comparison plot_from_lda.xml @ 0:542c4323ed83 draft

Imported from capsule None
author devteam
date Mon, 28 Jul 2014 11:30:26 -0400
parents
children d096b6d081e5
comparison
equal deleted inserted replaced
-1:000000000000 0:542c4323ed83
1 <tool id="plot_for_lda_output1" name="Draw ROC plot" version="1.0.1">
2 <description>on "Perform LDA" output</description>
3 <requirements>
4 <requirement type="package" version="2.11.0">R</requirement>
5 </requirements>
6
7 <command interpreter="sh">r_wrapper.sh $script_file</command>
8
9 <inputs>
10 <param format="txt" name="input" type="data" label="Source file"> </param>
11 <param name="my_title" size="30" type="text" value="My Figure" label="Title of your plot" help="See syntax below"> </param>
12 <param name="X_axis" size="30" type="text" value="Text for X axis" label="Legend of X axis in your plot" help="See syntax below"> </param>
13 <param name="Y_axis" size="30" type="text" value="Text for Y axis" label="Legend of Y axis in your plot" help="See syntax below"> </param>
14 </inputs>
15 <outputs>
16 <data format="pdf" name="pdf_output" />
17 </outputs>
18
19 <tests>
20 <test>
21 <param name="input" value="lda_analy_output.txt"/>
22 <param name="my_title" value="Test Plot1"/>
23 <param name="X_axis" value="Test Plot2"/>
24 <param name="Y_axis" value="Test Plot3"/>
25 <output name="pdf_output" file="plot_for_lda_output.pdf"/>
26 </test>
27 </tests>
28
29 <configfiles>
30 <configfile name="script_file">
31
32 rm(list = objects() )
33
34 ############# FORMAT X DATA #########################
35 format&lt;-function(data) {
36 ind=NULL
37 for(i in 1 : ncol(data)){
38 if (is.na(data[nrow(data),i])) {
39 ind&lt;-c(ind,i)
40 }
41 }
42 #print(is.null(ind))
43 if (!is.null(ind)) {
44 data&lt;-data[,-c(ind)]
45 }
46
47 data
48 }
49
50 ########GET RESPONSES ###############################
51 get_resp&lt;- function(data) {
52 resp1&lt;-as.vector(data[,ncol(data)])
53 resp=numeric(length(resp1))
54 for (i in 1:length(resp1)) {
55 if (resp1[i]=="Control ") {
56 resp[i] = 0
57 }
58 if (resp1[i]=="XLMR ") {
59 resp[i] = 1
60 }
61 }
62 return(resp)
63 }
64
65 ######## CHARS TO NUMBERS ###########################
66 f_to_numbers&lt;- function(F) {
67 ind&lt;-NULL
68 G&lt;-matrix(0,nrow(F), ncol(F))
69 for (i in 1:nrow(F)) {
70 for (j in 1:ncol(F)) {
71 G[i,j]&lt;-as.integer(F[i,j])
72 }
73 }
74 return(G)
75 }
76
77 ###################NORMALIZING#########################
78 norm &lt;- function(M, a=NULL, b=NULL) {
79 C&lt;-NULL
80 ind&lt;-NULL
81
82 for (i in 1: ncol(M)) {
83 if (sd(M[,i])!=0) {
84 M[,i]&lt;-(M[,i]-mean(M[,i]))/sd(M[,i])
85 }
86 # else {print(mean(M[,i]))}
87 }
88 return(M)
89 }
90
91 ##### LDA DIRECTIONS #################################
92 lda_dec &lt;- function(data, k){
93 priors=numeric(k)
94 grandmean&lt;-numeric(ncol(data)-1)
95 means=matrix(0,k,ncol(data)-1)
96 B = matrix(0, ncol(data)-1, ncol(data)-1)
97 N=nrow(data)
98 for (i in 1:k){
99 priors[i]=sum(data[,1]==i)/N
100 grp=subset(data,data\$group==i)
101 means[i,]=mean(grp[,2:ncol(data)])
102 #print(means[i,])
103 #print(priors[i])
104 #print(priors[i]*means[i,])
105 grandmean = priors[i]*means[i,] + grandmean
106 }
107
108 for (i in 1:k) {
109 B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean))
110 }
111
112 W = var(data[,2:ncol(data)])
113 svdW = svd(W)
114 inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v))
115 B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW
116 B_star_decomp = svd(B_star)
117 directions = inv_sqrtW%*%B_star_decomp\$v
118 return( list(directions, B_star_decomp\$d) )
119 }
120
121 ################ NAIVE BAYES FOR 1D SIR OR LDA ##############
122 naive_bayes_classifier &lt;- function(resp, tr_data, test_data, k=2, tau) {
123 tr_data=data.frame(resp=resp, dir=tr_data)
124 means=numeric(k)
125 #print(k)
126 cl=numeric(k)
127 predclass=numeric(length(test_data))
128 for (i in 1:k) {
129 grp = subset(tr_data, resp==i)
130 means[i] = mean(grp\$dir)
131 #print(i, means[i])
132 }
133 cutoff = tau*means[1]+(1-tau)*means[2]
134 #print(tau)
135 #print(means)
136 #print(cutoff)
137 if (cutoff&gt;means[1]) {
138 cl[1]=1
139 cl[2]=2
140 }
141 else {
142 cl[1]=2
143 cl[2]=1
144 }
145
146 for (i in 1:length(test_data)) {
147
148 if (test_data[i] &lt;= cutoff) {
149 predclass[i] = cl[1]
150 }
151 else {
152 predclass[i] = cl[2]
153 }
154 }
155 #print(means)
156 #print(mean(means))
157 #X11()
158 #plot(test_data,pch=predclass, col=resp)
159 predclass
160 }
161
162 ################# EXTENDED ERROR RATES #################
163 ext_error_rate &lt;- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) {
164 er=sum(predclass != actualclass)/length(predclass)
165
166 matr&lt;-data.frame(predclass=predclass,actualclass=actualclass)
167 escapes = subset(matr, actualclass==1)
168 subjects = subset(matr, actualclass==2)
169 er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass)
170 er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass)
171
172 if (pr==1) {
173 # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" "))
174 # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" "))
175 # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" "))
176 }
177 return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100))
178 }
179
180 ## Main Function ##
181
182 files_alias&lt;-c("${my_title}")
183 tau=seq(0,1,by=0.005)
184 nfiles=1
185 f = c("${input}")
186
187 rez_ext&lt;-list()
188 for (i in 1:nfiles) {
189 rez_ext[[i]]&lt;-dget(paste(f[i], sep="",collapse=""))
190 }
191
192 tau&lt;-tau[1:(length(tau)-1)]
193 for (i in 1:nfiles) {
194 rez_ext[[i]]&lt;-rez_ext[[i]][,1:(length(tau)-1)]
195 }
196
197 ######## OPTIMAIL TAU ###########################
198
199 #rez_ext
200
201 rate&lt;-c("Optimal tau","Tr total", "Tr Y", "Tr X")
202
203 m_tr&lt;-numeric(nfiles)
204 m_xp22&lt;-numeric(nfiles)
205 m_x&lt;-numeric(nfiles)
206
207 for (i in 1:nfiles) {
208 r&lt;-rez_ext[[i]]
209 #tr
210 # rate&lt;-rbind(rate, c(files_alias[i]," "," "," ") )
211 mm&lt;-which((r[3,])==max(r[3,]))
212
213 m_tr[i]&lt;-mm[1]
214 rate&lt;-rbind(rate,c(tau[m_tr[i]],r[,m_tr[i]]))
215 }
216 print(rate)
217
218 pdf(file= paste("${pdf_output}"))
219
220 plot(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlim=c(0,100), ylim=c(0,100), xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col="blue", xaxt='n', yaxt='n')
221 for (i in 1:nfiles) {
222 lines(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col=i)
223 # pt=c(r,)
224 points(x=rez_ext[[i]][3,m_tr[i]],y=rez_ext[[i]][2,m_tr[i]], pch=16, col=i)
225 }
226
227
228 title(main="${my_title}", adj=0, cex.main=1.1)
229 axis(2, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%'))
230 axis(1, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%'))
231
232 #leg=c("10 kb","50 kb","100 kb")
233 #legend("bottomleft",legend=leg , col=c(1,2,3), lty=c(1,1,1))
234
235 #dev.off()
236
237 </configfile>
238 </configfiles>
239
240
241 <help>
242 .. class:: infomark
243
244 **What it does**
245
246 This tool generates a Receiver Operating Characteristic (ROC) plot that shows LDA classification success rates for different values of the tuning parameter tau as Figure 3 in Carrel et al., 2006 (PMID: 17009873).
247
248 *Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, et al. (2006) Genomic Environment Predicts Expression Patterns on the Human Inactive X Chromosome. PLoS Genet 2(9): e151. doi:10.1371/journal.pgen.0020151*
249
250 -----
251
252 .. class:: warningmark
253
254 **Note**
255
256 - Output from "Perform LDA" tool is used as input file for this tool.
257
258 </help>
259
260
261
262 </tool>