view kcca.xml @ 1:df4083177919 draft default tip

planemo upload commit 33927a87ba2eee9bf0ecdd376a66241b17b3d734
author devteam
date Tue, 13 Oct 2015 12:23:10 -0400
parents f89438602243
children
line wrap: on
line source

<tool id="kcca1" name="Kernel Canonical Correlation Analysis" version="1.0.0">
  <description> </description>
  <requirements>
    <requirement type="package" version="1.0.3">rpy</requirement>
    <requirement type="package" version="2.11.0">R</requirement>
    <requirement type="package" version="0.1-4">kernlab</requirement>
    <requirement type="package" version="1.7.1">numpy</requirement>
    <requirement type="package" version="0.7.1">bx-python</requirement>
  </requirements>
  <command interpreter="python">
    kcca.py 
      --input=$input1
      --output1=$out_file1
      --x_cols=$x_cols
      --y_cols=$y_cols
      --kernel=$kernelChoice.kernel
      --features=$features
      #if $kernelChoice.kernel == "rbfdot" or $kernelChoice.kernel == "anovadot":
      --sigma=$kernelChoice.sigma
      --degree="None"
      --scale="None"
      --offset="None"
      --order="None"
      #elif $kernelChoice.kernel == "polydot":
      --sigma="None"
      --degree=$kernelChoice.degree
      --scale=$kernelChoice.scale
      --offset=$kernelChoice.offset
      --order="None"
      #elif $kernelChoice.kernel == "tanhdot":
      --sigma="None"
      --degree="None"
      --scale=$kernelChoice.scale
      --offset=$kernelChoice.offset
      --order="None"
      #elif $kernelChoice.kernel == "besseldot":
      --sigma=$kernelChoice.sigma
      --degree=$kernelChoice.degree
      --scale="None"
      --offset="None"
      --order=$kernelChoice.order
      #elif $kernelChoice.kernel == "anovadot":
      --sigma=$kernelChoice.sigma
      --degree=$kernelChoice.degree
      --scale="None"
      --offset="None"
      --order="None"
      #else:
      --sigma="None"
      --degree="None"
      --scale="None"
      --offset="None"
      --order="None"
      #end if
  </command>
  <inputs>
    <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/>
    <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
        <validator type="no_options" message="Please select at least one column."/>
    </param>
    <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
        <validator type="no_options" message="Please select at least one column."/>
    </param>
    <param name="features" type="integer" value="2" label="Number of canonical components to return" help="Enter an integer value greater than 0"/>
    <conditional name="kernelChoice">
        <param name="kernel" type="select" label="Kernel function">
            <option value="rbfdot" selected="true">Gaussian Radial Basis Function</option>
            <option value="polydot">Polynomial</option>
            <option value="vanilladot">Linear</option>
            <option value="tanhdot">Hyperbolic</option>
            <option value="laplacedot">Laplacian</option>
            <option value="besseldot">Bessel</option>
            <option value="anovadot">ANOVA Radial Basis Function</option>
            <option value="splinedot">Spline</option>
        </param>
        <when value="vanilladot" />
        <when value="splinedot" />
        <when value="rbfdot">
            <param name="sigma" type="float" value="1" label="sigma (inverse kernel width)" />
        </when>
        <when value="laplacedot">
            <param name="sigma" type="float" value="1" label="sigma (inverse kernel width)" />
        </when>
        <when value="polydot">
            <param name="degree" type="float" value="1" label="degree" />
            <param name="scale" type="float" value="1" label="scale" />
            <param name="offset" type="float" value="1" label="offset" />
        </when>
        <when value="tanhdot">
            <param name="scale" type="float" value="1" label="scale" />
            <param name="offset" type="float" value="1" label="offset" />
        </when>
        <when value="besseldot">
            <param name="sigma" type="float" value="1" label="sigma" />
            <param name="order" type="float" value="1" label="order" />
            <param name="degree" type="float" value="1" label="degree" />
        </when>
        <when value="anovadot">
            <param name="sigma" type="float" value="1" label="sigma" />
            <param name="degree" type="float" value="1" label="degree" />
        </when>
    </conditional>    
  </inputs>
  <outputs>
    <data format="input" name="out_file1" metadata_source="input1" />
  </outputs>
  <tests>
    <test>
        <param name="input1" value="iris.tabular"/>
        <param name="x_cols" value="1,2"/>
        <param name="y_cols" value="3,4"/>
        <param name="kernel" value="anovadot"/>
        <param name="features" value="4"/>
        <param name="sigma" value="0.1"/>
        <param name="degree" value="2"/>
        <output name="out_file1" file="kcca_out1.tabular" compare="re_match"/>
    </test>
    <test>
        <param name="input1" value="iris.tabular"/>
        <param name="x_cols" value="3,4"/>
        <param name="y_cols" value="1,2"/>
        <param name="kernel" value="rbfdot"/>
        <param name="features" value="2"/>
        <param name="sigma" value="0.5"/>
        <output name="out_file1" file="kcca_out2.tabular" compare="re_match"/>
    </test>
  </tests>
  <help>


.. class:: infomark

**TIP:** If your data is not TAB delimited, use *Edit Datasets-&gt;Convert characters*

-----

.. class:: infomark

**What it does**

This tool uses functions from 'kernlab' library from R statistical package to perform Kernel Canonical Correlation Analysis (kCCA) on the input data. 

*Alexandros Karatzoglou, Alex Smola, Kurt Hornik, Achim Zeileis (2004). kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software 11(9), 1-20. URL http://www.jstatsoft.org/v11/i09/*

-----

.. class:: warningmark

**Note**

This tool currently treats all variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results. Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.

  </help>
</tool>