Mercurial > repos > devteam > canonical_correlation_analysis
comparison cca.py @ 0:471fc9dfcc4e draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 11:00:09 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:471fc9dfcc4e |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import sys, string | |
4 from rpy import * | |
5 import numpy | |
6 | |
7 def stop_err(msg): | |
8 sys.stderr.write(msg) | |
9 sys.exit() | |
10 | |
11 infile = sys.argv[1] | |
12 x_cols = sys.argv[2].split(',') | |
13 y_cols = sys.argv[3].split(',') | |
14 | |
15 x_scale = x_center = "FALSE" | |
16 if sys.argv[4] == 'both': | |
17 x_scale = x_center = "TRUE" | |
18 elif sys.argv[4] == 'center': | |
19 x_center = "TRUE" | |
20 elif sys.argv[4] == 'scale': | |
21 x_scale = "TRUE" | |
22 | |
23 y_scale = y_center = "FALSE" | |
24 if sys.argv[5] == 'both': | |
25 y_scale = y_center = "TRUE" | |
26 elif sys.argv[5] == 'center': | |
27 y_center = "TRUE" | |
28 elif sys.argv[5] == 'scale': | |
29 y_scale = "TRUE" | |
30 | |
31 std_scores = "FALSE" | |
32 if sys.argv[6] == "yes": | |
33 std_scores = "TRUE" | |
34 | |
35 outfile = sys.argv[7] | |
36 outfile2 = sys.argv[8] | |
37 | |
38 fout = open(outfile,'w') | |
39 elems = [] | |
40 for i, line in enumerate( file ( infile )): | |
41 line = line.rstrip('\r\n') | |
42 if len( line )>0 and not line.startswith( '#' ): | |
43 elems = line.split( '\t' ) | |
44 break | |
45 if i == 30: | |
46 break # Hopefully we'll never get here... | |
47 | |
48 if len( elems )<1: | |
49 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
50 | |
51 x_vals = [] | |
52 | |
53 for k,col in enumerate(x_cols): | |
54 x_cols[k] = int(col)-1 | |
55 x_vals.append([]) | |
56 | |
57 y_vals = [] | |
58 | |
59 for k,col in enumerate(y_cols): | |
60 y_cols[k] = int(col)-1 | |
61 y_vals.append([]) | |
62 | |
63 skipped = 0 | |
64 for ind,line in enumerate( file( infile )): | |
65 if line and not line.startswith( '#' ): | |
66 try: | |
67 fields = line.strip().split("\t") | |
68 valid_line = True | |
69 for col in x_cols+y_cols: | |
70 try: | |
71 assert float(fields[col]) | |
72 except: | |
73 skipped += 1 | |
74 valid_line = False | |
75 break | |
76 if valid_line: | |
77 for k,col in enumerate(x_cols): | |
78 try: | |
79 xval = float(fields[col]) | |
80 except: | |
81 xval = NaN# | |
82 x_vals[k].append(xval) | |
83 for k,col in enumerate(y_cols): | |
84 try: | |
85 yval = float(fields[col]) | |
86 except: | |
87 yval = NaN# | |
88 y_vals[k].append(yval) | |
89 except: | |
90 skipped += 1 | |
91 | |
92 x_vals1 = numpy.asarray(x_vals).transpose() | |
93 y_vals1 = numpy.asarray(y_vals).transpose() | |
94 | |
95 x_dat= r.list(array(x_vals1)) | |
96 y_dat= r.list(array(y_vals1)) | |
97 | |
98 try: | |
99 r.suppressWarnings(r.library("yacca")) | |
100 except: | |
101 stop_err("Missing R library yacca.") | |
102 | |
103 set_default_mode(NO_CONVERSION) | |
104 try: | |
105 xcolnames = ["c%d" %(el+1) for el in x_cols] | |
106 ycolnames = ["c%d" %(el+1) for el in y_cols] | |
107 cc = r.cca(x=x_dat, y=y_dat, xlab=xcolnames, ylab=ycolnames, xcenter=r(x_center), ycenter=r(y_center), xscale=r(x_scale), yscale=r(y_scale), standardize_scores=r(std_scores)) | |
108 ftest = r.F_test_cca(cc) | |
109 except RException, rex: | |
110 stop_err("Encountered error while performing CCA on the input data: %s" %(rex)) | |
111 | |
112 set_default_mode(BASIC_CONVERSION) | |
113 summary = r.summary(cc) | |
114 | |
115 ncomps = len(summary['corr']) | |
116 comps = summary['corr'].keys() | |
117 corr = summary['corr'].values() | |
118 xlab = summary['xlab'] | |
119 ylab = summary['ylab'] | |
120 | |
121 for i in range(ncomps): | |
122 corr[comps.index('CV %s' %(i+1))] = summary['corr'].values()[i] | |
123 | |
124 ftest=ftest.as_py() | |
125 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
126 print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in corr])) | |
127 print >>fout, "#F-statistic\t%s" %("\t".join(["%.4g" % el for el in ftest['statistic']])) | |
128 print >>fout, "#p-value\t%s" %("\t".join(["%.4g" % el for el in ftest['p.value']])) | |
129 | |
130 print >>fout, "#X-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
131 for i,val in enumerate(summary['xcoef']): | |
132 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
133 | |
134 print >>fout, "#Y-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
135 for i,val in enumerate(summary['ycoef']): | |
136 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
137 | |
138 print >>fout, "#X-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
139 for i,val in enumerate(summary['xstructcorr']): | |
140 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
141 | |
142 print >>fout, "#Y-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
143 for i,val in enumerate(summary['ystructcorr']): | |
144 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
145 | |
146 print >>fout, "#X-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
147 for i,val in enumerate(summary['xcrosscorr']): | |
148 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
149 | |
150 print >>fout, "#Y-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
151 for i,val in enumerate(summary['ycrosscorr']): | |
152 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
153 | |
154 r.pdf( outfile2, 8, 8 ) | |
155 #r.plot(cc) | |
156 for i in range(ncomps): | |
157 r.helio_plot(cc, cv = i+1, main = r.paste("Explained Variance for CV",i+1), type = "variance") | |
158 r.dev_off() |