comparison quality_filter.py @ 0:5da8dce9fd62 draft

Imported from capsule None
author devteam
date Tue, 01 Apr 2014 09:13:08 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:5da8dce9fd62
1 #!/usr/bin/env python
2 #Guruprasad Ananda
3 """
4 Filter based on nucleotide quality (PHRED score).
5
6 usage: %prog input out_file primary_species mask_species score mask_char mask_region mask_region_length
7 """
8
9
10 from __future__ import division
11 from galaxy import eggs
12 import pkg_resources
13 pkg_resources.require( "lrucache" )
14 import numpy
15
16 import sys
17 import os, os.path
18 from UserDict import DictMixin
19 from bx.binned_array import FileBinnedArray
20 from bx.bitset import *
21 from bx.bitset_builders import *
22 from bx.cookbook import doc_optparse
23 from galaxy.tools.exception_handling import *
24 import bx.align.maf
25
26 class FileBinnedArrayDir( DictMixin ):
27 """
28 Adapter that makes a directory of FileBinnedArray files look like
29 a regular dict of BinnedArray objects.
30 """
31 def __init__( self, dir ):
32 self.dir = dir
33 self.cache = dict()
34 def __getitem__( self, key ):
35 value = None
36 if key in self.cache:
37 value = self.cache[key]
38 else:
39 fname = os.path.join( self.dir, "%s.qa.bqv" % key )
40 if os.path.exists( fname ):
41 value = FileBinnedArray( open( fname ) )
42 self.cache[key] = value
43 if value is None:
44 raise KeyError( "File does not exist: " + fname )
45 return value
46
47 def stop_err(msg):
48 sys.stderr.write(msg)
49 sys.exit()
50
51 def load_scores_ba_dir( dir ):
52 """
53 Return a dict-like object (keyed by chromosome) that returns
54 FileBinnedArray objects created from "key.ba" files in `dir`
55 """
56 return FileBinnedArrayDir( dir )
57
58 def bitwise_and ( string1, string2, maskch ):
59 result = []
60 for i, ch in enumerate(string1):
61 try:
62 ch = int(ch)
63 except:
64 pass
65 if string2[i] == '-':
66 ch = 1
67 if ch and string2[i]:
68 result.append(string2[i])
69 else:
70 result.append(maskch)
71 return ''.join(result)
72
73 def main():
74 # Parsing Command Line here
75 options, args = doc_optparse.parse( __doc__ )
76
77 try:
78 #chr_col_1, start_col_1, end_col_1, strand_col_1 = parse_cols_arg( options.cols )
79 inp_file, out_file, pri_species, mask_species, qual_cutoff, mask_chr, mask_region, mask_length, loc_file = args
80 qual_cutoff = int(qual_cutoff)
81 mask_chr = int(mask_chr)
82 mask_region = int(mask_region)
83 if mask_region != 3:
84 mask_length = int(mask_length)
85 else:
86 mask_length_r = int(mask_length.split(',')[0])
87 mask_length_l = int(mask_length.split(',')[1])
88 except:
89 stop_err( "Data issue, click the pencil icon in the history item to correct the metadata attributes of the input dataset." )
90
91 if pri_species == 'None':
92 stop_err( "No primary species selected, try again by selecting at least one primary species." )
93 if mask_species == 'None':
94 stop_err( "No mask species selected, try again by selecting at least one species to mask." )
95
96 mask_chr_count = 0
97 mask_chr_dict = {0:'#', 1:'$', 2:'^', 3:'*', 4:'?', 5:'N'}
98 mask_reg_dict = {0:'Current pos', 1:'Current+Downstream', 2:'Current+Upstream', 3:'Current+Both sides'}
99
100 #ensure dbkey is present in the twobit loc file
101 try:
102 pspecies_all = pri_species.split(',')
103 pspecies_all2 = pri_species.split(',')
104 pspecies = []
105 filepaths = []
106 for line in open(loc_file):
107 if pspecies_all2 == []:
108 break
109 if line[0:1] == "#":
110 continue
111 fields = line.split('\t')
112 try:
113 build = fields[0]
114 for i, dbkey in enumerate(pspecies_all2):
115 if dbkey == build:
116 pspecies.append(build)
117 filepaths.append(fields[1])
118 del pspecies_all2[i]
119 else:
120 continue
121 except:
122 pass
123 except Exception, exc:
124 stop_err( 'Initialization errorL %s' % str( exc ) )
125
126 if len(pspecies) == 0:
127 stop_err( "Quality scores are not available for the following genome builds: %s" % ( pspecies_all2 ) )
128 if len(pspecies) < len(pspecies_all):
129 print "Quality scores are not available for the following genome builds: %s" % (pspecies_all2)
130
131 scores_by_chrom = []
132 #Get scores for all the primary species
133 for file in filepaths:
134 scores_by_chrom.append(load_scores_ba_dir( file.strip() ))
135
136 try:
137 maf_reader = bx.align.maf.Reader( open(inp_file, 'r') )
138 maf_writer = bx.align.maf.Writer( open(out_file,'w') )
139 except Exception, e:
140 stop_err( "Your MAF file appears to be malformed: %s" % str( e ) )
141
142 maf_count = 0
143 for block in maf_reader:
144 status_strings = []
145 for seq in range (len(block.components)):
146 src = block.components[seq].src
147 dbkey = src.split('.')[0]
148 chr = src.split('.')[1]
149 if not (dbkey in pspecies):
150 continue
151 else: #enter if the species is a primary species
152 index = pspecies.index(dbkey)
153 sequence = block.components[seq].text
154 s_start = block.components[seq].start
155 size = len(sequence) #this includes the gaps too
156 status_str = '1'*size
157 status_list = list(status_str)
158 if status_strings == []:
159 status_strings.append(status_str)
160 ind = 0
161 s_end = block.components[seq].end
162 #Get scores for the entire sequence
163 try:
164 scores = scores_by_chrom[index][chr][s_start:s_end]
165 except:
166 continue
167 pos = 0
168 while pos < (s_end-s_start):
169 if sequence[ind] == '-': #No score for GAPS
170 ind += 1
171 continue
172 score = scores[pos]
173 if score < qual_cutoff:
174 score = 0
175
176 if not(score):
177 if mask_region == 0: #Mask Corresponding position only
178 status_list[ind] = '0'
179 ind += 1
180 pos += 1
181 elif mask_region == 1: #Mask Corresponding position + downstream neighbors
182 for n in range(mask_length+1):
183 try:
184 status_list[ind+n] = '0'
185 except:
186 pass
187 ind = ind + mask_length + 1
188 pos = pos + mask_length + 1
189 elif mask_region == 2: #Mask Corresponding position + upstream neighbors
190 for n in range(mask_length+1):
191 try:
192 status_list[ind-n] = '0'
193 except:
194 pass
195 ind += 1
196 pos += 1
197 elif mask_region == 3: #Mask Corresponding position + neighbors on both sides
198 for n in range(-mask_length_l, mask_length_r+1):
199 try:
200 status_list[ind+n] = '0'
201 except:
202 pass
203 ind = ind + mask_length_r + 1
204 pos = pos + mask_length_r + 1
205 else:
206 pos += 1
207 ind += 1
208
209 status_strings.append(''.join(status_list))
210
211 if status_strings == []: #this block has no primary species
212 continue
213 output_status_str = status_strings[0]
214 for stat in status_strings[1:]:
215 try:
216 output_status_str = bitwise_and (status_strings[0], stat, '0')
217 except Exception, e:
218 break
219
220 for seq in range (len(block.components)):
221 src = block.components[seq].src
222 dbkey = src.split('.')[0]
223 if dbkey not in mask_species.split(','):
224 continue
225 sequence = block.components[seq].text
226 sequence = bitwise_and (output_status_str, sequence, mask_chr_dict[mask_chr])
227 block.components[seq].text = sequence
228 mask_chr_count += output_status_str.count('0')
229 maf_writer.write(block)
230 maf_count += 1
231
232 maf_reader.close()
233 maf_writer.close()
234 print "No. of blocks = %d; No. of masked nucleotides = %s; Mask character = %s; Mask region = %s; Cutoff used = %d" % (maf_count, mask_chr_count, mask_chr_dict[mask_chr], mask_reg_dict[mask_region], qual_cutoff)
235
236
237 if __name__ == "__main__":
238 main()