Mercurial > repos > devteam > dwt_ivc_all
view execute_dwt_IvC_all.R @ 1:509993d9fdca draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/dwt_ivc_all commit f929353ffb0623f2218d7dec459c7da62f3b0d24"
author | devteam |
---|---|
date | Mon, 06 Jul 2020 18:12:29 +0000 |
parents | |
children |
line wrap: on
line source
########################################################################################### ## code to do wavelet Indel vs. Control ## signal is the difference I-C; function is second moment i.e. variance from zero not mean ## to perform wavelet transf. of signal, scale-by-scale analysis of the function ## create null bands by permuting the original data series ## generate plots and table matrix of correlation coefficients including p-values ############################################################################################ library("wavethresh"); library("waveslim"); options(echo = FALSE) ## normalize data norm <- function(data) { v <- (data - mean(data)) / sd(data); if (sum(is.na(v)) >= 1) { v <- data; } return(v); } dwt_cor <- function(data_short, names_short, data_long, names_long, test, pdf, table, filter = 4, bc = "symmetric", wf = "haar", boundary = "reflection") { print(test); print(pdf); print(table); pdf(file = pdf); final_pvalue <- NULL; title <- NULL; short_levels <- wavethresh::wd(data_short[, 1], filter.number = filter, bc = bc)$nlevels; title <- c("motif"); for (i in 1:short_levels) { title <- c(title, paste(i, "moment2", sep = "_"), paste(i, "pval", sep = "_"), paste(i, "test", sep = "_")); } print(title); ## loop to compare a vs a for (i in seq_len(length(names_short))) { wave1_dwt <- NULL; m2_dwt <- NULL; diff <- NULL; var_dwt <- NULL; out <- NULL; out <- vector(length = length(title)); print(names_short[i]); print(names_long[i]); ## need exit if not comparing motif(a) vs motif(a) if (names_short[i] != names_long[i]) { stop(paste("motif", names_short[i], "is not the same as", names_long[i], sep = " ")); } else { ## signal is the difference I-C data sets diff <- data_short[, i] - data_long[, i]; ## normalize the signal diff <- norm(diff); ## function is 2nd moment ## 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 wave1_dwt <- waveslim::dwt(diff, wf = wf, short_levels, boundary = boundary); var_dwt <- waveslim::wave.variance(wave1_dwt); m2_dwt <- vector(length = short_levels) for (level in 1:short_levels) { m2_dwt[level] <- var_dwt[level, 1] + (mean(diff)^2); } ## CI bands by permutation of time series feature1 <- NULL; feature2 <- NULL; feature1 <- data_short[, i]; feature2 <- data_long[, i]; null <- NULL; results <- NULL; med <- NULL; m2_25 <- NULL; m2_975 <- NULL; for (k in 1:1000) { nk_1 <- NULL; nk_2 <- NULL; m2_null <- NULL; var_null <- NULL; null_levels <- NULL; null_wave1 <- NULL; null_diff <- NULL; nk_1 <- sample(feature1, length(feature1), replace = FALSE); nk_2 <- sample(feature2, length(feature2), replace = FALSE); null_levels <- wavethresh::wd(nk_1, filter.number = filter, bc = bc)$nlevels; null_diff <- nk_1 - nk_2; null_diff <- norm(null_diff); null_wave1 <- waveslim::dwt(null_diff, wf = wf, short_levels, boundary = boundary); var_null <- waveslim::wave.variance(null_wave1); m2_null <- vector(length = null_levels); for (level in 1:null_levels) { m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2); } null <- rbind(null, m2_null); } null <- apply(null, 2, sort, na.last = TRUE); m2_25 <- null[25, ]; m2_975 <- null[975, ]; med <- apply(null, 2, median, na.rm = TRUE); ## plot results <- cbind(m2_dwt, m2_25, m2_975); matplot(results, type = "b", pch = "*", lty = 1, col = c(1, 2, 2), xlab = "Wavelet Scale", ylab = c("Wavelet 2nd Moment", test), main = (names_short[i]), cex.main = 0.75); abline(h = 1); ## get pvalues by comparison to null distribution out <- c(names_short[i]); for (m in seq_len(length(m2_dwt))) { print(paste("scale", m, sep = " ")); print(paste("m2", m2_dwt[m], sep = " ")); print(paste("median", med[m], sep = " ")); out <- c(out, format(m2_dwt[m], digits = 4)); pv <- NULL; if (is.na(m2_dwt[m])) { pv <- "NA"; } else { if (m2_dwt[m] >= med[m]) { ## R tail test tail <- "R"; pv <- (length(which(null[, m] >= m2_dwt[m]))) / (length(na.exclude(null[, m]))); } else{ if (m2_dwt[m] < med[m]) { ## L tail test tail <- "L"; pv <- (length(which(null[, m] <= m2_dwt[m]))) / (length(na.exclude(null[, m]))); } } } out <- c(out, pv); print(pv); out <- c(out, tail); } final_pvalue <- rbind(final_pvalue, out); print(out); } } colnames(final_pvalue) <- title; write.table(final_pvalue, file = table, sep = "\t", quote = FALSE, row.names = FALSE); dev.off(); } ## execute ## read in data args <- commandArgs(trailingOnly = TRUE) input_data <- read.delim(args[1]); input_data_names <- colnames(input_data); control_data <- read.delim(args[2]); control_data_names <- colnames(control_data); ## call the test function to implement IvC test dwt_cor(input_data, input_data_names, control_data, control_data_names, test = "IvC", pdf = args[3], table = args[4]); print("done with the correlation test");