Mercurial > repos > devteam > flanking_features
view flanking_features.py @ 1:850c05b9af00 draft
planemo upload commit 33927a87ba2eee9bf0ecdd376a66241b17b3d734
author | devteam |
---|---|
date | Tue, 13 Oct 2015 12:50:14 -0400 |
parents | e928e029f6eb |
children | 94248d5b9b8b |
line wrap: on
line source
#!/usr/bin/env python #By: Guruprasad Ananda """ Fetch closest up/downstream interval from features corresponding to every interval in primary usage: %prog primary_file features_file out_file direction -1, --cols1=N,N,N,N: Columns for start, end, strand in first file -2, --cols2=N,N,N,N: Columns for start, end, strand in second file -G, --gff1: input 1 is GFF format, meaning start and end coordinates are 1-based, closed interval -H, --gff2: input 2 is GFF format, meaning start and end coordinates are 1-based, closed interval """ import fileinput import sys from bx.cookbook import doc_optparse from bx.intervals.io import Comment, GenomicInterval, Header, NiceReaderWrapper from bx.intervals.operations import quicksect from bx.tabular.io import ParseError from galaxy.tools.util.galaxyops import fail, parse_cols_arg, skipped from utils.gff_util import convert_bed_coords_to_gff, GFFIntervalToBEDReaderWrapper assert sys.version_info[:2] >= ( 2, 4 ) def get_closest_feature(node, direction, threshold_up, threshold_down, report_func_up, report_func_down): #direction=1 for +ve strand upstream and -ve strand downstream cases; and it is 0 for +ve strand downstream and -ve strand upstream cases #threhold_Up is equal to the interval start for +ve strand, and interval end for -ve strand #threhold_down is equal to the interval end for +ve strand, and interval start for -ve strand if direction == 1: if node.maxend <= threshold_up: if node.end == node.maxend: report_func_up(node) elif node.right and node.left: if node.right.maxend == node.maxend: get_closest_feature(node.right, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.left.maxend == node.maxend: get_closest_feature(node.left, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.right and node.right.maxend == node.maxend: get_closest_feature(node.right, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.left and node.left.maxend == node.maxend: get_closest_feature(node.left, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.minend <= threshold_up: if node.end <= threshold_up: report_func_up(node) if node.left and node.right: if node.right.minend <= threshold_up: get_closest_feature(node.right, direction, threshold_up, threshold_down, report_func_up, report_func_down) if node.left.minend <= threshold_up: get_closest_feature(node.left, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.left: if node.left.minend <= threshold_up: get_closest_feature(node.left, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif node.right: if node.right.minend <= threshold_up: get_closest_feature(node.right, direction, threshold_up, threshold_down, report_func_up, report_func_down) elif direction == 0: if node.start > threshold_down: report_func_down(node) if node.left: get_closest_feature(node.left, direction, threshold_up, threshold_down, report_func_up, report_func_down) else: if node.right: get_closest_feature(node.right, direction, threshold_up, threshold_down, report_func_up, report_func_down) def proximal_region_finder(readers, region, comments=True): """ Returns an iterator that yields elements of the form [ <original_interval>, <closest_feature> ]. Intervals are GenomicInterval objects. """ primary = readers[0] features = readers[1] either = False if region == 'Upstream': up, down = True, False elif region == 'Downstream': up, down = False, True else: up, down = True, True if region == 'Either': either = True # Read features into memory: rightTree = quicksect.IntervalTree() for item in features: if type( item ) is GenomicInterval: rightTree.insert( item, features.linenum, item ) for interval in primary: if type( interval ) is Header: yield interval if type( interval ) is Comment and comments: yield interval elif type( interval ) == GenomicInterval: chrom = interval.chrom start = int(interval.start) end = int(interval.end) strand = interval.strand if chrom not in rightTree.chroms: continue else: root = rightTree.chroms[chrom] # root node for the chrom tree result_up = [] result_down = [] if (strand == '+' and up) or (strand == '-' and down): #upstream +ve strand and downstream -ve strand cases get_closest_feature(root, 1, start, None, lambda node: result_up.append( node ), None) if (strand == '+' and down) or (strand == '-' and up): #downstream +ve strand and upstream -ve strand case get_closest_feature(root, 0, None, end - 1, None, lambda node: result_down.append( node )) if result_up: if len(result_up) > 1: # The results_up list has a list of intervals upstream to the given interval. ends = [] for n in result_up: ends.append(n.end) res_ind = ends.index(max(ends)) # fetch the index of the closest interval i.e. the interval with the max end from the results_up list else: res_ind = 0 if not(either): yield [ interval, result_up[res_ind].other ] if result_down: if not(either): #The last element of result_down will be the closest element to the given interval yield [ interval, result_down[-1].other ] if either and (result_up or result_down): iter_val = [] if result_up and result_down: if abs(start - int(result_up[res_ind].end)) <= abs(end - int(result_down[-1].start)): iter_val = [ interval, result_up[res_ind].other ] else: #The last element of result_down will be the closest element to the given interval iter_val = [ interval, result_down[-1].other ] elif result_up: iter_val = [ interval, result_up[res_ind].other ] elif result_down: #The last element of result_down will be the closest element to the given interval iter_val = [ interval, result_down[-1].other ] yield iter_val def main(): options, args = doc_optparse.parse( __doc__ ) try: chr_col_1, start_col_1, end_col_1, strand_col_1 = parse_cols_arg( options.cols1 ) chr_col_2, start_col_2, end_col_2, strand_col_2 = parse_cols_arg( options.cols2 ) in1_gff_format = bool( options.gff1 ) in2_gff_format = bool( options.gff2 ) in_fname, in2_fname, out_fname, direction = args except: doc_optparse.exception() # Set readers to handle either GFF or default format. if in1_gff_format: in1_reader_wrapper = GFFIntervalToBEDReaderWrapper else: in1_reader_wrapper = NiceReaderWrapper if in2_gff_format: in2_reader_wrapper = GFFIntervalToBEDReaderWrapper else: in2_reader_wrapper = NiceReaderWrapper g1 = in1_reader_wrapper( fileinput.FileInput( in_fname ), chrom_col=chr_col_1, start_col=start_col_1, end_col=end_col_1, strand_col=strand_col_1, fix_strand=True ) g2 = in2_reader_wrapper( fileinput.FileInput( in2_fname ), chrom_col=chr_col_2, start_col=start_col_2, end_col=end_col_2, strand_col=strand_col_2, fix_strand=True ) # Find flanking features. out_file = open( out_fname, "w" ) try: for result in proximal_region_finder([g1, g2], direction): if type( result ) is list: line, closest_feature = result # Need to join outputs differently depending on file types. if in1_gff_format: # Output is GFF with added attribute 'closest feature.' # Invervals are in BED coordinates; need to convert to GFF. line = convert_bed_coords_to_gff( line ) closest_feature = convert_bed_coords_to_gff( closest_feature ) # Replace double quotes with single quotes in closest feature's attributes. out_file.write( "%s closest_feature \"%s\" \n" % ( "\t".join( line.fields ), "\t".join( closest_feature.fields ).replace( "\"", "\\\"" ) ) ) else: # Output is BED + closest feature fields. output_line_fields = [] output_line_fields.extend( line.fields ) output_line_fields.extend( closest_feature.fields ) out_file.write( "%s\n" % ( "\t".join( output_line_fields ) ) ) else: out_file.write( "%s\n" % result ) except ParseError, exc: fail( "Invalid file format: %s" % str( exc ) ) print "Direction: %s" % (direction) if g1.skipped > 0: print skipped( g1, filedesc=" of 1st dataset" ) if g2.skipped > 0: print skipped( g2, filedesc=" of 2nd dataset" ) if __name__ == "__main__": main()