_name, ref_file_name ) # bowtie command line, which will work after changing dir (cwd=tmp_index_dir)
- try:
- FNULL = open(os.devnull, 'w')
- tmp = tempfile.NamedTemporaryFile( dir=tmp_index_dir ).name # a path string for a temp file in tmp_index_dir. Just a string
- tmp_stderr = open( tmp, 'wb' ) # creates and open a file handler pointing to the temp file
- proc = subprocess.Popen( args=cmd1, shell=True, cwd=tmp_index_dir, stderr=FNULL, stdout=FNULL ) # both stderr and stdout of bowtie-build are redirected in dev/null
- returncode = proc.wait()
- tmp_stderr.close()
- FNULL.close()
- sys.stdout.write(cmd1 + "\n")
- except Exception, e:
- # clean up temp dir
- if os.path.exists( tmp_index_dir ):
- shutil.rmtree( tmp_index_dir )
- stop_err( 'Error indexing reference sequence\n' + str( e ) )
- # no Cleaning if no Exception, tmp_index_dir has to be cleaned after bowtie_alignment()
- index_full_path = os.path.join(tmp_index_dir, ref_file_name) # bowtie fashion path without extention
- return index_full_path
-
-def make_working_dir():
- working_dir = tempfile.mkdtemp()
- return working_dir
-
-def Clean_TempDir(directory):
- if os.path.exists( directory ):
- shutil.rmtree( directory )
- return
-
-def bowtie_alignment(command_line="None", working_dir = ""):
- FNULL = open(os.devnull, 'w')
- p = subprocess.Popen(args=command_line, cwd=working_dir, shell=True, stderr=FNULL, stdout=FNULL)
- returncode = p.wait()
- sys.stdout.write("%s\n" % command_line)
- FNULL.close()
- #p = subprocess.Popen(["wc", "-l", "%s/al.fasta"%working_dir], cwd=working_dir, stdout=subprocess.PIPE)
- #aligned = p.communicate()[0].split()[0]
- aligned = 0
- F = open ("%s/al.fasta" % working_dir, "r")
- for line in F:
- aligned += 1
- F.close()
- sys.stdout.write("Aligned: %s\n" % aligned)
- return aligned/2
-
-def CommandLiner (v_mis="1", pslots="12", index="dum/my", input="dum/my", working_dir=""):
- return "bowtie -v %s -k 1 --best -p %s --al %s/al.fasta --un %s/unal.fasta --suppress 1,2,3,4,5,6,7,8 %s -f %s" % (v_mis, pslots, working_dir, working_dir, index, input)
-
-def __main__():
- args = Parser()
- ## first we make all indexes available. They can be already available or be squashed by bowtie-build
- ## we keep them in a list that alternates indexPath and "toClear" or "DoNotDelete"
- BowtieIndexList = []
- for indexing_flags, bowtiePath in zip (args.indexing_flags, args.index):
- if indexing_flags == "history":
- BowtieIndexList.append ( bowtie_squash (bowtiePath) )
- BowtieIndexList.append ( "toClear" )
- else:
- BowtieIndexList.append ( bowtiePath )
- BowtieIndexList.append ( "DoNotDelete")
- ###### temporary Indexes are generated. They must be deleted at the end (after removing file name in the temp path)
- ResultDict = defaultdict(list)
- for label, input in zip(args.label, args.input): ## the main cascade, iterating over samples and bowtie indexes
- workingDir = make_working_dir()
- cmd = CommandLiner (v_mis=args.mismatch, pslots=args.num_threads, index=BowtieIndexList[0], input=input, working_dir=workingDir)
- ResultDict[label].append( bowtie_alignment(command_line=cmd, working_dir = workingDir) ) # first step of the cascade
- if len(BowtieIndexList) > 2: # is there a second step to perform ?
- os.rename("%s/al.fasta"%workingDir, "%s/toAlign.fasta"%workingDir) ## end of first step. the aligned reads are the input of the next step
- cmd = CommandLiner (v_mis=args.mismatch, pslots=args.num_threads, index=BowtieIndexList[2], input="%s/toAlign.fasta"%workingDir, working_dir=workingDir)
- ResultDict[label].append( bowtie_alignment(command_line=cmd, working_dir = workingDir) )## second step of the cascade
- if len(BowtieIndexList) > 4: ## remaining steps
- for BowtieIndexPath in BowtieIndexList[4::2]:
- os.rename("%s/unal.fasta"%workingDir, "%s/toAlign.fasta"%workingDir)
- cmd = CommandLiner (v_mis=args.mismatch, pslots=args.num_threads, index=BowtieIndexPath, input="%s/toAlign.fasta"%workingDir, working_dir=workingDir)
- ResultDict[label].append( bowtie_alignment(command_line=cmd, working_dir = workingDir) )
- Fun = open("%s/unal.fasta"%workingDir, "r") ## to finish, compute the number of unmatched reads
- n = 0
- for line in Fun:
- n += 1
- ResultDict[label].append(n/2)
- Fun.close()
- Clean_TempDir (workingDir) # clean the sample working directory
- ## cleaning
- for IndexPath, IndexFlag in zip(BowtieIndexList[::2], BowtieIndexList[1::2]):
- if IndexFlag == "toClear":
- Clean_TempDir ("/".join(IndexPath.split("/")[:-1]))
- ## end of cleaning
-
-
-
- F = open (args.output, "w")
- print >> F, "alignment reference\t%s" % "\t".join(args.label)
- for i, reference in enumerate(args.indexName):
- F.write ("%s" % reference)
- for sample in args.label:
- F.write ("\t%s" % "{:,}".format(ResultDict[sample][i]) )
- print >> F
- F.write ("Remaining Unmatched")
- for sample in args.label:
- F.write ("\t%s" % "{:,}".format(ResultDict[sample][-1]) )
- print >> F
-
- F.close()
-
-if __name__=="__main__": __main__()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtieCascade.xml
--- a/mississippi_gcc/sRbowtieCascade.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,142 +0,0 @@
-
- Using iterative sRbowtie Alignments
-
- bowtie
-
-
- sRbowtieCascade.py --output $output
- --num-threads \${GALAXY_SLOTS:-4} ## number of processors to be handled by bowtie
- --mismatch $mismatches
- --input
- #for $i in $input:
- $i
- #end for
- --label
- #for $i in $input:
- "$i.name"
- #end for
- --index
- #if $refGenomeSource1.genomeSource == "history":
- $refGenomeSource1.ownFile
- #else:
- $refGenomeSource1.index.fields.path
- #end if
- #for $i in $AdditionalQueries:
- #if $i.refGenomeSource.genomeSource == "history":
- $i.refGenomeSource.ownFile
- #else:
- $i.refGenomeSource.index.fields.path
- #end if
- #end for
- --indexing-flags
- $refGenomeSource1.genomeSource
- #for $i in $AdditionalQueries:
- $i.refGenomeSource.genomeSource
- #end for
- --indexName
- #if $refGenomeSource1.genomeSource == "history":
- "$refGenomeSource1.ownFile.name"
- #else:
- "$refGenomeSource1.index.fields.name"
- #end if
- #for $i in $AdditionalQueries:
- #if $i.refGenomeSource.genomeSource == "history":
- "$i.refGenomeSource.ownFile.name"
- #else:
- "$i.refGenomeSource.index.fields.name"
- #end if
- #end for
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**Intro**
-
-Bowtie_ is a short read aligner designed to be ultrafast and memory-efficient.
-A generic "Map with Bowtie for Illumina" Galaxy tool is available in the main Galaxy distribution.
-However, this Bowtie wrapper tool only takes FASTQ files as inputs.
-
-Here The sRbowtie wrapper specifically works with short reads FASTA inputs (-v bowtie mode, with -k 1)
-
-.. _Bowtie: http://bowtie-bio.sourceforge.net/index.shtml
-
-
-------
-
-**What it does**
-
-.. class:: infomark
-
-This script uses the sRbowtie wrapper to iteratively match reads on a reference indexes.
-
-Reads are Matched on DNA references as fast as possible, without taking care of mapping issues
-
-*-v [0,1,2,3] -k 1 --best -p 12 --suppress 6,7,8*
-
-unaligned reads at step N are used input for sRbowtie at step N+1
-
------
-
-**Input formats**
-
-.. class:: warningmark
-
-*The only accepted format for the script is a raw fasta list of reads, clipped from their adapter*
-
------
-
-**OUTPUTS**
-
-**Annotation table**
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtieParser.py
--- a/mississippi_gcc/sRbowtieParser.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,35 +0,0 @@
-#!/usr/bin/python
-# python parser module to analyse sRbowtie alignments
-# version 0.9
-# Usage sRbowtieParser.py <1:index source> <2:extraction directive> <3:outputL> <4:polarity> <5:6:7 filePath:FileExt:FileLabel> <.. ad lib>
-
-import sys
-from smRtools import *
-
-IndexSource = sys.argv[1]
-ExtractionDirective = sys.argv[2]
-if ExtractionDirective == "--do_not_extract_index":
- genomeRefFormat = "fastaSource"
-elif ExtractionDirective == "--extract_index":
- genomeRefFormat = "bowtieIndex"
-Output = sys.argv[3]
-Polarity = sys.argv[4] # maybe "both", "forward", "reverse"
-Triplets = [sys.argv[5:][i:i+3] for i in xrange(0, len(sys.argv[5:]), 3)]
-MasterListOfGenomes = {}
-
-for [filePath, FileExt, FileLabel] in Triplets:
- MasterListOfGenomes[FileLabel] = HandleSmRNAwindows (filePath, FileExt, IndexSource, genomeRefFormat)
-
-header = ["gene"]
-for [filePath, FileExt, FileLabel] in Triplets:
- header.append(FileLabel)
-
-F = open (sys.argv[3], "w")
-print >> F, "\t".join(header)
-for item in sorted (MasterListOfGenomes[header[1]].instanceDict.keys() ):
- line=[item]
- for sample in header[1:]:
- count = str (MasterListOfGenomes[sample].instanceDict[item].readcount(polarity=Polarity))
- line.append(count)
- print >> F, "\t".join(line )
-F.close()
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/sRbowtieParser.xml
--- a/mississippi_gcc/sRbowtieParser.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,67 +0,0 @@
-
-
- bowtie-inspect
-
-
- sRbowtieParser.py
- #if $refGenomeSource.genomeSource == "history":
- $refGenomeSource.ownFile ## index source
- --do_not_extract_index
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $input_list.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- $reference ## index source
- --extract_index
- #end if
- $output
- $polarity
- #for $i in $refGenomeSource.input_list
- $i $i.ext "$i.name"
- #end for
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-Parses read counts from one or several sRBowtie alignments (in tabular, Sam or Bam format).
-
-Here a bowtie match done against an index composed of a set of items is parsed and expressed as a hit list of the corresponding items
-
-Sense, antisense or both sense and antisense alignments can be counted
-
-The library labels are infered from the input dataset names in the galaxy history.
-
-**It is thus essential that input datasets are appropriately renamed**
-
-**it is preferable that you do not put any space in this input dataset names. You may edit these names in the history**
-
-
-
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/size_histogram.py
--- a/mississippi_gcc/size_histogram.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,126 +0,0 @@
-#!/usr/bin/python
-# python parser module for size distributions, guided by GFF3
-# version 0.9.1 (1-6-2014)
-# Usage readmap.py <1:index source> <2:extraction directive> <3:output pre-mir> <4: output mature miRs> <5:mirbase GFF3>
-# <6:pathToLatticeDataframe or "dummy_dataframe_path"> <7:Rcode or "dummy_plotCode"> <8:latticePDF or "dummy_latticePDF">
-# <9:10:11 filePath:FileExt:FileLabel> <.. ad lib>
-
-import sys, subprocess, argparse
-from smRtools import *
-from collections import OrderedDict, defaultdict
-import os
-
-def Parser():
- the_parser = argparse.ArgumentParser()
- the_parser.add_argument('--output_size_distribution', action="store", type=str, help="size distribution dataframe")
- the_parser.add_argument('--reference_fasta', action="store", type=str, help="output file")
- the_parser.add_argument('--reference_bowtie_index',action='store', help="paths to indexed or fasta references")
- the_parser.add_argument('--input',nargs='+', help="paths to multiple input files")
- the_parser.add_argument('--ext',nargs='+', help="input file type")
- the_parser.add_argument('--label',nargs='+', help="labels of multiple input files")
- the_parser.add_argument('--normalization_factor',nargs='+', type=float, help="Normalization factor for input file")
- the_parser.add_argument('--gff', type=str, help="GFF containing regions of interest")
- the_parser.add_argument('--minquery', type=int, help="Minimum readsize")
- the_parser.add_argument('--maxquery', type=int, help="Maximum readsize")
- the_parser.add_argument('--rcode', type=str, help="R script")
- the_parser.add_argument('--global_size', action="store_true", help="if specified, size distribution is calcilated for the sum of all items")
- the_parser.add_argument('--collapse', action="store_true", help="if specified, forward and reverse reads are collapsed")
- args = the_parser.parse_args()
- return args
-
-args=Parser()
-if args.reference_fasta:
- genomeRefFormat = "fastaSource"
- genomeRefFile = args.reference_fasta
-if args.reference_bowtie_index:
- genomeRefFormat = "bowtieIndex"
- genomeRefFile = args.reference_bowtie_index
-size_distribution_file=args.output_size_distribution
-minquery=args.minquery
-maxquery=args.maxquery
-Rcode = args.rcode
-filePath=args.input
-fileExt=args.ext
-fileLabel=args.label
-normalization_factor=args.normalization_factor
-global_size=args.global_size
-collapse=args.collapse
-
-if collapse:
- pol=["both"]
-else:
- pol=["F", "R"]
-
-MasterListOfGenomes = OrderedDict()
-
-def process_samples(filePath):
- for i, filePath in enumerate(filePath):
- norm=normalization_factor[i]
- print fileLabel[i]
- MasterListOfGenomes[fileLabel[i]] = HandleSmRNAwindows (alignmentFile=filePath, alignmentFileFormat=fileExt[i], genomeRefFile=genomeRefFile, genomeRefFormat=genomeRefFormat,\
- biosample=fileLabel[i], size_inf=minquery, size_sup=maxquery, norm=norm)
- return MasterListOfGenomes
-
-def write_size_distribution_dataframe(readDict, size_distribution_file):
- with open(size_distribution_file, 'w') as size_distrib:
- print >>size_distrib, "gene\tpolarity\tsize\tcount\tsample"
- for sample in readDict.keys():
- if args.gff:
- dict=readDict[sample]
- else:
- dict=readDict[sample].instanceDict
- for gene in dict.keys():
- histogram = dict[gene].size_histogram()
- for polarity in histogram.keys():
- for item in histogram[polarity].iteritems():
- print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, item[0], item[1], sample)
-
-def write_size_distribution_dataframe_global(readDict, size_distribution_file, pol=["both"]):
- with open(size_distribution_file, 'w') as size_distrib:
- print >>size_distrib, "gene\tpolarity\tsize\tcount\tsample"
- for sample in readDict.keys():
- histogram = readDict[sample].size_histogram()
- gene="sample"
- for polarity in pol:
- for item in histogram[polarity].iteritems():
- if polarity=="R":
- print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, item[0], -item[1], sample)
- else:
- print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, item[0], item[1], sample)
-
-def gff_item_subinstances(readDict, gff3):
- GFFinstanceDict=OrderedDict()
- with open(gff3) as gff:
- for line in gff:
- if line[0] == "#": continue
- gff_fields = line[:-1].split("\t")
- chrom = gff_fields[0]
- gff_name = gff_fields[-1].split("Name=")[-1].split(";")[0] # to isolate the GFF Name
- item_upstream_coordinate = int(gff_fields[3])
- item_downstream_coordinate = int(gff_fields[4])
- item_polarity = gff_fields[6]
- for sample in readDict.keys():
- if not GFFinstanceDict.has_key(sample):
- GFFinstanceDict[sample]={}
- subinstance=extractsubinstance(item_upstream_coordinate, item_downstream_coordinate, readDict[sample].instanceDict[chrom])
- if item_polarity == '-':
- subinstance.readDict={key*-1:value for key, value in subinstance.readDict.iteritems()}
-# subinstance.readDict.setdefault(key, [])
- subinstance.gene=gff_name
- GFFinstanceDict[sample][gff_name]=subinstance
- return GFFinstanceDict
-
-MasterListOfGenomes=process_samples(filePath)
-
-if args.gff:
- MasterListOfGenomes=gff_item_subinstances(MasterListOfGenomes, args.gff)
-
-if global_size:
- write_size_distribution_dataframe_global(MasterListOfGenomes, size_distribution_file, pol)
-else:
- write_size_distribution_dataframe(MasterListOfGenomes, size_distribution_file)
-
-R_command="Rscript "+ Rcode
-process = subprocess.Popen(R_command.split())
-process.wait()
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/size_histogram.xml
--- a/mississippi_gcc/size_histogram.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,200 +0,0 @@
-
- from sRbowtie aligment
- bowtie-inspect
-
-
- size_histogram.py
- #if $refGenomeSource.genomeSource == "history":
- --reference_fasta ## sys.argv[2]
- $refGenomeSource.ownFile ## index source
- #else:
- #silent reference= filter( lambda x: str( x[0] ) == str( $refGenomeSource.series[0].input.dbkey ), $__app__.tool_data_tables[ 'bowtie_indexes' ].get_fields() )[0][-1]
- --reference_bowtie_index
- $reference
- #end if
- --rcode
- $plotCode
- --output_size_distribution
- $size_distribution_dataframe
- --minquery
- $minquery
- --maxquery
- $maxquery
- --input
- #for $i in $refGenomeSource.series
- $i.input
- #end for
- --ext
- #for $i in $refGenomeSource.series
- $i.input.ext
- #end for
- --label
- #for $i in $refGenomeSource.series
- "$i.input.name"
- #end for
- --normalization_factor
- #for $i in $refGenomeSource.series
- $i.norm
- #end for
- #if $gff:
- --gff
- $gff
- #end if
- #if $global.value == 'yes':
- --global_size
- #end if
- #if $collapsestrands.value == 'yes':
- --collapse
- #end if
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- ## Setup R error handling to go to stderr
- options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
- library(RColorBrewer)
- library(lattice)
- library(latticeExtra)
- library(grid)
- library(gridExtra)
- ##cheetahtemplate data frame implementation
-
- size=read.delim("${size_distribution_dataframe}", header=T, row.names=NULL)
-
- n_samples=length(unique(size\$sample))
- genes=unique(levels(size\$gene))
- n_genes=length(genes)
-
- par.settings.size=list(layout.heights=list(top.padding=-1, bottom.padding=-3, strip = .75), fontsize = list(text=96/${rows_per_page}, points=8))
- smR.prepanel=function(x,y,...){; yscale=c(-max(abs(y)), max(abs(y)));list(ylim=yscale);}
-
- plot_size_distribution= function(df, ...) {
- bc= barchart(count~as.factor(size)|factor(sample, levels=unique(sample))+gene, data = df, origin = 0,
- horizontal=FALSE,
- group=polarity,
- stack=TRUE,
- col=c('red', 'blue'),
- strip = strip.custom(par.strip.text = list(cex = 0.5)),
- cex=0.75,
- scales=list(y=list(tick.number=4, rot=90, relation="free"), cex=0.75),
- xlab = "readsize in nucleotides",
- ylab = "${ylabel}",
- main="${title}" ,
- as.table=TRUE, newpage = T, ...)
- combineLimits(update(useOuterStrips(bc), layout=c(n_samples,${rows_per_page})), margin.x=F, margin.y=1)
- }
-
- per_gene_size=lapply(genes, function(x) subset(size, gene==x))
-
- global = "no"
- #if $global.value == 'yes':
- global = "yes"
- #end if
-
- if (global=="no") {
- options(warn=-1)
- pdf(file="${size_PDF}", paper="special", height=11.69, width=8.2677*n_samples/4)
- plot_size_distribution(size, par.settings=par.settings.size, prepanel=smR.prepanel)
- } else {
- pdf(file="${size_PDF}", paper="special", height=11.69, width=8.2677)
- bc= barchart(count~as.factor(size)|factor(sample, levels=unique(sample)), data = size, origin = 0,
- horizontal=FALSE,
- group=polarity,
- stack=TRUE,
- col=c('red', 'blue'),
- cex=0.75,
- par.settings=list(fontsize = list(text=8, points=8)),
- scales=list(y=list(tick.number=4, rot=90, relation="same"), cex=0.75),
- xlab = "readsize in nucleotides",
- ylab = "${ylabel}",
- main="${title}" , as.table=TRUE, newpage = T,
- aspect=0.5)
- #layout=c(n_samples, ${rows_per_page}))
- bc
- }
- devname=dev.off()
-
-
-
-
-
-
-
-
-
-
-**What it does**
-
-Takes one or more alignment files (BAM, SAM or tabular bowtie output) as input and produces a histogram of read sizes,
-where by default for each "chromosome" a histogram of read sizes is drawn.
-Reads that map in sense are on the top (red), reads that map antisense are on the bottom (blue).
-
-
-.. class:: warningmark
-
-'''TIP''' The input data can be produced using the sRbowtie tool.
-
-----
-
-'''Example'''
-
-Query sequence::
-For a SAM file as the following:
-
- 5 16 2L_79 24393 255 17M * 0 0 CCTTCATCTTTTTTTTT IIIIIIIIIIIIIIIII XA:i:0 MD:Z:17 NM:i:0
-
- 11 0 2R_1 12675 255 21M * 0 0 AAAAAAAACGCGTCCTTGTGC IIIIIIIIIIIIIIIIIIIII XA:i:0 MD:Z:21 NM:i:0
-
- 2 16 2L_5 669 255 23M * 0 0 TGTTGCTGCATTTCTTTTTTTTT IIIIIIIIIIIIIIIIIIIIIII XA:i:0 MD:Z:23 NM:i:0
-
-produce a plot like this:
-
-----
-
-.. image:: static/images/size_histogram.png
- :height: 800
- :width: 500
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/smRtools.py
--- a/mississippi_gcc/smRtools.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,704 +0,0 @@
-#!/usr/bin/python
-# version 1 7-5-2012 unification of the SmRNAwindow class
-
-import sys, subprocess
-from collections import defaultdict
-from numpy import mean, median, std
-from scipy import stats
-
-def get_fasta (index="/home/galaxy/galaxy-dist/bowtie/5.37_Dmel/5.37_Dmel"):
- '''This function will return a dictionary containing fasta identifiers as keys and the
- sequence as values. Index must be the path to a fasta file.'''
- p = subprocess.Popen(args=["bowtie-inspect","-a", "0", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines
- outputlines = p.stdout.readlines()
- p.wait()
- item_dic = {}
- for line in outputlines:
- if (line[0] == ">"):
- try:
- item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item
- except: pass
- current_item = line[1:].rstrip().split()[0] #take the first word before space because bowtie splits headers !
- item_dic[current_item] = ""
- stringlist=[]
- else:
- stringlist.append(line.rstrip() )
- item_dic[current_item] = "".join(stringlist) # for the last item
- return item_dic
-
-def get_fasta_headers (index):
- p = subprocess.Popen(args=["bowtie-inspect","-n", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines
- outputlines = p.stdout.readlines()
- p.wait()
- item_dic = {}
- for line in outputlines:
- header = line.rstrip().split()[0] #take the first word before space because bowtie splits headers !
- item_dic[header] = 1
- return item_dic
-
-
-def get_file_sample (file, numberoflines):
- '''import random to use this function'''
- F=open(file)
- fullfile = F.read().splitlines()
- F.close()
- if len(fullfile) < numberoflines:
- return "sample size exceeds file size"
- return random.sample(fullfile, numberoflines)
-
-def get_fasta_from_history (file):
- F = open (file, "r")
- item_dic = {}
- for line in F:
- if (line[0] == ">"):
- try:
- item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item
- except: pass
- current_item = line[1:-1].split()[0] #take the first word before space because bowtie splits headers !
- item_dic[current_item] = ""
- stringlist=[]
- else:
- stringlist.append(line[:-1])
- item_dic[current_item] = "".join(stringlist) # for the last item
- return item_dic
-
-def antipara (sequence):
- antidict = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"}
- revseq = sequence[::-1]
- return "".join([antidict[i] for i in revseq])
-
-def RNAtranslate (sequence):
- return "".join([i if i in "AGCN" else "U" for i in sequence])
-def DNAtranslate (sequence):
- return "".join([i if i in "AGCN" else "T" for i in sequence])
-
-def RNAfold (sequence_list):
- thestring= "\n".join(sequence_list)
- p = subprocess.Popen(args=["RNAfold","--noPS"], stdin= subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
- output=p.communicate(thestring)[0]
- p.wait()
- output=output.split("\n")
- if not output[-1]: output = output[:-1] # nasty patch to remove last empty line
- buffer=[]
- for line in output:
- if line[0] in ["N","A","T","U","G","C"]:
- buffer.append(DNAtranslate(line))
- if line[0] in ["(",".",")"]:
- fields=line.split("(")
- energy= fields[-1]
- energy = energy[:-1] # remove the ) parenthesis
- energy=float(energy)
- buffer.append(str(energy))
- return dict(zip(buffer[::2], buffer[1::2]))
-
-def extractsubinstance (start, end, instance):
- ''' Testing whether this can be an function external to the class to save memory'''
- subinstance = SmRNAwindow (instance.gene, instance.sequence[start-1:end], start)
- subinstance.gene = "%s %s %s" % (subinstance.gene, subinstance.windowoffset, subinstance.windowoffset + subinstance.size - 1)
- upcoordinate = [i for i in range(start,end+1) if instance.readDict.has_key(i) ]
- downcoordinate = [-i for i in range(start,end+1) if instance.readDict.has_key(-i) ]
- for i in upcoordinate:
- subinstance.readDict[i]=instance.readDict[i]
- for i in downcoordinate:
- subinstance.readDict[i]=instance.readDict[i]
- return subinstance
-
-class HandleSmRNAwindows:
- def __init__(self, alignmentFile="~", alignmentFileFormat="tabular", genomeRefFile="~", genomeRefFormat="bowtieIndex", biosample="undetermined", size_inf=None, size_sup=1000, norm=1.0):
- self.biosample = biosample
- self.alignmentFile = alignmentFile
- self.alignmentFileFormat = alignmentFileFormat # can be "tabular" or "sam"
- self.genomeRefFile = genomeRefFile
- self.genomeRefFormat = genomeRefFormat # can be "bowtieIndex" or "fastaSource"
- self.alignedReads = 0
- self.instanceDict = {}
- self.size_inf=size_inf
- self.size_sup=size_sup
- self.norm=norm
- if genomeRefFormat == "bowtieIndex":
- self.itemDict = get_fasta (genomeRefFile)
- elif genomeRefFormat == "fastaSource":
- self.itemDict = get_fasta_from_history (genomeRefFile)
- for item in self.itemDict:
- self.instanceDict[item] = SmRNAwindow(item, sequence=self.itemDict[item], windowoffset=1, biosample=self.biosample, norm=self.norm) # create as many instances as there is items
- self.readfile()
-
- def readfile (self) :
- if self.alignmentFileFormat == "tabular":
- F = open (self.alignmentFile, "r")
- for line in F:
- fields = line.split()
- polarity = fields[1]
- gene = fields[2]
- offset = int(fields[3])
- size = len (fields[4])
- if self.size_inf:
- if (size>=self.size_inf and size<= self.size_sup):
- self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
- self.alignedReads += 1
- else:
- self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
- self.alignedReads += 1
- F.close()
- return self.instanceDict
-# elif self.alignmentFileFormat == "sam":
-# F = open (self.alignmentFile, "r")
-# dict = {"0":"+", "16":"-"}
-# for line in F:
-# if line[0]=='@':
-# continue
-# fields = line.split()
-# if fields[2] == "*": continue
-# polarity = dict[fields[1]]
-# gene = fields[2]
-# offset = int(fields[3])
-# size = len (fields[9])
-# if self.size_inf:
-# if (size>=self.size_inf and size<= self.size_sup):
-# self.instanceDict[gene].addread (polarity, offset, size)
-# self.alignedReads += 1
-# else:
-# self.instanceDict[gene].addread (polarity, offset, size)
-# self.alignedReads += 1
-# F.close()
- elif self.alignmentFileFormat == "bam" or self.alignmentFileFormat == "sam":
- import pysam
- samfile = pysam.Samfile(self.alignmentFile)
- for read in samfile:
- if read.tid == -1:
- continue # filter out unaligned reads
- if read.is_reverse:
- polarity="-"
- else:
- polarity="+"
- gene = samfile.getrname(read.tid)
- offset = read.pos
- size = read.qlen
- if self.size_inf:
- if (size>=self.size_inf and size<= self.size_sup):
- self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
- self.alignedReads += 1
- else:
- self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow
- self.alignedReads += 1
- return self.instanceDict
-
- def size_histogram (self):
- size_dict={}
- size_dict['F']= defaultdict (int)
- size_dict['R']= defaultdict (int)
- size_dict['both'] = defaultdict (int)
- for item in self.instanceDict:
- buffer_dict_F = self.instanceDict[item].size_histogram()['F']
- buffer_dict_R = self.instanceDict[item].size_histogram()['R']
- for size in buffer_dict_F:
- size_dict['F'][size] += buffer_dict_F[size]
- for size in buffer_dict_R:
- size_dict['R'][size] -= buffer_dict_R[size]
- allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) )
- for size in allSizeKeys:
- size_dict['both'][size] = size_dict['F'][size] + size_dict['R'][size]
- return size_dict
-
- def CountFeatures (self, GFF3="path/to/file"):
- featureDict = defaultdict(int)
- F = open (GFF3, "r")
- for line in F:
- if line[0] == "#": continue
- fields = line[:-1].split()
- chrom, feature, leftcoord, rightcoord, polarity = fields[0], fields[2], fields[3], fields[4], fields[6]
- featureDict[feature] += self.instanceDict[chrom].readcount(upstream_coord=int(leftcoord), downstream_coord=int(rightcoord), polarity="both", method="destructive")
- F.close()
- return featureDict
-
-class SmRNAwindow:
-
- def __init__(self, gene, sequence="ATGC", windowoffset=1, biosample="Undetermined", norm=1.0):
- self.biosample = biosample
- self.sequence = sequence
- self.gene = gene
- self.windowoffset = windowoffset
- self.size = len(sequence)
- self.readDict = defaultdict(list) # with a {+/-offset:[size1, size2, ...], ...}
- self.matchedreadsUp = 0
- self.matchedreadsDown = 0
- self.norm=norm
-
- def addread (self, polarity, offset, size):
- '''ATTENTION ATTENTION ATTENTION'''
- ''' We removed the conversion from 0 to 1 based offset, as we do this now during readparsing.'''
- if polarity == "+":
- self.readDict[offset].append(size)
- self.matchedreadsUp += 1
- else:
- self.readDict[-(offset + size -1)].append(size)
- self.matchedreadsDown += 1
- return
-
- def barycenter (self, upstream_coord=None, downstream_coord=None):
- '''refactored 24-12-2013 to save memory and introduce offset filtering see readcount method for further discussion on that
- In this version, attempt to replace the dictionary structure by a list of tupple to save memory too'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- window_size = downstream_coord - upstream_coord +1
- def weigthAverage (TuppleList):
- weightSum = 0
- PonderWeightSum = 0
- for tuple in TuppleList:
- PonderWeightSum += tuple[0] * tuple[1]
- weightSum += tuple[1]
- if weightSum > 0:
- return PonderWeightSum / float(weightSum)
- else:
- return 0
- forwardTuppleList = [(k, len(self.readDict[k])) for k in self.readDict.keys() if (k > 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both forward and in the proper offset window
- reverseTuppleList = [(-k, len(self.readDict[k])) for k in self.readDict.keys() if (k < 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both reverse and in the proper offset window
- Fbarycenter = (weigthAverage (forwardTuppleList) - upstream_coord) / window_size
- Rbarycenter = (weigthAverage (reverseTuppleList) - upstream_coord) / window_size
- return Fbarycenter, Rbarycenter
-
- def correlation_mapper (self, reference, window_size):
- '''to map correlation with a sliding window 26-2-2013'''
- if window_size > self.size:
- return []
- F=open(reference, "r")
- reference_forward = []
- reference_reverse = []
- for line in F:
- fields=line.split()
- reference_forward.append(int(float(fields[1])))
- reference_reverse.append(int(float(fields[2])))
- F.close()
- local_object_forward=[]
- local_object_reverse=[]
- ## Dict to list for the local object
- for i in range(1, self.size+1):
- local_object_forward.append(len(self.readDict[i]))
- local_object_reverse.append(len(self.readDict[-i]))
- ## start compiling results by slides
- results=[]
- for coordinate in range(self.size - window_size):
- local_forward=local_object_forward[coordinate:coordinate + window_size]
- local_reverse=local_object_reverse[coordinate:coordinate + window_size]
- if sum(local_forward) == 0 or sum(local_reverse) == 0:
- continue
- try:
- reference_to_local_cor_forward = stats.spearmanr(local_forward, reference_forward)
- reference_to_local_cor_reverse = stats.spearmanr(local_reverse, reference_reverse)
- if (reference_to_local_cor_forward[0] > 0.2 or reference_to_local_cor_reverse[0]>0.2):
- results.append([coordinate+1, reference_to_local_cor_forward[0], reference_to_local_cor_reverse[0]])
- except:
- pass
- return results
-
- def readcount (self, size_inf=0, size_sup=1000, upstream_coord=None, downstream_coord=None, polarity="both", method="conservative"):
- '''refactored 24-12-2013 to save memory and introduce offset filtering
- take a look at the defaut parameters that cannot be defined relatively to the instance are they are defined before instanciation
- the trick is to pass None and then test
- polarity parameter can take "both", "forward" or "reverse" as value'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "both":
- return self.matchedreadsUp + self.matchedreadsDown
- if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "forward":
- return self.matchedreadsUp
- if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "reverse":
- return self.matchedreadsDown
- n=0
- if polarity == "both":
- for offset in xrange(upstream_coord, downstream_coord+1):
- if self.readDict.has_key(offset):
- for read in self.readDict[offset]:
- if (read>=size_inf and read<= size_sup):
- n += 1
- if method != "conservative":
- del self.readDict[offset] ## Carefull ! precludes re-use on the self.readDict dictionary !!!!!! TEST
- if self.readDict.has_key(-offset):
- for read in self.readDict[-offset]:
- if (read>=size_inf and read<= size_sup):
- n += 1
- if method != "conservative":
- del self.readDict[-offset]
- return n
- elif polarity == "forward":
- for offset in xrange(upstream_coord, downstream_coord+1):
- if self.readDict.has_key(offset):
- for read in self.readDict[offset]:
- if (read>=size_inf and read<= size_sup):
- n += 1
- return n
- elif polarity == "reverse":
- for offset in xrange(upstream_coord, downstream_coord+1):
- if self.readDict.has_key(-offset):
- for read in self.readDict[-offset]:
- if (read>=size_inf and read<= size_sup):
- n += 1
- return n
-
- def readsizes (self):
- '''return a dictionary of number of reads by size (the keys)'''
- dicsize = {}
- for offset in self.readDict:
- for size in self.readDict[offset]:
- dicsize[size] = dicsize.get(size, 0) + 1
- for offset in range (min(dicsize.keys()), max(dicsize.keys())+1):
- dicsize[size] = dicsize.get(size, 0) # to fill offsets with null values
- return dicsize
-
- def size_histogram(self):
- norm=self.norm
- hist_dict={}
- hist_dict['F']={}
- hist_dict['R']={}
- for offset in self.readDict:
- for size in self.readDict[offset]:
- if offset < 0:
- hist_dict['R'][size] = hist_dict['R'].get(size, 0) - 1*norm
- else:
- hist_dict['F'][size] = hist_dict['F'].get(size, 0) + 1*norm
- return hist_dict
-
- def statsizes (self, upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates
- see the readcount method for further discussion'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- L = []
- for offset in self.readDict:
- if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
- for size in self.readDict[offset]:
- L.append(size)
- meansize = mean(L)
- stdv = std(L)
- mediansize = median(L)
- return meansize, mediansize, stdv
-
- def foldEnergy (self, upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates
- see the readcount method for further discussion'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- Energy = RNAfold ([self.sequence[upstream_coord-1:downstream_coord] ])
- return float(Energy[self.sequence[upstream_coord-1:downstream_coord]])
-
- def Ufreq (self, size_scope, upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates
- see the readcount method for further discussion. size_scope must be an interable'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- freqDic = {"A":0,"T":0,"G":0,"C":0, "N":0}
- convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"}
- for offset in self.readDict:
- if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
- for size in self.readDict[offset]:
- if size in size_scope:
- startbase = self.sequence[abs(offset)-self.windowoffset]
- if offset < 0:
- startbase = convertDic[startbase]
- freqDic[startbase] += 1
- base_sum = float ( sum( freqDic.values()) )
- if base_sum == 0:
- return "."
- else:
- return freqDic["T"] / base_sum * 100
-
- def Ufreq_stranded (self, size_scope, upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates
- see the readcount method for further discussion. size_scope must be an interable
- This method is similar to the Ufreq method but take strandness into account'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- freqDic = {"Afor":0,"Tfor":0,"Gfor":0,"Cfor":0, "Nfor":0,"Arev":0,"Trev":0,"Grev":0,"Crev":0, "Nrev":0}
- convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"}
- for offset in self.readDict:
- if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
- for size in self.readDict[offset]:
- if size in size_scope:
- startbase = self.sequence[abs(offset)-self.windowoffset]
- if offset < 0:
- startbase = convertDic[startbase]
- freqDic[startbase+"rev"] += 1
- else:
- freqDic[startbase+"for"] += 1
- forward_sum = float ( freqDic["Afor"]+freqDic["Tfor"]+freqDic["Gfor"]+freqDic["Cfor"]+freqDic["Nfor"])
- reverse_sum = float ( freqDic["Arev"]+freqDic["Trev"]+freqDic["Grev"]+freqDic["Crev"]+freqDic["Nrev"])
- if forward_sum == 0 and reverse_sum == 0:
- return ". | ."
- elif reverse_sum == 0:
- return "%s | ." % (freqDic["Tfor"] / forward_sum * 100)
- elif forward_sum == 0:
- return ". | %s" % (freqDic["Trev"] / reverse_sum * 100)
- else:
- return "%s | %s" % (freqDic["Tfor"] / forward_sum * 100, freqDic["Trev"] / reverse_sum * 100)
-
-
- def readplot (self):
- norm=self.norm
- readmap = {}
- for offset in self.readDict.keys():
- readmap[abs(offset)] = ( len(self.readDict.get(-abs(offset),[]))*norm , len(self.readDict.get(abs(offset),[]))*norm )
- mylist = []
- for offset in sorted(readmap):
- if readmap[offset][1] != 0:
- mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, readmap[offset][1], "F") )
- if readmap[offset][0] != 0:
- mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, -readmap[offset][0], "R") )
- return mylist
-
- def readcoverage (self, upstream_coord=None, downstream_coord=None, windowName=None):
- '''Use by MirParser tool'''
- upstream_coord = upstream_coord or 1
- downstream_coord = downstream_coord or self.size
- windowName = windowName or "%s_%s_%s" % (self.gene, upstream_coord, downstream_coord)
- forORrev_coverage = dict ([(i,0) for i in xrange(1, downstream_coord-upstream_coord+1)])
- totalforward = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="forward")
- totalreverse = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="reverse")
- if totalforward > totalreverse:
- majorcoverage = "forward"
- for offset in self.readDict.keys():
- if (offset > 0) and ((offset-upstream_coord+1) in forORrev_coverage.keys() ):
- for read in self.readDict[offset]:
- for i in xrange(read):
- try:
- forORrev_coverage[offset-upstream_coord+1+i] += 1
- except KeyError:
- continue # a sense read may span over the downstream limit
- else:
- majorcoverage = "reverse"
- for offset in self.readDict.keys():
- if (offset < 0) and (-offset-upstream_coord+1 in forORrev_coverage.keys() ):
- for read in self.readDict[offset]:
- for i in xrange(read):
- try:
- forORrev_coverage[-offset-upstream_coord-i] += 1 ## positive coordinates in the instance, with + for forward coverage and - for reverse coverage
- except KeyError:
- continue # an antisense read may span over the upstream limit
- output_list = []
- maximum = max (forORrev_coverage.values()) or 1
- for n in sorted (forORrev_coverage):
- output_list.append("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (self.biosample, windowName, n, float(n)/(downstream_coord-upstream_coord+1), forORrev_coverage[n], float(forORrev_coverage[n])/maximum, majorcoverage))
- return "\n".join(output_list)
-
-
- def signature (self, minquery, maxquery, mintarget, maxtarget, scope, zscore="no", upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates
- see the readcount method for further discussion
- scope must be a python iterable; scope define the *relative* offset range to be computed'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- query_range = range (minquery, maxquery+1)
- target_range = range (mintarget, maxtarget+1)
- Query_table = {}
- Target_table = {}
- frequency_table = dict ([(i, 0) for i in scope])
- for offset in self.readDict:
- if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
- for size in self.readDict[offset]:
- if size in query_range:
- Query_table[offset] = Query_table.get(offset, 0) + 1
- if size in target_range:
- Target_table[offset] = Target_table.get(offset, 0) + 1
- for offset in Query_table:
- for i in scope:
- frequency_table[i] += min(Query_table[offset], Target_table.get(-offset -i +1, 0))
- if minquery==mintarget and maxquery==maxtarget: ## added to incorporate the division by 2 in the method (26/11/2013), see signature_options.py and lattice_signature.py
- frequency_table = dict([(i,frequency_table[i]/2) for i in frequency_table])
- if zscore == "yes":
- z_mean = mean(frequency_table.values() )
- z_std = std(frequency_table.values() )
- if z_std == 0:
- frequency_table = dict([(i,0) for i in frequency_table] )
- else:
- frequency_table = dict([(i, (frequency_table[i]- z_mean)/z_std) for i in frequency_table] )
- return frequency_table
-
- def hannon_signature (self, minquery, maxquery, mintarget, maxtarget, scope, upstream_coord=None, downstream_coord=None):
- ''' migration to memory saving by specifying possible subcoordinates see the readcount method for further discussion
- note that scope must be an iterable (a list or a tuple), which specifies the relative offsets that will be computed'''
- upstream_coord = upstream_coord or self.windowoffset
- downstream_coord = downstream_coord or self.windowoffset+self.size-1
- query_range = range (minquery, maxquery+1)
- target_range = range (mintarget, maxtarget+1)
- Query_table = {}
- Target_table = {}
- Total_Query_Numb = 0
- general_frequency_table = dict ([(i,0) for i in scope])
- ## filtering the appropriate reads for the study
- for offset in self.readDict:
- if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue
- for size in self.readDict[offset]:
- if size in query_range:
- Query_table[offset] = Query_table.get(offset, 0) + 1
- Total_Query_Numb += 1
- if size in target_range:
- Target_table[offset] = Target_table.get(offset, 0) + 1
- for offset in Query_table:
- frequency_table = dict ([(i,0) for i in scope])
- number_of_targets = 0
- for i in scope:
- frequency_table[i] += Query_table[offset] * Target_table.get(-offset -i +1, 0)
- number_of_targets += Target_table.get(-offset -i +1, 0)
- for i in scope:
- try:
- general_frequency_table[i] += (1. / number_of_targets / Total_Query_Numb) * frequency_table[i]
- except ZeroDivisionError :
- continue
- return general_frequency_table
-
- def phasing (self, size_range, scope):
- ''' to calculate autocorelation like signal - scope must be an python iterable'''
- read_table = {}
- total_read_number = 0
- general_frequency_table = dict ([(i, 0) for i in scope])
- ## read input filtering
- for offset in self.readDict:
- for size in self.readDict[offset]:
- if size in size_range:
- read_table[offset] = read_table.get(offset, 0) + 1
- total_read_number += 1
- ## per offset read phasing computing
- for offset in read_table:
- frequency_table = dict ([(i, 0) for i in scope]) # local frequency table
- number_of_targets = 0
- for i in scope:
- if offset > 0:
- frequency_table[i] += read_table[offset] * read_table.get(offset + i, 0)
- number_of_targets += read_table.get(offset + i, 0)
- else:
- frequency_table[i] += read_table[offset] * read_table.get(offset - i, 0)
- number_of_targets += read_table.get(offset - i, 0)
- ## inclusion of local frequency table in the general frequency table (all offsets average)
- for i in scope:
- try:
- general_frequency_table[i] += (1. / number_of_targets / total_read_number) * frequency_table[i]
- except ZeroDivisionError :
- continue
- return general_frequency_table
-
-
-
- def z_signature (self, minquery, maxquery, mintarget, maxtarget, scope):
- '''Must do: from numpy import mean, std, to use this method; scope must be a python iterable and defines the relative offsets to compute'''
- frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope)
- z_table = {}
- frequency_list = [frequency_table[i] for i in sorted (frequency_table)]
- if std(frequency_list):
- meanlist = mean(frequency_list)
- stdlist = std(frequency_list)
- z_list = [(i-meanlist)/stdlist for i in frequency_list]
- return dict (zip (sorted(frequency_table), z_list) )
- else:
- return dict (zip (sorted(frequency_table), [0 for i in frequency_table]) )
-
- def percent_signature (self, minquery, maxquery, mintarget, maxtarget, scope):
- frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope)
- total = float(sum ([self.readsizes().get(i,0) for i in set(range(minquery,maxquery)+range(mintarget,maxtarget))]) )
- if total == 0:
- return dict( [(i,0) for i in scope])
- return dict( [(i, frequency_table[i]/total*100) for i in scope])
-
- def pairer (self, overlap, minquery, maxquery, mintarget, maxtarget):
- queryhash = defaultdict(list)
- targethash = defaultdict(list)
- query_range = range (int(minquery), int(maxquery)+1)
- target_range = range (int(mintarget), int(maxtarget)+1)
- paired_sequences = []
- for offset in self.readDict: # selection of data
- for size in self.readDict[offset]:
- if size in query_range:
- queryhash[offset].append(size)
- if size in target_range:
- targethash[offset].append(size)
- for offset in queryhash:
- if offset >= 0: matched_offset = -offset - overlap + 1
- else: matched_offset = -offset - overlap + 1
- if targethash[matched_offset]:
- paired = min ( len(queryhash[offset]), len(targethash[matched_offset]) )
- if offset >= 0:
- for i in range (paired):
- paired_sequences.append("+%s" % RNAtranslate ( self.sequence[offset:offset+queryhash[offset][i]]) )
- paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-targethash[matched_offset][i]+1:-matched_offset+1]) ) )
- if offset < 0:
- for i in range (paired):
- paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-queryhash[offset][i]+1:-offset+1]) ) )
- paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+targethash[matched_offset][i]] ) )
- return paired_sequences
-
- def pairable (self, overlap, minquery, maxquery, mintarget, maxtarget):
- queryhash = defaultdict(list)
- targethash = defaultdict(list)
- query_range = range (int(minquery), int(maxquery)+1)
- target_range = range (int(mintarget), int(maxtarget)+1)
- paired_sequences = []
-
- for offset in self.readDict: # selection of data
- for size in self.readDict[offset]:
- if size in query_range:
- queryhash[offset].append(size)
- if size in target_range:
- targethash[offset].append(size)
-
- for offset in queryhash:
- matched_offset = -offset - overlap + 1
- if targethash[matched_offset]:
- if offset >= 0:
- for i in queryhash[offset]:
- paired_sequences.append("+%s" % RNAtranslate (self.sequence[offset:offset+i]) )
- for i in targethash[matched_offset]:
- paired_sequences.append( "-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-i+1:-matched_offset+1]) ) )
- if offset < 0:
- for i in queryhash[offset]:
- paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-i+1:-offset+1]) ) )
- for i in targethash[matched_offset]:
- paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+i] ) )
- return paired_sequences
-
- def newpairable_bowtie (self, overlap, minquery, maxquery, mintarget, maxtarget):
- ''' revision of pairable on 3-12-2012, with focus on the offset shift problem (bowtie is 1-based cooordinates whereas python strings are 0-based coordinates'''
- queryhash = defaultdict(list)
- targethash = defaultdict(list)
- query_range = range (int(minquery), int(maxquery)+1)
- target_range = range (int(mintarget), int(maxtarget)+1)
- bowtie_output = []
-
- for offset in self.readDict: # selection of data
- for size in self.readDict[offset]:
- if size in query_range:
- queryhash[offset].append(size)
- if size in target_range:
- targethash[offset].append(size)
- counter = 0
- for offset in queryhash:
- matched_offset = -offset - overlap + 1
- if targethash[matched_offset]:
- if offset >= 0:
- for i in queryhash[offset]:
- counter += 1
- bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "+", self.gene, offset-1, self.sequence[offset-1:offset-1+i]) ) # attention a la base 1-0 de l'offset
- if offset < 0:
- for i in queryhash[offset]:
- counter += 1
- bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "-", self.gene, -offset-i, self.sequence[-offset-i:-offset])) # attention a la base 1-0 de l'offset
- return bowtie_output
-
-
-def __main__(bowtie_index_path, bowtie_output_path):
- sequenceDic = get_fasta (bowtie_index_path)
- objDic = {}
- F = open (bowtie_output_path, "r") # F is the bowtie output taken as input
- for line in F:
- fields = line.split()
- polarity = fields[1]
- gene = fields[2]
- offset = int(fields[3])
- size = len (fields[4])
- try:
- objDic[gene].addread (polarity, offset, size)
- except KeyError:
- objDic[gene] = SmRNAwindow(gene, sequenceDic[gene])
- objDic[gene].addread (polarity, offset, size)
- F.close()
- for gene in objDic:
- print gene, objDic[gene].pairer(19,19,23,19,23)
-
-if __name__ == "__main__" : __main__(sys.argv[1], sys.argv[2])
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/test-data/sRbowtie.fa
--- a/mississippi_gcc/test-data/sRbowtie.fa Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
->1
-GTATTGTAAGTGGCAGAGTGGC
->2
-TGGAATGTAAAGAAGTATGGAG
->3
-GTGGGGAGTTTGGATGGGGCGGCA
->4
-AATGGCACTGGAAGAATTCACGG
->5
-GTACGGACAAGGGGAATC
->6
-TTGGGTTCTGGGGGGAGTATGG
->7
-GTGGGGAGTTTCGCTGGGGCGGCA
->8
-TAAGGGTCGGGTAGTGAGGGC
->9
-AGCTGGGACTGAGGACTG
->10
-AGCTGGGACTGAGGACTGC
->11
-AAGGGTCGGGTAGTGAGG
->12
-GTCGGGTAGTGAGGGCCTT
->13
-TGGTGGGGCTTGGAACAATTGGAGGGC
->14
-TGACGGAAGGGCACCACC
->15
-TGGAATGTAAAGAAGTATGGAG
->16
-TTGGGTTCTGGGGGGAGT
->17
-TCAGGTGGGGAGTTTGGCTGGGGCGGCACA
->18
-TTGGGTATAGGGGCGAAAGA
->19
-AGCGGGCGTGCTTGTGGAC
->20
-GTCGAATTTGGGTATAGGGGC
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/test-data/sRbowtie.out
--- a/mississippi_gcc/test-data/sRbowtie.out Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,5 +0,0 @@
-2 + 2L 20487495 TGGAATGTAAAGAAGTATGGAG
-4 - 2L 11953463 CCGTGAATTCTTCCAGTGCCATT
-15 + 2L 20487495 TGGAATGTAAAGAAGTATGGAG
-14 - Uextra 7115665 GGTGGTGCCCTTCCGTCA
-18 + Uextra 7726410 TTGGGTATAGGGGCGAAAGA
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/test-data/yac.fastq
--- a/mississippi_gcc/test-data/yac.fastq Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-@SRR290479.1 HWI-EAS285:2:1:66:28/1
-TGTAAACATCCCCGACTGGCAGCATNTCGTATGCCG
-+
-B@BBCBCCBCBCCC8A<@##################
-@SRR290479.2 HWI-EAS285:2:1:67:348/1
-AAAGTGCTACTACTTTTGAGTCTATNTCGTACGCCG
-+
-BAA@7?A@@A@@B<'25?6>59:;7#########
-@SRR290479.3 HWI-EAS285:2:1:68:826/1
-TAGCTTATCAGACTGATGTTGACACNTCGTATGCCG
-+
-BB@BBCCBCCBBB:%%83/>B7@44#;;324'117?
-@SRR290479.4 HWI-EAS285:2:1:68:65/1
-ACTGGACTTGGAGTCCGAAGGCATCNCGTATTCCGT
-+
-BBB@@ABAAB?9B42&9;##################
-@SRR290479.5 HWI-EAS285:2:1:69:594/1
-AAGTGCCGCCAGGTTTTGAGTGGATNTCGTATGGCG
-+
-AB?5;3>/=?>=;416481#################
-@SRR290479.6 HWI-EAS285:2:1:70:700/1
-TATTGCACTTGTCCCGGCCTGAATCNCGTATCCCGT
-+
-BCB=:ACCBB=>BB8<-###################
-@SRR290479.7 HWI-EAS285:2:1:70:1679/1
-TGGTAGACTATGGAACGTAGGATCTNGCATGCCGCC
-+
-BCBBCCBCCCBCCA?AB>:B@><>############
-@SRR290479.8 HWI-EAS285:2:1:71:1400/1
-AGTGGTAGAGCATTTGAATCTCGTANGCCGTCTTCT
-+
-7@BC>>@55CCBCA3CBA14B.A16#*;9359B###
-@SRR290479.9 HWI-EAS285:2:1:71:795/1
-TAGCTTATCAGACTGATGTTGACATNTCGTACGCCG
-+
-BBBBBCBBCB;>AA',9=18?1:7:#<;57######
-@SRR290479.10 HWI-EAS285:2:1:71:596/1
-TTTGGCAATGGTAGAACTCCCACACNTCGTAGGCCG
-+
-B@B>7>9A@<46B@79972#################
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/test-data/yac.out
--- a/mississippi_gcc/test-data/yac.out Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,12 +0,0 @@
->1
-TGTAAACATCCCCGACTGGCAGC
->2
-AAAGTGCTACTACTTTTGAGTCT
->3
-ACTGGACTTGGAGTCCGAAGGC
->4
-AAGTGCCGCCAGGTTTTGAGTGG
->5
-TATTGCACTTGTCCCGGCCTGAATCNCGT
->6
-TAGCTTATCAGACTGATGTTGAC
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/tool_data_table_conf.xml.sample
--- a/mississippi_gcc/tool_data_table_conf.xml.sample Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,112 +0,0 @@
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, formats, name, path
-
-
-
-
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- name, value, dbkey, species
-
-
-
-
- value, dbkey, name, path
-
-
-
-
-
-
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path, tools_valid_for
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
- value, dbkey, name, path
-
-
-
-
-
-
- value, dbkey, name, path
-
-
-
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/yac.py
--- a/mississippi_gcc/yac.py Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,83 +0,0 @@
-#!/usr/bin/python
-# yac = yet another clipper
-# v 1.0.0
-# Usage yac.py $input $output $adapter_to_clip $min $max $Nmode
-# Christophe Antoniewski
-
-import sys, string
-
-class Clip:
- def __init__(self, inputfile, outputfile, adapter, minsize, maxsize):
- self.inputfile = inputfile
- self.outputfile = outputfile
- self.adapter = adapter
- self.minsize = int(minsize)
- self.maxsize = int(maxsize)
- def motives (sequence):
- '''return a list of motives for perfect (6nt) or imperfect (7nt with one mismatch) search on import string module'''
- sequencevariants = [sequence[0:6]] # initializes the list with the 6mer perfect match
- dicsubst= {"A":"TGCN", "T":"AGCN", "G":"TACN", "C":"GATN"}
- for pos in enumerate(sequence[:6]):
- for subst in dicsubst[pos[1]]:
- sequencevariants.append(sequence[:pos[0]]+ subst + sequence[pos[0]+1:7])
- return sequencevariants
- self.adaptmotifs= motives(self.adapter)
-
- def scanadapt(self, adaptmotives=[], sequence=""):
- '''scans sequence for adapter motives'''
- if sequence.rfind(adaptmotives[0]) != -1:
- return sequence[:sequence.rfind(adaptmotives[0])]
- for motif in adaptmotives[1:]:
- if sequence.rfind(motif) != -1:
- return sequence[:sequence.rfind(motif)]
- return sequence
-
- def clip_with_N (self):
- '''clips adapter sequences from inputfile.
- Reads containing N are retained.'''
- iterator = 0
- id = 0
- F = open (self.inputfile, "r")
- O = open (self.outputfile, "w")
- for line in F:
- iterator += 1
- if iterator % 4 == 2:
- trim = self.scanadapt (self.adaptmotifs, line.rstrip() )
- if self.minsize <= len(trim) <= self.maxsize:
- id += 1
- print >> O, ">%i\n%s" % (id, trim)
- F.close()
- O.close()
- def clip_without_N (self):
- '''clips adapter sequences from inputfile.
- Reads containing N are rejected.'''
- iterator = 0
- id = 0
- F = open (self.inputfile, "r")
- O = open (self.outputfile, "w")
- for line in F:
- iterator += 1
- if iterator % 4 == 2:
- trim = self.scanadapt (self.adaptmotifs, line.rstrip() )
- if "N" in trim: continue
- if self.minsize <= len(trim) <= self.maxsize:
- id += 1
- print >> O, ">%i\n%s" % (id, trim)
- F.close()
- O.close()
-
-def __main__ (inputfile, outputfile, adapter, minsize, maxsize, Nmode):
- instanceClip = Clip (inputfile, outputfile, adapter, minsize, maxsize)
- if Nmode == "accept":
- instanceClip.clip_with_N()
- else:
- instanceClip.clip_without_N()
-
-if __name__ == "__main__" :
- input = sys.argv[1]
- output = sys.argv[2]
- adapter = sys.argv[3]
- minsize = sys.argv[4]
- maxsize = sys.argv[5]
- Nmode = sys.argv[6]
- __main__(input, output, adapter, minsize, maxsize, Nmode)
diff -r f777cbc82f98 -r f9032a866675 mississippi_gcc/yac.xml
--- a/mississippi_gcc/yac.xml Tue Jun 24 10:58:46 2014 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-
-
- yac.py $input $output $clip_source.clip_sequence $min $max $Nmode
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-This tool clips adapter sequences from a fastq file and fasta file of clipped reads with renumbered fasta headers.
-
-Clipped sequences with Ns can be discarded.
-
-Min size and max size filter clipped reads on their size.
-
-Note that unclipped reads that satisfy the min and max size conditions are kept.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-