Mercurial > repos > devteam > dwt_var_perclass
comparison execute_dwt_var_perClass.R @ 1:0c1388b563a8 draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/dwt_var_perclass commit f929353ffb0623f2218d7dec459c7da62f3b0d24"
author | devteam |
---|---|
date | Mon, 06 Jul 2020 18:12:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:27c5c2979e32 | 1:0c1388b563a8 |
---|---|
1 ###################################################################### | |
2 ## plot power spectra, i.e. wavelet variance by class | |
3 ## add code to create null bands by permuting the original data series | |
4 ## get class of maximum significant variance per feature | |
5 ## generate plots and table matrix of variance including p-values | |
6 ###################################################################### | |
7 library("wavethresh"); | |
8 library("waveslim"); | |
9 | |
10 options(echo = FALSE) | |
11 | |
12 ## normalize data | |
13 norm <- function(data) { | |
14 v <- (data - mean(data)) / sd(data); | |
15 if (sum(is.na(v)) >= 1) { | |
16 v <- data; | |
17 } | |
18 return(v); | |
19 } | |
20 | |
21 dwt_var_permut_get_max <- function(data, names, outfile, filter = 4, bc = "symmetric", method = "kendall", wf = "haar", boundary = "reflection") { | |
22 max_var <- NULL; | |
23 matrix <- NULL; | |
24 title <- NULL; | |
25 final_pvalue <- NULL; | |
26 short_levels <- NULL; | |
27 scale <- NULL; | |
28 | |
29 print(names); | |
30 | |
31 par(mfcol = c(length(names), length(names)), mar = c(0, 0, 0, 0), oma = c(4, 3, 3, 2), xaxt = "s", cex = 1, las = 1); | |
32 | |
33 short_levels <- wavethresh::wd(data[, 1], filter.number = filter, bc = bc)$nlevels; | |
34 | |
35 title <- c("motif"); | |
36 for (i in seq_len(short_levels)) { | |
37 title <- c(title, paste(i, "var", sep = "_"), paste(i, "pval", sep = "_"), paste(i, "test", sep = "_")); | |
38 } | |
39 print(title); | |
40 | |
41 ## normalize the raw data | |
42 data <- apply(data, 2, norm); | |
43 | |
44 for (i in seq_len(length(names))) { | |
45 for (j in seq_len(length(names))) { | |
46 temp <- NULL; | |
47 results <- NULL; | |
48 wave1_dwt <- NULL; | |
49 out <- NULL; | |
50 | |
51 out <- vector(length = length(title)); | |
52 temp <- vector(length = short_levels); | |
53 | |
54 if (i != j) { | |
55 plot(temp, type = "n", axes = FALSE, xlab = NA, ylab = NA); | |
56 box(col = "grey"); | |
57 grid(ny = 0, nx = NULL); | |
58 } else { | |
59 | |
60 wave1_dwt <- waveslim::dwt(data[, i], wf = wf, short_levels, boundary = boundary); | |
61 | |
62 temp_row <- (short_levels + 1) * -1; | |
63 temp_col <- 1; | |
64 temp <- waveslim::wave.variance(wave1_dwt)[temp_row, temp_col]; | |
65 | |
66 ##permutations code : | |
67 feature1 <- NULL; | |
68 null <- NULL; | |
69 var_25 <- NULL; | |
70 var_975 <- NULL; | |
71 med <- NULL; | |
72 | |
73 feature1 <- data[, i]; | |
74 for (k in seq_len(1000)) { | |
75 nk_1 <- NULL; | |
76 null_levels <- NULL; | |
77 var <- NULL; | |
78 null_wave1 <- NULL; | |
79 | |
80 nk_1 <- sample(feature1, length(feature1), replace = FALSE); | |
81 null_levels <- wavethresh::wd(nk_1, filter.number = filter, bc = bc)$nlevels; | |
82 var <- vector(length = length(null_levels)); | |
83 null_wave1 <- waveslim::dwt(nk_1, wf = wf, short_levels, boundary = boundary); | |
84 var <- waveslim::wave.variance(null_wave1)[-8, 1]; | |
85 null <- rbind(null, var); | |
86 } | |
87 null <- apply(null, 2, sort, na.last = TRUE); | |
88 var_25 <- null[25, ]; | |
89 var_975 <- null[975, ]; | |
90 med <- (apply(null, 2, median, na.rm = TRUE)); | |
91 | |
92 ## plot | |
93 results <- cbind(temp, var_25, var_975); | |
94 matplot(results, type = "b", pch = "*", lty = 1, col = c(1, 2, 2), axes = F); | |
95 | |
96 ## get pvalues by comparison to null distribution | |
97 out <- (names[i]); | |
98 for (m in seq_len(length(temp))) { | |
99 print(paste("scale", m, sep = " ")); | |
100 print(paste("var", temp[m], sep = " ")); | |
101 print(paste("med", med[m], sep = " ")); | |
102 pv <- NULL; | |
103 tail <- NULL; | |
104 out <- c(out, format(temp[m], digits = 3)); | |
105 if (temp[m] >= med[m]) { | |
106 ## R tail test | |
107 print("R"); | |
108 tail <- "R"; | |
109 pv <- (length(which(null[, m] >= temp[m]))) / (length(na.exclude(null[, m]))); | |
110 | |
111 } else { | |
112 ## L tail test | |
113 print("L"); | |
114 tail <- "L"; | |
115 pv <- (length(which(null[, m] <= temp[m]))) / (length(na.exclude(null[, m]))); | |
116 } | |
117 out <- c(out, pv); | |
118 print(pv); | |
119 out <- c(out, tail); | |
120 ## get variances outside null bands by comparing temp to null | |
121 ### temp stores variance for each scale, and null stores permuted variances for null bands | |
122 if (temp[m] <= var_975[m]) { | |
123 temp[m] <- NA; | |
124 } | |
125 } | |
126 final_pvalue <- rbind(final_pvalue, out); | |
127 matrix <- rbind(matrix, temp) | |
128 } | |
129 ## labels | |
130 if (i == 1) { | |
131 mtext(names[j], side = 2, line = 0.5, las = 3, cex = 0.25); | |
132 } | |
133 if (j == 1) { | |
134 mtext(names[i], side = 3, line = 0.5, cex = 0.25); | |
135 } | |
136 if (j == length(names)) { | |
137 axis(1, at = (1:short_levels), las = 3, cex.axis = 0.5); | |
138 } | |
139 } | |
140 } | |
141 colnames(final_pvalue) <- title; | |
142 | |
143 ## get maximum variance larger than expectation by comparison to null bands | |
144 varnames <- vector(); | |
145 for (i in seq_len(length(names))) { | |
146 name1 <- paste(names[i], "var", sep = "_") | |
147 varnames <- c(varnames, name1) | |
148 } | |
149 rownames(matrix) <- varnames; | |
150 colnames(matrix) <- (1:short_levels); | |
151 max_var <- names; | |
152 scale <- vector(length = length(names)); | |
153 for (x in seq_len(nrow(matrix))) { | |
154 if (length(which.max(matrix[x, ])) == 0) { | |
155 scale[x] <- NA; | |
156 } else{ | |
157 scale[x] <- colnames(matrix)[which.max(matrix[x, ])]; | |
158 } | |
159 } | |
160 max_var <- cbind(max_var, scale); | |
161 write.table(max_var, file = outfile, sep = "\t", quote = FALSE, row.names = FALSE, append = TRUE); | |
162 return(final_pvalue); | |
163 } | |
164 | |
165 ## execute | |
166 ## read in data | |
167 args <- commandArgs(trailingOnly = TRUE) | |
168 | |
169 data_test <- NULL; | |
170 data_test <- read.delim(args[1]); | |
171 | |
172 count <- ncol(data_test) | |
173 print(paste("The number of columns in the input file is: ", count)); | |
174 | |
175 # check if the number of motifs is not a multiple of 12, and round up is so | |
176 if (count %% 12 != 0) { | |
177 print("the number of motifs is not a multiple of 12") | |
178 count2 <- ceiling(count / 12); | |
179 }else{ | |
180 print("the number of motifs is a multiple of 12") | |
181 count2 <- count / 12 | |
182 } | |
183 print(paste("There will be", count2, "subfiles")) | |
184 | |
185 pdf(file = args[4], width = 11, height = 8); | |
186 | |
187 ## loop to read and execute on all count2 subfiles | |
188 final <- NULL; | |
189 for (x in seq_len(count2)) { | |
190 sub <- NULL; | |
191 sub_names <- NULL; | |
192 a <- NULL; | |
193 b <- NULL; | |
194 | |
195 a <- ((x - 1) * 12 + 1); | |
196 b <- x * 12; | |
197 | |
198 if (x < count2) { | |
199 sub <- data_test[, +c(a:b)]; | |
200 sub_names <- colnames(data_test)[a:b]; | |
201 final <- rbind(final, dwt_var_permut_get_max(sub, sub_names, args[2])); | |
202 } | |
203 else{ | |
204 sub <- data_test[, +c(a:ncol(data_test))]; | |
205 sub_names <- colnames(data_test)[a:ncol(data_test)]; | |
206 final <- rbind(final, dwt_var_permut_get_max(sub, sub_names, args[2])); | |
207 } | |
208 } | |
209 | |
210 dev.off(); | |
211 | |
212 write.table(final, file = args[3], sep = "\t", quote = FALSE, row.names = FALSE); |