Mercurial > repos > drosofff > mi_rna_parser
comparison smRtools.py @ 2:9f17e8fc1d28 draft
Uploaded
| author | drosofff |
|---|---|
| date | Sun, 22 Jun 2014 18:31:38 -0400 |
| parents | |
| children | 59dfb33ca70e |
comparison
equal
deleted
inserted
replaced
| 1:f6c22925fc3c | 2:9f17e8fc1d28 |
|---|---|
| 1 #!/usr/bin/python | |
| 2 # version 1 7-5-2012 unification of the SmRNAwindow class | |
| 3 | |
| 4 import sys, subprocess | |
| 5 from collections import defaultdict, OrderedDict | |
| 6 from numpy import mean, median, std | |
| 7 from scipy import stats | |
| 8 | |
| 9 def get_fasta (index="/home/galaxy/galaxy-dist/bowtie/5.37_Dmel/5.37_Dmel"): | |
| 10 '''This function will return a dictionary containing fasta identifiers as keys and the | |
| 11 sequence as values. Index must be the path to a fasta file.''' | |
| 12 p = subprocess.Popen(args=["bowtie-inspect","-a", "0", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
| 13 outputlines = p.stdout.readlines() | |
| 14 p.wait() | |
| 15 item_dic = {} | |
| 16 for line in outputlines: | |
| 17 if (line[0] == ">"): | |
| 18 try: | |
| 19 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
| 20 except: pass | |
| 21 current_item = line[1:].rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
| 22 item_dic[current_item] = "" | |
| 23 stringlist=[] | |
| 24 else: | |
| 25 stringlist.append(line.rstrip() ) | |
| 26 item_dic[current_item] = "".join(stringlist) # for the last item | |
| 27 return item_dic | |
| 28 | |
| 29 def get_fasta_headers (index): | |
| 30 p = subprocess.Popen(args=["bowtie-inspect","-n", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
| 31 outputlines = p.stdout.readlines() | |
| 32 p.wait() | |
| 33 item_dic = {} | |
| 34 for line in outputlines: | |
| 35 header = line.rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
| 36 item_dic[header] = 1 | |
| 37 return item_dic | |
| 38 | |
| 39 | |
| 40 def get_file_sample (file, numberoflines): | |
| 41 '''import random to use this function''' | |
| 42 F=open(file) | |
| 43 fullfile = F.read().splitlines() | |
| 44 F.close() | |
| 45 if len(fullfile) < numberoflines: | |
| 46 return "sample size exceeds file size" | |
| 47 return random.sample(fullfile, numberoflines) | |
| 48 | |
| 49 def get_fasta_from_history (file): | |
| 50 F = open (file, "r") | |
| 51 item_dic = {} | |
| 52 for line in F: | |
| 53 if (line[0] == ">"): | |
| 54 try: | |
| 55 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
| 56 except: pass | |
| 57 current_item = line[1:-1].split()[0] #take the first word before space because bowtie splits headers ! | |
| 58 item_dic[current_item] = "" | |
| 59 stringlist=[] | |
| 60 else: | |
| 61 stringlist.append(line[:-1]) | |
| 62 item_dic[current_item] = "".join(stringlist) # for the last item | |
| 63 return item_dic | |
| 64 | |
| 65 def antipara (sequence): | |
| 66 antidict = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"} | |
| 67 revseq = sequence[::-1] | |
| 68 return "".join([antidict[i] for i in revseq]) | |
| 69 | |
| 70 def RNAtranslate (sequence): | |
| 71 return "".join([i if i in "AGCN" else "U" for i in sequence]) | |
| 72 def DNAtranslate (sequence): | |
| 73 return "".join([i if i in "AGCN" else "T" for i in sequence]) | |
| 74 | |
| 75 def RNAfold (sequence_list): | |
| 76 thestring= "\n".join(sequence_list) | |
| 77 p = subprocess.Popen(args=["RNAfold","--noPS"], stdin= subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) | |
| 78 output=p.communicate(thestring)[0] | |
| 79 p.wait() | |
| 80 output=output.split("\n") | |
| 81 if not output[-1]: output = output[:-1] # nasty patch to remove last empty line | |
| 82 buffer=[] | |
| 83 for line in output: | |
| 84 if line[0] in ["N","A","T","U","G","C"]: | |
| 85 buffer.append(DNAtranslate(line)) | |
| 86 if line[0] in ["(",".",")"]: | |
| 87 fields=line.split("(") | |
| 88 energy= fields[-1] | |
| 89 energy = energy[:-1] # remove the ) parenthesis | |
| 90 energy=float(energy) | |
| 91 buffer.append(str(energy)) | |
| 92 return dict(zip(buffer[::2], buffer[1::2])) | |
| 93 | |
| 94 def extractsubinstance (start, end, instance): | |
| 95 ''' Testing whether this can be an function external to the class to save memory''' | |
| 96 subinstance = SmRNAwindow (instance.gene, instance.sequence[start-1:end], start) | |
| 97 subinstance.gene = "%s %s %s" % (subinstance.gene, subinstance.windowoffset, subinstance.windowoffset + subinstance.size - 1) | |
| 98 upcoordinate = [i for i in range(start,end+1) if instance.readDict[i] ] | |
| 99 downcoordinate = [-i for i in range(start,end+1) if instance.readDict[-i] ] | |
| 100 for i in upcoordinate: | |
| 101 subinstance.readDict[i]=instance.readDict[i] | |
| 102 for i in downcoordinate: | |
| 103 subinstance.readDict[i]=instance.readDict[i] | |
| 104 return subinstance | |
| 105 | |
| 106 class HandleSmRNAwindows: | |
| 107 def __init__(self, alignmentFile="~", alignmentFileFormat="tabular", genomeRefFile="~", genomeRefFormat="bowtieIndex", biosample="undetermined"): | |
| 108 self.biosample = biosample | |
| 109 self.alignmentFile = alignmentFile | |
| 110 self.alignmentFileFormat = alignmentFileFormat # can be "tabular" or "sam" | |
| 111 self.genomeRefFile = genomeRefFile | |
| 112 self.genomeRefFormat = genomeRefFormat # can be "bowtieIndex" or "fastaSource" | |
| 113 self.alignedReads = 0 | |
| 114 self.instanceDict = {} | |
| 115 if genomeRefFormat == "bowtieIndex": | |
| 116 self.itemDict = get_fasta (genomeRefFile) | |
| 117 elif genomeRefFormat == "fastaSource": | |
| 118 self.itemDict = get_fasta_from_history (genomeRefFile) | |
| 119 for item in self.itemDict: | |
| 120 self.instanceDict[item] = SmRNAwindow(item, sequence=self.itemDict[item], windowoffset=1, biosample=self.biosample) # create as many instances as there is items | |
| 121 self.readfile() | |
| 122 | |
| 123 def readfile (self) : | |
| 124 if self.alignmentFileFormat == "tabular": | |
| 125 F = open (self.alignmentFile, "r") | |
| 126 for line in F: | |
| 127 fields = line.split() | |
| 128 polarity = fields[1] | |
| 129 gene = fields[2] | |
| 130 offset = int(fields[3]) | |
| 131 size = len (fields[4]) | |
| 132 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
| 133 self.alignedReads += 1 | |
| 134 F.close() | |
| 135 elif self.alignmentFileFormat == "sam": | |
| 136 F = open (self.alignmentFile, "r") | |
| 137 dict = {"0":"+", "16":"-"} | |
| 138 for line in F: | |
| 139 if line[0]=='@': | |
| 140 continue | |
| 141 fields = line.split() | |
| 142 if fields[2] == "*": continue | |
| 143 polarity = dict[fields[1]] | |
| 144 gene = fields[2] | |
| 145 offset = int(fields[3]) | |
| 146 size = len (fields[9]) | |
| 147 self.instanceDict[gene].addread (polarity, offset, size) # sam format is already 1-based coordinates | |
| 148 self.alignedReads += 1 | |
| 149 F.close() | |
| 150 elif self.alignmentFileFormat == "bam": | |
| 151 import pysam | |
| 152 samfile = pysam.Samfile(self.alignmentFile) | |
| 153 for read in samfile: | |
| 154 if read.tid == -1: | |
| 155 continue # filter out unaligned reads | |
| 156 if read.is_reverse: | |
| 157 polarity="-" | |
| 158 else: | |
| 159 polarity="+" | |
| 160 gene = samfile.getrname(read.tid) | |
| 161 offset = read.pos | |
| 162 size = read.qlen | |
| 163 self.instanceDict[gene].addread (polarity, offset+1, size) # pysam converts coordinates to 0-based (https://media.readthedocs.org/pdf/pysam/latest/pysam.pdf) | |
| 164 self.alignedReads += 1 | |
| 165 return | |
| 166 | |
| 167 def CountFeatures (self, GFF3="path/to/file"): | |
| 168 featureDict = defaultdict(int) | |
| 169 F = open (GFF3, "r") | |
| 170 for line in F: | |
| 171 if line[0] == "#": continue | |
| 172 fields = line[:-1].split() | |
| 173 chrom, feature, leftcoord, rightcoord, polarity = fields[0], fields[2], fields[3], fields[4], fields[6] | |
| 174 featureDict[feature] += self.instanceDict[chrom].readcount(upstream_coord=int(leftcoord), downstream_coord=int(rightcoord), polarity="both", method="destructive") | |
| 175 F.close() | |
| 176 return featureDict | |
| 177 | |
| 178 class SmRNAwindow: | |
| 179 | |
| 180 def __init__(self, gene, sequence="ATGC", windowoffset=1, biosample="Undetermined"): | |
| 181 self.biosample = biosample | |
| 182 self.sequence = sequence | |
| 183 self.gene = gene | |
| 184 self.windowoffset = windowoffset | |
| 185 self.size = len(sequence) | |
| 186 self.readDict = defaultdict(list) # with a {+/-offset:[size1, size2, ...], ...} | |
| 187 self.matchedreadsUp = 0 | |
| 188 self.matchedreadsDown = 0 | |
| 189 | |
| 190 def addread (self, polarity, offset, size): | |
| 191 '''ATTENTION ATTENTION ATTENTION''' | |
| 192 ''' We removed the conversion from 0 to 1 based offset, as we do this now during readparsing.''' | |
| 193 if polarity == "+": | |
| 194 self.readDict[offset].append(size) | |
| 195 self.matchedreadsUp += 1 | |
| 196 else: | |
| 197 self.readDict[-(offset + size -1)].append(size) | |
| 198 self.matchedreadsDown += 1 | |
| 199 return | |
| 200 | |
| 201 def barycenter (self, upstream_coord=None, downstream_coord=None): | |
| 202 '''refactored 24-12-2013 to save memory and introduce offset filtering see readcount method for further discussion on that | |
| 203 In this version, attempt to replace the dictionary structure by a list of tupple to save memory too''' | |
| 204 upstream_coord = upstream_coord or self.windowoffset | |
| 205 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 206 window_size = downstream_coord - upstream_coord +1 | |
| 207 def weigthAverage (TuppleList): | |
| 208 weightSum = 0 | |
| 209 PonderWeightSum = 0 | |
| 210 for tuple in TuppleList: | |
| 211 PonderWeightSum += tuple[0] * tuple[1] | |
| 212 weightSum += tuple[1] | |
| 213 if weightSum > 0: | |
| 214 return PonderWeightSum / float(weightSum) | |
| 215 else: | |
| 216 return 0 | |
| 217 forwardTuppleList = [(k, len(self.readDict[k])) for k in self.readDict.keys() if (k > 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both forward and in the proper offset window | |
| 218 reverseTuppleList = [(-k, len(self.readDict[k])) for k in self.readDict.keys() if (k < 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both reverse and in the proper offset window | |
| 219 Fbarycenter = (weigthAverage (forwardTuppleList) - upstream_coord) / window_size | |
| 220 Rbarycenter = (weigthAverage (reverseTuppleList) - upstream_coord) / window_size | |
| 221 return Fbarycenter, Rbarycenter | |
| 222 | |
| 223 def correlation_mapper (self, reference, window_size): | |
| 224 '''to map correlation with a sliding window 26-2-2013''' | |
| 225 if window_size > self.size: | |
| 226 return [] | |
| 227 F=open(reference, "r") | |
| 228 reference_forward = [] | |
| 229 reference_reverse = [] | |
| 230 for line in F: | |
| 231 fields=line.split() | |
| 232 reference_forward.append(int(float(fields[1]))) | |
| 233 reference_reverse.append(int(float(fields[2]))) | |
| 234 F.close() | |
| 235 local_object_forward=[] | |
| 236 local_object_reverse=[] | |
| 237 ## Dict to list for the local object | |
| 238 for i in range(1, self.size+1): | |
| 239 local_object_forward.append(len(self.readDict[i])) | |
| 240 local_object_reverse.append(len(self.readDict[-i])) | |
| 241 ## start compiling results by slides | |
| 242 results=[] | |
| 243 for coordinate in range(self.size - window_size): | |
| 244 local_forward=local_object_forward[coordinate:coordinate + window_size] | |
| 245 local_reverse=local_object_reverse[coordinate:coordinate + window_size] | |
| 246 if sum(local_forward) == 0 or sum(local_reverse) == 0: | |
| 247 continue | |
| 248 try: | |
| 249 reference_to_local_cor_forward = stats.spearmanr(local_forward, reference_forward) | |
| 250 reference_to_local_cor_reverse = stats.spearmanr(local_reverse, reference_reverse) | |
| 251 if (reference_to_local_cor_forward[0] > 0.2 or reference_to_local_cor_reverse[0]>0.2): | |
| 252 results.append([coordinate+1, reference_to_local_cor_forward[0], reference_to_local_cor_reverse[0]]) | |
| 253 except: | |
| 254 pass | |
| 255 return results | |
| 256 | |
| 257 def readcount (self, size_inf=0, size_sup=1000, upstream_coord=None, downstream_coord=None, polarity="both", method="conservative"): | |
| 258 '''refactored 24-12-2013 to save memory and introduce offset filtering | |
| 259 take a look at the defaut parameters that cannot be defined relatively to the instance are they are defined before instanciation | |
| 260 the trick is to pass None and then test | |
| 261 polarity parameter can take "both", "forward" or "reverse" as value''' | |
| 262 upstream_coord = upstream_coord or self.windowoffset | |
| 263 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 264 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "both": | |
| 265 return self.matchedreadsUp + self.matchedreadsDown | |
| 266 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "forward": | |
| 267 return self.matchedreadsUp | |
| 268 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "reverse": | |
| 269 return self.matchedreadsDown | |
| 270 n=0 | |
| 271 if polarity == "both": | |
| 272 for offset in xrange(upstream_coord, downstream_coord+1): | |
| 273 if self.readDict.has_key(offset): | |
| 274 for read in self.readDict[offset]: | |
| 275 if (read>=size_inf and read<= size_sup): | |
| 276 n += 1 | |
| 277 if method != "conservative": | |
| 278 del self.readDict[offset] ## Carefull ! precludes re-use on the self.readDict dictionary !!!!!! TEST | |
| 279 if self.readDict.has_key(-offset): | |
| 280 for read in self.readDict[-offset]: | |
| 281 if (read>=size_inf and read<= size_sup): | |
| 282 n += 1 | |
| 283 if method != "conservative": | |
| 284 del self.readDict[-offset] | |
| 285 return n | |
| 286 elif polarity == "forward": | |
| 287 for offset in xrange(upstream_coord, downstream_coord+1): | |
| 288 if self.readDict.has_key(offset): | |
| 289 for read in self.readDict[offset]: | |
| 290 if (read>=size_inf and read<= size_sup): | |
| 291 n += 1 | |
| 292 return n | |
| 293 elif polarity == "reverse": | |
| 294 for offset in xrange(upstream_coord, downstream_coord+1): | |
| 295 if self.readDict.has_key(-offset): | |
| 296 for read in self.readDict[-offset]: | |
| 297 if (read>=size_inf and read<= size_sup): | |
| 298 n += 1 | |
| 299 return n | |
| 300 | |
| 301 def readsizes (self): | |
| 302 '''return a dictionary of number of reads by size (the keys)''' | |
| 303 dicsize = {} | |
| 304 for offset in self.readDict: | |
| 305 for size in self.readDict[offset]: | |
| 306 dicsize[size] = dicsize.get(size, 0) + 1 | |
| 307 return dicsize | |
| 308 | |
| 309 def statsizes (self, upstream_coord=None, downstream_coord=None): | |
| 310 ''' migration to memory saving by specifying possible subcoordinates | |
| 311 see the readcount method for further discussion''' | |
| 312 upstream_coord = upstream_coord or self.windowoffset | |
| 313 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 314 L = [] | |
| 315 for offset in self.readDict: | |
| 316 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
| 317 for size in self.readDict[offset]: | |
| 318 L.append(size) | |
| 319 meansize = mean(L) | |
| 320 stdv = std(L) | |
| 321 mediansize = median(L) | |
| 322 return meansize, mediansize, stdv | |
| 323 | |
| 324 def foldEnergy (self, upstream_coord=None, downstream_coord=None): | |
| 325 ''' migration to memory saving by specifying possible subcoordinates | |
| 326 see the readcount method for further discussion''' | |
| 327 upstream_coord = upstream_coord or self.windowoffset | |
| 328 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 329 Energy = RNAfold ([self.sequence[upstream_coord-1:downstream_coord] ]) | |
| 330 return float(Energy[self.sequence[upstream_coord-1:downstream_coord]]) | |
| 331 | |
| 332 def Ufreq (self, size_scope, upstream_coord=None, downstream_coord=None): | |
| 333 ''' migration to memory saving by specifying possible subcoordinates | |
| 334 see the readcount method for further discussion. size_scope must be an interable''' | |
| 335 upstream_coord = upstream_coord or self.windowoffset | |
| 336 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 337 freqDic = {"A":0,"T":0,"G":0,"C":0, "N":0} | |
| 338 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
| 339 for offset in self.readDict: | |
| 340 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
| 341 for size in self.readDict[offset]: | |
| 342 if size in size_scope: | |
| 343 startbase = self.sequence[abs(offset)-self.windowoffset] | |
| 344 if offset < 0: | |
| 345 startbase = convertDic[startbase] | |
| 346 freqDic[startbase] += 1 | |
| 347 base_sum = float ( sum( freqDic.values()) ) | |
| 348 if base_sum == 0: | |
| 349 return "." | |
| 350 else: | |
| 351 return freqDic["T"] / base_sum * 100 | |
| 352 | |
| 353 def Ufreq_stranded (self, size_scope, upstream_coord=None, downstream_coord=None): | |
| 354 ''' migration to memory saving by specifying possible subcoordinates | |
| 355 see the readcount method for further discussion. size_scope must be an interable | |
| 356 This method is similar to the Ufreq method but take strandness into account''' | |
| 357 upstream_coord = upstream_coord or self.windowoffset | |
| 358 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 359 freqDic = {"Afor":0,"Tfor":0,"Gfor":0,"Cfor":0, "Nfor":0,"Arev":0,"Trev":0,"Grev":0,"Crev":0, "Nrev":0} | |
| 360 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
| 361 for offset in self.readDict: | |
| 362 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
| 363 for size in self.readDict[offset]: | |
| 364 if size in size_scope: | |
| 365 startbase = self.sequence[abs(offset)-self.windowoffset] | |
| 366 if offset < 0: | |
| 367 startbase = convertDic[startbase] | |
| 368 freqDic[startbase+"rev"] += 1 | |
| 369 else: | |
| 370 freqDic[startbase+"for"] += 1 | |
| 371 forward_sum = float ( freqDic["Afor"]+freqDic["Tfor"]+freqDic["Gfor"]+freqDic["Cfor"]+freqDic["Nfor"]) | |
| 372 reverse_sum = float ( freqDic["Arev"]+freqDic["Trev"]+freqDic["Grev"]+freqDic["Crev"]+freqDic["Nrev"]) | |
| 373 if forward_sum == 0 and reverse_sum == 0: | |
| 374 return ". | ." | |
| 375 elif reverse_sum == 0: | |
| 376 return "%s | ." % (freqDic["Tfor"] / forward_sum * 100) | |
| 377 elif forward_sum == 0: | |
| 378 return ". | %s" % (freqDic["Trev"] / reverse_sum * 100) | |
| 379 else: | |
| 380 return "%s | %s" % (freqDic["Tfor"] / forward_sum * 100, freqDic["Trev"] / reverse_sum * 100) | |
| 381 | |
| 382 | |
| 383 def readplot (self): | |
| 384 readmap = {} | |
| 385 for offset in self.readDict.keys(): | |
| 386 readmap[abs(offset)] = ( len(self.readDict[-abs(offset)]) , len(self.readDict[abs(offset)]) ) | |
| 387 mylist = [] | |
| 388 for offset in sorted(readmap): | |
| 389 if readmap[offset][1] != 0: | |
| 390 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, readmap[offset][1], "F") ) | |
| 391 if readmap[offset][0] != 0: | |
| 392 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, -readmap[offset][0], "R") ) | |
| 393 return mylist | |
| 394 | |
| 395 def readcoverage (self, upstream_coord=None, downstream_coord=None, windowName=None): | |
| 396 '''This method has not been tested yet 15-11-2013''' | |
| 397 upstream_coord = upstream_coord or 1 | |
| 398 downstream_coord = downstream_coord or self.size | |
| 399 windowName = windowName or "%s_%s_%s" % (self.gene, upstream_coord, downstream_coord) | |
| 400 forORrev_coverage = dict ([(i,0) for i in xrange(1, downstream_coord-upstream_coord+1)]) | |
| 401 totalforward = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="forward") | |
| 402 totalreverse = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="reverse") | |
| 403 if totalforward > totalreverse: | |
| 404 majorcoverage = "forward" | |
| 405 for offset in self.readDict.keys(): | |
| 406 if (offset > 0) and ((offset-upstream_coord+1) in forORrev_coverage.keys() ): | |
| 407 for read in self.readDict[offset]: | |
| 408 for i in xrange(read): | |
| 409 try: | |
| 410 forORrev_coverage[offset-upstream_coord+1+i] += 1 | |
| 411 except KeyError: | |
| 412 continue # a sense read may span over the downstream limit | |
| 413 else: | |
| 414 majorcoverage = "reverse" | |
| 415 for offset in self.readDict.keys(): | |
| 416 if (offset < 0) and (-offset-upstream_coord+1 in forORrev_coverage.keys() ): | |
| 417 for read in self.readDict[offset]: | |
| 418 for i in xrange(read): | |
| 419 try: | |
| 420 forORrev_coverage[-offset-upstream_coord-i] += 1 ## positive coordinates in the instance, with + for forward coverage and - for reverse coverage | |
| 421 except KeyError: | |
| 422 continue # an antisense read may span over the upstream limit | |
| 423 output_list = [] | |
| 424 maximum = max (forORrev_coverage.values()) or 1 | |
| 425 for n in sorted (forORrev_coverage): | |
| 426 output_list.append("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (self.biosample, windowName, n, float(n)/(downstream_coord-upstream_coord+1), forORrev_coverage[n], float(forORrev_coverage[n])/maximum, majorcoverage)) | |
| 427 return "\n".join(output_list) | |
| 428 | |
| 429 | |
| 430 def signature (self, minquery, maxquery, mintarget, maxtarget, scope, zscore="no", upstream_coord=None, downstream_coord=None): | |
| 431 ''' migration to memory saving by specifying possible subcoordinates | |
| 432 see the readcount method for further discussion | |
| 433 scope must be a python iterable; scope define the *relative* offset range to be computed''' | |
| 434 upstream_coord = upstream_coord or self.windowoffset | |
| 435 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 436 query_range = range (minquery, maxquery+1) | |
| 437 target_range = range (mintarget, maxtarget+1) | |
| 438 Query_table = {} | |
| 439 Target_table = {} | |
| 440 frequency_table = dict ([(i, 0) for i in scope]) | |
| 441 for offset in self.readDict: | |
| 442 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
| 443 for size in self.readDict[offset]: | |
| 444 if size in query_range: | |
| 445 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
| 446 if size in target_range: | |
| 447 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
| 448 for offset in Query_table: | |
| 449 for i in scope: | |
| 450 frequency_table[i] += min(Query_table[offset], Target_table.get(-offset -i +1, 0)) | |
| 451 if minquery==mintarget and maxquery==maxtarget: ## added to incorporate the division by 2 in the method (26/11/2013), see signature_options.py and lattice_signature.py | |
| 452 frequency_table = dict([(i,frequency_table[i]/2) for i in frequency_table]) | |
| 453 if zscore == "yes": | |
| 454 z_mean = mean(frequency_table.values() ) | |
| 455 z_std = std(frequency_table.values() ) | |
| 456 if z_std == 0: | |
| 457 frequency_table = dict([(i,0) for i in frequency_table] ) | |
| 458 else: | |
| 459 frequency_table = dict([(i, (frequency_table[i]- z_mean)/z_std) for i in frequency_table] ) | |
| 460 return frequency_table | |
| 461 | |
| 462 def hannon_signature (self, minquery, maxquery, mintarget, maxtarget, scope, upstream_coord=None, downstream_coord=None): | |
| 463 ''' migration to memory saving by specifying possible subcoordinates see the readcount method for further discussion | |
| 464 note that scope must be an iterable (a list or a tuple), which specifies the relative offsets that will be computed''' | |
| 465 upstream_coord = upstream_coord or self.windowoffset | |
| 466 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
| 467 query_range = range (minquery, maxquery+1) | |
| 468 target_range = range (mintarget, maxtarget+1) | |
| 469 Query_table = {} | |
| 470 Target_table = {} | |
| 471 Total_Query_Numb = 0 | |
| 472 general_frequency_table = dict ([(i,0) for i in scope]) | |
| 473 ## filtering the appropriate reads for the study | |
| 474 for offset in self.readDict: | |
| 475 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
| 476 for size in self.readDict[offset]: | |
| 477 if size in query_range: | |
| 478 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
| 479 Total_Query_Numb += 1 | |
| 480 if size in target_range: | |
| 481 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
| 482 for offset in Query_table: | |
| 483 frequency_table = dict ([(i,0) for i in scope]) | |
| 484 number_of_targets = 0 | |
| 485 for i in scope: | |
| 486 frequency_table[i] += Query_table[offset] * Target_table.get(-offset -i +1, 0) | |
| 487 number_of_targets += Target_table.get(-offset -i +1, 0) | |
| 488 for i in scope: | |
| 489 try: | |
| 490 general_frequency_table[i] += (1. / number_of_targets / Total_Query_Numb) * frequency_table[i] | |
| 491 except ZeroDivisionError : | |
| 492 continue | |
| 493 return general_frequency_table | |
| 494 | |
| 495 def phasing (self, size_range, scope): | |
| 496 ''' to calculate autocorelation like signal - scope must be an python iterable''' | |
| 497 read_table = {} | |
| 498 total_read_number = 0 | |
| 499 general_frequency_table = dict ([(i, 0) for i in scope]) | |
| 500 ## read input filtering | |
| 501 for offset in self.readDict: | |
| 502 for size in self.readDict[offset]: | |
| 503 if size in size_range: | |
| 504 read_table[offset] = read_table.get(offset, 0) + 1 | |
| 505 total_read_number += 1 | |
| 506 ## per offset read phasing computing | |
| 507 for offset in read_table: | |
| 508 frequency_table = dict ([(i, 0) for i in scope]) # local frequency table | |
| 509 number_of_targets = 0 | |
| 510 for i in scope: | |
| 511 if offset > 0: | |
| 512 frequency_table[i] += read_table[offset] * read_table.get(offset + i, 0) | |
| 513 number_of_targets += read_table.get(offset + i, 0) | |
| 514 else: | |
| 515 frequency_table[i] += read_table[offset] * read_table.get(offset - i, 0) | |
| 516 number_of_targets += read_table.get(offset - i, 0) | |
| 517 ## inclusion of local frequency table in the general frequency table (all offsets average) | |
| 518 for i in scope: | |
| 519 try: | |
| 520 general_frequency_table[i] += (1. / number_of_targets / total_read_number) * frequency_table[i] | |
| 521 except ZeroDivisionError : | |
| 522 continue | |
| 523 return general_frequency_table | |
| 524 | |
| 525 | |
| 526 | |
| 527 def z_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
| 528 '''Must do: from numpy import mean, std, to use this method; scope must be a python iterable and defines the relative offsets to compute''' | |
| 529 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
| 530 z_table = {} | |
| 531 frequency_list = [frequency_table[i] for i in sorted (frequency_table)] | |
| 532 if std(frequency_list): | |
| 533 meanlist = mean(frequency_list) | |
| 534 stdlist = std(frequency_list) | |
| 535 z_list = [(i-meanlist)/stdlist for i in frequency_list] | |
| 536 return dict (zip (sorted(frequency_table), z_list) ) | |
| 537 else: | |
| 538 return dict (zip (sorted(frequency_table), [0 for i in frequency_table]) ) | |
| 539 | |
| 540 def percent_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
| 541 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
| 542 total = float(sum ([self.readsizes().get(i,0) for i in set(range(minquery,maxquery)+range(mintarget,maxtarget))]) ) | |
| 543 if total == 0: | |
| 544 return dict( [(i,0) for i in scope]) | |
| 545 return dict( [(i, frequency_table[i]/total*100) for i in scope]) | |
| 546 | |
| 547 def pairer (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
| 548 queryhash = defaultdict(list) | |
| 549 targethash = defaultdict(list) | |
| 550 query_range = range (int(minquery), int(maxquery)+1) | |
| 551 target_range = range (int(mintarget), int(maxtarget)+1) | |
| 552 paired_sequences = [] | |
| 553 for offset in self.readDict: # selection of data | |
| 554 for size in self.readDict[offset]: | |
| 555 if size in query_range: | |
| 556 queryhash[offset].append(size) | |
| 557 if size in target_range: | |
| 558 targethash[offset].append(size) | |
| 559 for offset in queryhash: | |
| 560 if offset >= 0: matched_offset = -offset - overlap + 1 | |
| 561 else: matched_offset = -offset - overlap + 1 | |
| 562 if targethash[matched_offset]: | |
| 563 paired = min ( len(queryhash[offset]), len(targethash[matched_offset]) ) | |
| 564 if offset >= 0: | |
| 565 for i in range (paired): | |
| 566 paired_sequences.append("+%s" % RNAtranslate ( self.sequence[offset:offset+queryhash[offset][i]]) ) | |
| 567 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-targethash[matched_offset][i]+1:-matched_offset+1]) ) ) | |
| 568 if offset < 0: | |
| 569 for i in range (paired): | |
| 570 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-queryhash[offset][i]+1:-offset+1]) ) ) | |
| 571 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+targethash[matched_offset][i]] ) ) | |
| 572 return paired_sequences | |
| 573 | |
| 574 def pairable (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
| 575 queryhash = defaultdict(list) | |
| 576 targethash = defaultdict(list) | |
| 577 query_range = range (int(minquery), int(maxquery)+1) | |
| 578 target_range = range (int(mintarget), int(maxtarget)+1) | |
| 579 paired_sequences = [] | |
| 580 | |
| 581 for offset in self.readDict: # selection of data | |
| 582 for size in self.readDict[offset]: | |
| 583 if size in query_range: | |
| 584 queryhash[offset].append(size) | |
| 585 if size in target_range: | |
| 586 targethash[offset].append(size) | |
| 587 | |
| 588 for offset in queryhash: | |
| 589 matched_offset = -offset - overlap + 1 | |
| 590 if targethash[matched_offset]: | |
| 591 if offset >= 0: | |
| 592 for i in queryhash[offset]: | |
| 593 paired_sequences.append("+%s" % RNAtranslate (self.sequence[offset:offset+i]) ) | |
| 594 for i in targethash[matched_offset]: | |
| 595 paired_sequences.append( "-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-i+1:-matched_offset+1]) ) ) | |
| 596 if offset < 0: | |
| 597 for i in queryhash[offset]: | |
| 598 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-i+1:-offset+1]) ) ) | |
| 599 for i in targethash[matched_offset]: | |
| 600 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+i] ) ) | |
| 601 return paired_sequences | |
| 602 | |
| 603 def newpairable_bowtie (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
| 604 ''' revision of pairable on 3-12-2012, with focus on the offset shift problem (bowtie is 1-based cooordinates whereas python strings are 0-based coordinates''' | |
| 605 queryhash = defaultdict(list) | |
| 606 targethash = defaultdict(list) | |
| 607 query_range = range (int(minquery), int(maxquery)+1) | |
| 608 target_range = range (int(mintarget), int(maxtarget)+1) | |
| 609 bowtie_output = [] | |
| 610 | |
| 611 for offset in self.readDict: # selection of data | |
| 612 for size in self.readDict[offset]: | |
| 613 if size in query_range: | |
| 614 queryhash[offset].append(size) | |
| 615 if size in target_range: | |
| 616 targethash[offset].append(size) | |
| 617 counter = 0 | |
| 618 for offset in queryhash: | |
| 619 matched_offset = -offset - overlap + 1 | |
| 620 if targethash[matched_offset]: | |
| 621 if offset >= 0: | |
| 622 for i in queryhash[offset]: | |
| 623 counter += 1 | |
| 624 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "+", self.gene, offset-1, self.sequence[offset-1:offset-1+i]) ) # attention a la base 1-0 de l'offset | |
| 625 if offset < 0: | |
| 626 for i in queryhash[offset]: | |
| 627 counter += 1 | |
| 628 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "-", self.gene, -offset-i, self.sequence[-offset-i:-offset])) # attention a la base 1-0 de l'offset | |
| 629 return bowtie_output | |
| 630 | |
| 631 | |
| 632 def __main__(bowtie_index_path, bowtie_output_path): | |
| 633 sequenceDic = get_fasta (bowtie_index_path) | |
| 634 objDic = {} | |
| 635 F = open (bowtie_output_path, "r") # F is the bowtie output taken as input | |
| 636 for line in F: | |
| 637 fields = line.split() | |
| 638 polarity = fields[1] | |
| 639 gene = fields[2] | |
| 640 offset = int(fields[3]) | |
| 641 size = len (fields[4]) | |
| 642 try: | |
| 643 objDic[gene].addread (polarity, offset, size) | |
| 644 except KeyError: | |
| 645 objDic[gene] = SmRNAwindow(gene, sequenceDic[gene]) | |
| 646 objDic[gene].addread (polarity, offset, size) | |
| 647 F.close() | |
| 648 for gene in objDic: | |
| 649 print gene, objDic[gene].pairer(19,19,23,19,23) | |
| 650 | |
| 651 if __name__ == "__main__" : __main__(sys.argv[1], sys.argv[2]) |
