Mercurial > repos > devteam > microsats_mutability
view microsats_mutability.py @ 2:5e858a07ca85 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/microsats_mutability commit de7140295cce07e1bc1697e51dab4271c8d7a8a6
author | devteam |
---|---|
date | Fri, 18 Dec 2015 19:08:34 -0500 |
parents | 0530d2a49487 |
children |
line wrap: on
line source
#!/usr/bin/env python #Guruprasad Ananda """ This tool computes microsatellite mutability for the orthologous microsatellites fetched from 'Extract Orthologous Microsatellites from pair-wise alignments' tool. """ import fileinput import string import sys import tempfile from galaxy.tools.util.galaxyops import * from bx.intervals.io import * from bx.intervals.operations import quicksect fout = open(sys.argv[2],'w') p_group = int(sys.argv[3]) #primary "group-by" feature p_bin_size = int(sys.argv[4]) s_group = int(sys.argv[5]) #sub-group by feature s_bin_size = int(sys.argv[6]) mono_threshold = 9 non_mono_threshold = 4 p_group_cols = [p_group, p_group+7] s_group_cols = [s_group, s_group+7] num_generations = int(sys.argv[7]) region = sys.argv[8] int_file = sys.argv[9] if int_file != "None": #User has specified an interval file try: fint = open(int_file, 'r') dbkey_i = sys.argv[10] chr_col_i, start_col_i, end_col_i, strand_col_i = parse_cols_arg( sys.argv[11] ) except: stop_err("Unable to open input Interval file") def stop_err(msg): sys.stderr.write(msg) sys.exit() def reverse_complement(text): DNA_COMP = string.maketrans( "ACGTacgt", "TGCAtgca" ) comp = [ch for ch in text.translate(DNA_COMP)] comp.reverse() return "".join(comp) def get_unique_elems(elems): seen = set() return[x for x in elems if x not in seen and not seen.add(x)] def get_binned_lists(uniqlist, binsize): binnedlist = [] uniqlist.sort() start = int(uniqlist[0]) bin_ind = 0 l_ind = 0 binnedlist.append([]) while l_ind < len(uniqlist): elem = int(uniqlist[l_ind]) if elem in range(start, start+binsize): binnedlist[bin_ind].append(elem) else: start += binsize bin_ind += 1 binnedlist.append([]) binnedlist[bin_ind].append(elem) l_ind += 1 return binnedlist def fetch_weight(H, C, t): if (H-(C-H)) < t: return 2.0 else: return 1.0 def mutabilityEstimator(repeats1, repeats2, thresholds): mut_num = 0.0 #Mutability Numerator mut_den = 0.0 #Mutability denominator for ind, H in enumerate(repeats1): C = repeats2[ind] t = thresholds[ind] w = fetch_weight(H, C, t) mut_num += ((H-C)*(H-C)*w) mut_den += w return [mut_num, mut_den] def output_writer(blk, blk_lines): global winspecies, speciesind all_elems_1 = [] all_elems_2 = [] all_s_elems_1 = [] all_s_elems_2 = [] for bline in blk_lines: if not(bline): continue items = bline.split('\t') seq1 = items[1] seq2 = items[8] if p_group_cols[0] == 6: items[p_group_cols[0]] = int(items[p_group_cols[0]]) items[p_group_cols[1]] = int(items[p_group_cols[1]]) if s_group_cols[0] == 6: items[s_group_cols[0]] = int(items[s_group_cols[0]]) items[s_group_cols[1]] = int(items[s_group_cols[1]]) all_elems_1.append(items[p_group_cols[0]]) #primary col elements for species 1 all_elems_2.append(items[p_group_cols[1]]) #primary col elements for species 2 if s_group_cols[0] != -1: #sub-group is not None all_s_elems_1.append(items[s_group_cols[0]]) #secondary col elements for species 1 all_s_elems_2.append(items[s_group_cols[1]]) #secondary col elements for species 2 uniq_elems_1 = get_unique_elems(all_elems_1) uniq_elems_2 = get_unique_elems(all_elems_2) if s_group_cols[0] != -1: uniq_s_elems_1 = get_unique_elems(all_s_elems_1) uniq_s_elems_2 = get_unique_elems(all_s_elems_2) mut1 = {} mut2 = {} count1 = {} count2 = {} """ if p_group_cols[0] == 7: #i.e. the option chosen is group-by unit(AG, GTC, etc) uniq_elems_1 = get_unique_units(j.sort(lambda x, y: len(x)-len(y))) """ if p_group_cols[0] == 6: #i.e. the option chosen is group-by repeat number. uniq_elems_1 = get_binned_lists( uniq_elems_1, p_bin_size ) uniq_elems_2 = get_binned_lists( uniq_elems_2, p_bin_size ) if s_group_cols[0] == 6: #i.e. the option chosen is subgroup-by repeat number. uniq_s_elems_1 = get_binned_lists( uniq_s_elems_1, s_bin_size ) uniq_s_elems_2 = get_binned_lists( uniq_s_elems_2, s_bin_size ) for pitem1 in uniq_elems_1: #repeats1 = [] #repeats2 = [] thresholds = [] if s_group_cols[0] != -1: #Sub-group by feature is not None for sitem1 in uniq_s_elems_1: repeats1 = [] repeats2 = [] if type(sitem1) == type(''): sitem1 = sitem1.strip() for bline in blk_lines: belems = bline.split('\t') if type(pitem1) == list: if p_group_cols[0] == 6: belems[p_group_cols[0]] = int(belems[p_group_cols[0]]) if belems[p_group_cols[0]] in pitem1: if belems[s_group_cols[0]] == sitem1: repeats1.append(int(belems[6])) repeats2.append(int(belems[13])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut1[str(pitem1)+'\t'+str(sitem1)] = mutabilityEstimator( repeats1, repeats2, thresholds ) if region == 'align': count1[str(pitem1)+'\t'+str(sitem1)] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count1["%s\t%s" % ( pitem1, sitem1 )] = sum(repeats1) elif winspecies == 2: count1["%s\t%s" % ( pitem1, sitem1 )] = sum(repeats2) else: if type(sitem1) == list: if s_group_cols[0] == 6: belems[s_group_cols[0]] = int(belems[s_group_cols[0]]) if belems[p_group_cols[0]] == pitem1 and belems[s_group_cols[0]] in sitem1: repeats1.append(int(belems[6])) repeats2.append(int(belems[13])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut1["%s\t%s" % ( pitem1, sitem1 )] = mutabilityEstimator( repeats1, repeats2, thresholds ) if region == 'align': count1[str(pitem1)+'\t'+str(sitem1)] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count1[str(pitem1)+'\t'+str(sitem1)] = sum(repeats1) elif winspecies == 2: count1[str(pitem1)+'\t'+str(sitem1)] = sum(repeats2) else: if belems[p_group_cols[0]] == pitem1 and belems[s_group_cols[0]] == sitem1: repeats1.append(int(belems[6])) repeats2.append(int(belems[13])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut1["%s\t%s" % ( pitem1, sitem1 )] = mutabilityEstimator( repeats1, repeats2, thresholds ) if region == 'align': count1[str(pitem1)+'\t'+str(sitem1)] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count1["%s\t%s" % ( pitem1, sitem1 )] = sum(repeats1) elif winspecies == 2: count1["%s\t%s" % ( pitem1, sitem1 )] = sum(repeats2) else: #Sub-group by feature is None for bline in blk_lines: belems = bline.split('\t') if type(pitem1) == list: #print >> sys.stderr, "item: " + str(item1) if p_group_cols[0] == 6: belems[p_group_cols[0]] = int(belems[p_group_cols[0]]) if belems[p_group_cols[0]] in pitem1: repeats1.append(int(belems[6])) repeats2.append(int(belems[13])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) else: if belems[p_group_cols[0]] == pitem1: repeats1.append(int(belems[6])) repeats2.append(int(belems[13])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut1["%s" % (pitem1)] = mutabilityEstimator( repeats1, repeats2, thresholds ) if region == 'align': count1["%s" % (pitem1)] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count1[str(pitem1)] = sum(repeats1) elif winspecies == 2: count1[str(pitem1)] = sum(repeats2) for pitem2 in uniq_elems_2: #repeats1 = [] #repeats2 = [] thresholds = [] if s_group_cols[0] != -1: #Sub-group by feature is not None for sitem2 in uniq_s_elems_2: repeats1 = [] repeats2 = [] if type(sitem2)==type(''): sitem2 = sitem2.strip() for bline in blk_lines: belems = bline.split('\t') if type(pitem2) == list: if p_group_cols[0] == 6: belems[p_group_cols[1]] = int(belems[p_group_cols[1]]) if belems[p_group_cols[1]] in pitem2 and belems[s_group_cols[1]] == sitem2: repeats2.append(int(belems[13])) repeats1.append(int(belems[6])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut2["%s\t%s" % ( pitem2, sitem2 )] = mutabilityEstimator( repeats2, repeats1, thresholds ) #count2[str(pitem2)+'\t'+str(sitem2)]=len(repeats2) if region == 'align': count2["%s\t%s" % ( pitem2, sitem2 )] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats2) elif winspecies == 2: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats1) else: if type(sitem2) == list: if s_group_cols[0] == 6: belems[s_group_cols[1]] = int(belems[s_group_cols[1]]) if belems[p_group_cols[1]] == pitem2 and belems[s_group_cols[1]] in sitem2: repeats2.append(int(belems[13])) repeats1.append(int(belems[6])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut2["%s\t%s" % ( pitem2, sitem2 )] = mutabilityEstimator( repeats2, repeats1, thresholds ) if region == 'align': count2["%s\t%s" % ( pitem2, sitem2 )] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats2) elif winspecies == 2: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats1) else: if belems[p_group_cols[1]] == pitem2 and belems[s_group_cols[1]] == sitem2: repeats1.append(int(belems[13])) repeats2.append(int(belems[6])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut2["%s\t%s" % ( pitem2, sitem2 )] = mutabilityEstimator( repeats2, repeats1, thresholds ) if region == 'align': count2["%s\t%s" % ( pitem2, sitem2 )] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats2) elif winspecies == 2: count2["%s\t%s" % ( pitem2, sitem2 )] = len(repeats1) else: #Sub-group by feature is None for bline in blk_lines: belems = bline.split('\t') if type(pitem2) == list: if p_group_cols[0] == 6: belems[p_group_cols[1]] = int(belems[p_group_cols[1]]) if belems[p_group_cols[1]] in pitem2: repeats2.append(int(belems[13])) repeats1.append(int(belems[6])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) else: if belems[p_group_cols[1]] == pitem2: repeats2.append(int(belems[13])) repeats1.append(int(belems[6])) if belems[4] == 'mononucleotide': thresholds.append(mono_threshold) else: thresholds.append(non_mono_threshold) mut2["%s" % (pitem2)] = mutabilityEstimator( repeats2, repeats1, thresholds ) if region == 'align': count2["%s" % (pitem2)] = min( sum(repeats1), sum(repeats2) ) else: if winspecies == 1: count2["%s" % (pitem2)] = sum(repeats2) elif winspecies == 2: count2["%s" % (pitem2)] = sum(repeats1) for key in mut1.keys(): if key in mut2.keys(): mut = (mut1[key][0]+mut2[key][0])/(mut1[key][1]+mut2[key][1]) count = count1[key] del mut2[key] else: unit_found = False if p_group_cols[0] == 7 or s_group_cols[0] == 7: #if it is Repeat Unit (AG, GCT etc.) check for reverse-complements too if p_group_cols[0] == 7: this, other = 0, 1 else: this, other = 1, 0 groups1 = key.split('\t') mutn = mut1[key][0] mutd = mut1[key][1] count = 0 for key2 in mut2.keys(): groups2 = key2.split('\t') if groups1[other] == groups2[other]: if groups1[this] in groups2[this]*2 or reverse_complement(groups1[this]) in groups2[this]*2: #mut = (mut1[key][0]+mut2[key2][0])/(mut1[key][1]+mut2[key2][1]) mutn += mut2[key2][0] mutd += mut2[key2][1] count += int(count2[key2]) unit_found = True del mut2[key2] #break if unit_found: mut = mutn/mutd else: mut = mut1[key][0]/mut1[key][1] count = count1[key] mut = "%.2e" % (mut/num_generations) if region == 'align': print >> fout, str(blk) + '\t'+seq1 + '\t' + seq2 + '\t' +key.strip()+ '\t'+str(mut) + '\t'+ str(count) elif region == 'win': fout.write("%s\t%s\t%s\t%s\n" % ( blk, key.strip(), mut, count )) fout.flush() #catch any remaining repeats, for instance if the orthologous position contained different repeat units for remaining_key in mut2.keys(): mut = mut2[remaining_key][0]/mut2[remaining_key][1] mut = "%.2e" % (mut/num_generations) count = count2[remaining_key] if region == 'align': print >> fout, str(blk) + '\t'+seq1 + '\t'+seq2 + '\t'+remaining_key.strip()+ '\t'+str(mut)+ '\t'+ str(count) elif region == 'win': fout.write("%s\t%s\t%s\t%s\n" % ( blk, remaining_key.strip(), mut, count )) fout.flush() #print >> fout, blk + '\t'+remaining_key.strip()+ '\t'+str(mut)+ '\t'+ str(count) def counter(node, start, end, report_func): if start <= node.start < end and start < node.end <= end: report_func(node) if node.right: counter(node.right, start, end, report_func) if node.left: counter(node.left, start, end, report_func) elif node.start < start and node.right: counter(node.right, start, end, report_func) elif node.start >= end and node.left and node.left.maxend > start: counter(node.left, start, end, report_func) def main(): infile = sys.argv[1] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems ) != 15: stop_err( "This tool only works on tabular data output by 'Extract Orthologous Microsatellites from pair-wise alignments' tool. The data in your input dataset is either missing or not formatted properly." ) global winspecies, speciesind if region == 'win': if dbkey_i in elems[1]: winspecies = 1 speciesind = 1 elif dbkey_i in elems[8]: winspecies = 2 speciesind = 8 else: stop_err("The species build corresponding to your interval file is not present in the Microsatellite file.") fin = open(infile, 'r') skipped = 0 linestr = "" if region == 'win': msats = NiceReaderWrapper( fileinput.FileInput( infile ), chrom_col = speciesind, start_col = speciesind+1, end_col = speciesind+2, strand_col = -1, fix_strand = True) msatTree = quicksect.IntervalTree() for item in msats: if type( item ) is GenomicInterval: msatTree.insert( item, msats.linenum, item.fields ) for iline in fint: try: iline = iline.rstrip('\r\n') if not(iline) or iline == "": continue ielems = iline.strip("\r\n").split('\t') ichr = ielems[chr_col_i] istart = int(ielems[start_col_i]) iend = int(ielems[end_col_i]) isrc = "%s.%s" % ( dbkey_i, ichr ) if isrc not in msatTree.chroms: continue result = [] root = msatTree.chroms[isrc] #root node for the chrom counter(root, istart, iend, lambda node: result.append( node )) if not(result): continue tmpfile1 = tempfile.NamedTemporaryFile('wb+') for node in result: tmpfile1.write("%s\n" % "\t".join( node.other )) tmpfile1.seek(0) output_writer(iline, tmpfile1.readlines()) except: skipped += 1 if skipped: print "Skipped %d intervals as invalid." % (skipped) elif region == 'align': if s_group_cols[0] != -1: print >> fout, "#Window\tSpecies_1\tSpecies_2\tGroupby_Feature\tSubGroupby_Feature\tMutability\tCount" else: print >> fout, "#Window\tSpecies_1\tWindow_Start\tWindow_End\tSpecies_2\tGroupby_Feature\tMutability\tCount" prev_bnum = -1 try: for line in fin: line = line.strip("\r\n") if not(line) or line == "": continue elems = line.split('\t') try: assert int(elems[0]) assert len(elems) == 15 except: continue new_bnum = int(elems[0]) if new_bnum != prev_bnum: if prev_bnum != -1: output_writer(prev_bnum, linestr.strip().replace('\r','\n').split('\n')) linestr = line + "\n" else: linestr += line linestr += "\n" prev_bnum = new_bnum output_writer(prev_bnum, linestr.strip().replace('\r','\n').split('\n')) except Exception, ea: print >> sys.stderr, ea skipped += 1 if skipped: print "Skipped %d lines as invalid." % (skipped) if __name__ == "__main__": main()