Mercurial > repos > deepakjadmin > r_caret_test1
comparison caret_future/tool2/templateLibrary.py.orig @ 0:a4a2ad5a214e draft default tip
Uploaded
author | deepakjadmin |
---|---|
date | Thu, 05 Nov 2015 02:37:56 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a4a2ad5a214e |
---|---|
1 def __template4Rnw(): | |
2 | |
3 template4Rnw = r'''%% Classification Modeling Script | |
4 %% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com) | |
5 %% Version: 1.00 | |
6 %% Created on: 2010/10/02 | |
7 %% | |
8 %% This is an Sweave template for building and describing | |
9 %% classification models. It mixes R and LaTeX code. The document can | |
10 %% be processing using R's Sweave function to produce a tex file. | |
11 %% | |
12 %% The inputs are: | |
13 %% - the initial data set in a data frame called 'rawData' | |
14 %% - a factor column in the data set called 'class'. this should be the | |
15 %% outcome variable | |
16 %% - all other columns in rawData should be predictor variables | |
17 %% - the type of model should be in a variable called 'modName'. | |
18 %% | |
19 %% The script attempts to make some intelligent choices based on the | |
20 %% model being used. For example, if modName is "pls", the script will | |
21 %% automatically center and scale the predictor data. There are | |
22 %% situations where these choices can (and should be) changed. | |
23 %% | |
24 %% There are other options that may make sense to change. For example, | |
25 %% the user may want to adjust the type of resampling. To find these | |
26 %% parts of the script, search on the string 'OPTION'. These parts of | |
27 %% the code will document the options. | |
28 | |
29 \documentclass[14pt]{report} | |
30 \usepackage{amsmath} | |
31 \usepackage[pdftex]{graphicx} | |
32 \usepackage{color} | |
33 \usepackage{ctable} | |
34 \usepackage{xspace} | |
35 \usepackage{fancyvrb} | |
36 \usepackage{fancyhdr} | |
37 \usepackage{lastpage} | |
38 \usepackage{longtable} | |
39 \usepackage{algorithm2e} | |
40 \usepackage[ | |
41 colorlinks=true, | |
42 linkcolor=blue, | |
43 citecolor=blue, | |
44 urlcolor=blue] | |
45 {hyperref} | |
46 \usepackage{lscape} | |
47 \usepackage{Sweave} | |
48 \SweaveOpts{keep.source = TRUE} | |
49 | |
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
51 | |
52 % define new colors for use | |
53 \definecolor{darkgreen}{rgb}{0,0.6,0} | |
54 \definecolor{darkred}{rgb}{0.6,0.0,0} | |
55 \definecolor{lightbrown}{rgb}{1,0.9,0.8} | |
56 \definecolor{brown}{rgb}{0.6,0.3,0.3} | |
57 \definecolor{darkblue}{rgb}{0,0,0.8} | |
58 \definecolor{darkmagenta}{rgb}{0.5,0,0.5} | |
59 | |
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
61 | |
62 \newcommand{\bld}[1]{\mbox{\boldmath $$#1$$}} | |
63 \newcommand{\shell}[1]{\mbox{$$#1$$}} | |
64 \renewcommand{\vec}[1]{\mbox{\bf {#1}}} | |
65 | |
66 \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} | |
67 \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} | |
68 | |
69 \newcommand{\halfs}{\frac{1}{2}} | |
70 | |
71 \setlength{\oddsidemargin}{-.25 truein} | |
72 \setlength{\evensidemargin}{0truein} | |
73 \setlength{\topmargin}{-0.2truein} | |
74 \setlength{\textwidth}{7 truein} | |
75 \setlength{\textheight}{8.5 truein} | |
76 \setlength{\parindent}{0.20truein} | |
77 \setlength{\parskip}{0.10truein} | |
78 | |
79 \setcounter{LTchunksize}{50} | |
80 | |
81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
82 \pagestyle{fancy} | |
83 \lhead{} | |
84 %% OPTION Report header name | |
85 \chead{Classification Model Script} | |
86 \rhead{} | |
87 \lfoot{} | |
88 \cfoot{} | |
89 \rfoot{\thepage\ of \pageref{LastPage}} | |
90 \renewcommand{\headrulewidth}{1pt} | |
91 \renewcommand{\footrulewidth}{1pt} | |
92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
93 | |
94 %% OPTION Report title and modeler name | |
95 \title{Classification Model Script using $METHOD} | |
96 \author{"Lynn Group with M. Kuhn, SCIS, JNU, New Delhi"} | |
97 | |
98 \begin{document} | |
99 | |
100 \maketitle | |
101 | |
102 \thispagestyle{empty} | |
103 <<dummy, eval=TRUE, echo=FALSE, results=hide>>= | |
104 # sets values for variables used later in the program to prevent the \Sexpr error on parsing with Sweave | |
105 numSamples='' | |
106 classDistString='' | |
107 missingText='' | |
108 numPredictors='' | |
109 numPCAcomp='' | |
110 pcaText='' | |
111 nzvText='' | |
112 corrText='' | |
113 ppText='' | |
114 varText='' | |
115 splitText="Dummy Text" | |
116 nirText="Dummy Text" | |
117 # pctTrain is a variable that is initialised in Data splitting, and reused later in testPred | |
118 pctTrain=0.8 | |
119 Smpling='' | |
120 nzvText1='' | |
121 classDistString1='' | |
122 dwnsmpl='' | |
123 upsmpl='' | |
124 | |
125 @ | |
126 <<startup, eval= TRUE, results = hide, echo = FALSE>>= | |
127 library(Hmisc) | |
128 library(caret) | |
129 library(pROC) | |
130 versionTest <- compareVersion(packageDescription("caret")$$Version, | |
131 "4.65") | |
132 if(versionTest < 0) stop("caret version 4.65 or later is required") | |
133 | |
134 library(RColorBrewer) | |
135 | |
136 | |
137 listString <- function (x, period = FALSE, verbose = FALSE) | |
138 { | |
139 if (verbose) cat("\n entering listString\n") | |
140 flush.console() | |
141 if (!is.character(x)) | |
142 x <- as.character(x) | |
143 numElements <- length(x) | |
144 out <- if (length(x) > 0) { | |
145 switch(min(numElements, 3), x, paste(x, collapse = " and "), | |
146 { | |
147 x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "") | |
148 paste(x, collapse = " ") | |
149 }) | |
150 } | |
151 else "" | |
152 if (period) out <- paste(out, ".", sep = "") | |
153 if (verbose) cat(" leaving listString\n\n") | |
154 flush.console() | |
155 out | |
156 } | |
157 | |
158 resampleStats <- function(x, digits = 3) | |
159 { | |
160 bestPerf <- x$$bestTune | |
161 colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf)) | |
162 out <- merge(x$$results, bestPerf) | |
163 out <- out[, colnames(out) %in% x$$perfNames] | |
164 names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = TRUE) | |
165 names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE) | |
166 names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE) | |
167 names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = TRUE) | |
168 names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE) | |
169 | |
170 out <- format(out, digits = digits) | |
171 listString(paste(names(out), "was", out)) | |
172 } | |
173 | |
174 twoClassNoProbs <- function (data, lev = NULL, model = NULL) | |
175 { | |
176 out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]), | |
177 specificity(data[, "pred"], data[, "obs"], lev[2]), | |
178 confusionMatrix(data[, "pred"], data[, "obs"])$$overall["Kappa"]) | |
179 | |
180 names(out) <- c("Sens", "Spec", "Kappa") | |
181 out | |
182 } | |
183 | |
184 | |
185 | |
186 ##OPTION: model name: see ?train for more values/models | |
187 modName <- "$METHOD" | |
188 | |
189 | |
190 load("$RDATA") | |
191 rawData <- dataX | |
192 rawData$$outcome <- dataY | |
193 | |
194 @ | |
195 | |
196 | |
197 \section*{Data Sets}\label{S:data} | |
198 | |
199 %% OPTION: provide some background on the problem, the experimental | |
200 %% data, how the compounds were selected etc | |
201 | |
202 <<getDataInfo, eval = $GETDATAINFOEVAL, echo = $GETDATAINFOECHO, results = $GETDATAINFORESULT>>= | |
203 if(!any(names(rawData) == "outcome")) stop("a variable called outcome should be in the data set") | |
204 if(!is.factor(rawData$$outcome)) stop("the outcome should be a factor vector") | |
205 | |
206 ## OPTION: when there are only two classes, the first level of the | |
207 ## factor is used as the "positive" or "event" for calculating | |
208 ## sensitivity and specificity. Adjust the outcome factor accordingly. | |
209 numClasses <- length(levels(rawData$$outcome)) | |
210 numSamples <- nrow(rawData) | |
211 numPredictors <- ncol(rawData) - 1 | |
212 predictorNames <- names(rawData)[names(rawData) != "outcome"] | |
213 | |
214 isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric) | |
215 if(any(!isNum)) stop("all predictors in rawData should be numeric") | |
216 | |
217 classTextCheck <- all.equal(levels(rawData$$outcome), make.names(levels(rawData$$outcome))) | |
218 if(!classTextCheck) warning("the class levels are not valid R variable names; this may cause errors") | |
219 | |
220 ## Get the class distribution | |
221 classDist <- table(rawData$$outcome) | |
222 classDistString <- paste("``", | |
223 names(classDist), | |
224 "'' ($$n$$=", | |
225 classDist, | |
226 ")", | |
227 sep = "") | |
228 classDistString <- listString(classDistString) | |
229 @ | |
230 | |
231 <<missingFilter, eval = $MISSINGFILTEREVAL, echo = $MISSINGFILTERECHO, results = $MISSINGFILTERRESULT>>= | |
232 colRate <- apply(rawData[, predictorNames, drop = FALSE], | |
233 2, function(x) mean(is.na(x))) | |
234 | |
235 ##OPTION thresholds can be changed | |
236 colExclude <- colRate > $MISSINGFILTERTHRESHC | |
237 | |
238 missingText <- "" | |
239 | |
240 if(any(colExclude)) | |
241 { | |
242 missingText <- paste(missingText, | |
243 ifelse(sum(colExclude) > 1, | |
244 " There were ", | |
245 " There was "), | |
246 sum(colExclude), | |
247 ifelse(sum(colExclude) > 1, | |
248 " predictors ", | |
249 " predictor "), | |
250 "with an excessive number of ", | |
251 "missing data. ", | |
252 ifelse(sum(colExclude) > 1, | |
253 " These were excluded. ", | |
254 " This was excluded. ")) | |
255 predictorNames <- predictorNames[!colExclude] | |
256 rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), drop = FALSE] | |
257 } | |
258 | |
259 | |
260 rowRate <- apply(rawData[, predictorNames, drop = FALSE], | |
261 1, function(x) mean(is.na(x))) | |
262 | |
263 rowExclude <- rowRate > $MISSINGFILTERTHRESHR | |
264 | |
265 | |
266 if(any(rowExclude)) { | |
267 missingText <- paste(missingText, | |
268 ifelse(sum(rowExclude) > 1, | |
269 " There were ", | |
270 " There was "), | |
271 sum(colExclude), | |
272 ifelse(sum(rowExclude) > 1, | |
273 " samples ", | |
274 " sample "), | |
275 "with an excessive number of ", | |
276 "missing data. ", | |
277 ifelse(sum(rowExclude) > 1, | |
278 " These were excluded. ", | |
279 " This was excluded. "), | |
280 "After filtering, ", | |
281 sum(!rowExclude), | |
282 " samples remained.") | |
283 rawData <- rawData[!rowExclude, ] | |
284 hasMissing <- apply(rawData[, predictorNames, drop = FALSE], | |
285 1, function(x) mean(is.na(x))) | |
286 } else { | |
287 hasMissing <- apply(rawData[, predictorNames, drop = FALSE], | |
288 1, function(x) any(is.na(x))) | |
289 missingText <- paste(missingText, | |
290 ifelse(missingText == "", | |
291 "There ", | |
292 "Subsequently, there "), | |
293 ifelse(sum(hasMissing) == 1, | |
294 "was ", | |
295 "were "), | |
296 ifelse(sum(hasMissing) > 0, | |
297 sum(hasMissing), | |
298 "no"), | |
299 ifelse(sum(hasMissing) == 1, | |
300 "sample ", | |
301 "samples "), | |
302 "with missing values.") | |
303 | |
304 rawData <- rawData[complete.cases(rawData),] | |
305 | |
306 } | |
307 | |
308 rawData1 <- rawData[,1:length(rawData)-1] | |
309 rawData2 <- rawData[,length(rawData)] | |
310 | |
311 set.seed(222) | |
312 nzv1 <- nearZeroVar(rawData1) | |
313 if(length(nzv1) > 0) | |
314 { | |
315 nzvVars1 <- names(rawData1)[nzv1] | |
316 rawData <- rawData1[, -nzv1] | |
317 rawData$outcome <- rawData2 | |
318 nzvText1 <- paste("There were ", | |
319 length(nzv1), | |
320 " predictors that were removed from original data due to", | |
321 " severely unbalanced distributions that", | |
322 " could negatively affect the model fit", | |
323 ifelse(length(nzv1) > 10, | |
324 ".", | |
325 paste(": ", | |
326 listString(nzvVars1), | |
327 ".", | |
328 sep = "")), | |
329 sep = "") | |
330 | |
331 } else { | |
332 rawData <- rawData1 | |
333 rawData$outcome <- rawData2 | |
334 nzvText1 <- "" | |
335 | |
336 } | |
337 | |
338 remove("rawData1") | |
339 remove("rawData2") | |
340 | |
341 @ | |
342 | |
343 The initial data set consisted of \Sexpr{numSamples} samples and | |
344 \Sexpr{numPredictors} predictor variables. The breakdown of the | |
345 outcome data classes were: \Sexpr{classDistString}. | |
346 | |
347 \Sexpr{missingText} | |
348 | |
349 \Sexpr{nzvText1} | |
350 | |
351 <<pca, eval= $PCAEVAL, echo = $PCAECHO, results = $PCARESULT>>= | |
352 | |
353 predictorNames <- names(rawData)[names(rawData) != "outcome"] | |
354 numPredictors <- length(predictorNames) | |
355 predictors <- rawData[, predictorNames, drop = FALSE] | |
356 ## PCA will fail with predictors having less than 2 unique values | |
357 isZeroVar <- apply(predictors, 2, | |
358 function(x) length(unique(x)) < 2) | |
359 if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE] | |
360 ## For whatever, only the formula interface to prcomp | |
361 ## handles missing values | |
362 pcaForm <- as.formula( | |
363 paste("~", | |
364 paste(names(predictors), collapse = "+"))) | |
365 pca <- prcomp(pcaForm, | |
366 data = predictors, | |
367 center = TRUE, | |
368 scale. = TRUE, | |
369 na.action = na.omit) | |
370 ## OPTION: the number of components plotted/discussed can be set | |
371 numPCAcomp <- $PCACOMP | |
372 pctVar <- pca$$sdev^2/sum(pca$$sdev^2)*100 | |
373 pcaText <- paste(round(pctVar[1:numPCAcomp], 1), | |
374 "\\\\%", | |
375 sep = "") | |
376 pcaText <- listString(pcaText) | |
377 @ | |
378 | |
379 To get an initial assessment of the separability of the classes, | |
380 principal component analysis (PCA) was used to distill the | |
381 \Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp} | |
382 surrogate variables (i.e. the principal components) in a manner that | |
383 attempts to maximize the amount of information preserved from the | |
384 original predictor set. Figure \ref{F:inititalPCA} contains plots of | |
385 the first \Sexpr{numPCAcomp} components, which accounted for | |
386 \Sexpr{pcaText} percent of the variability in the original predictors | |
387 (respectively). | |
388 | |
389 | |
390 %% OPTION: remark on how well (or poorly) the data separated | |
391 | |
392 \setkeys{Gin}{width = 0.8\textwidth} | |
393 \begin{figure}[p] | |
394 \begin{center} | |
395 | |
396 <<pcaPlot, eval = $PCAPLOTEVAL, echo = $PCAPLOTECHO, results = $PCAPLOTRESULT, fig = $PCAPLOTFIG, width = 8, height = 8>>= | |
397 trellis.par.set(caretTheme(), warn = TRUE) | |
398 if(numPCAcomp == 2) | |
399 { | |
400 axisRange <- extendrange(pca$$x[, 1:2]) | |
401 print( | |
402 xyplot(PC1 ~ PC2, | |
403 data = as.data.frame(pca$$x), | |
404 type = c("p", "g"), | |
405 groups = rawData$$outcome, | |
406 auto.key = list(columns = 2), | |
407 xlim = axisRange, | |
408 ylim = axisRange)) | |
409 } else { | |
410 axisRange <- extendrange(pca$$x[, 1:numPCAcomp]) | |
411 print( | |
412 splom(~as.data.frame(pca$$x)[, 1:numPCAcomp], | |
413 type = c("p", "g"), | |
414 groups = rawData$$outcome, | |
415 auto.key = list(columns = 2), | |
416 as.table = TRUE, | |
417 prepanel.limits = function(x) axisRange | |
418 )) | |
419 | |
420 } | |
421 | |
422 @ | |
423 | |
424 \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp} | |
425 principal components for the original data set.} | |
426 \label{F:inititalPCA} | |
427 \end{center} | |
428 \end{figure} | |
429 | |
430 | |
431 | |
432 <<initialDataSplit, eval = $INITIALDATASPLITEVAL, echo = $INITIALDATASPLITECHO, results = $INITIALDATASPLITRESULT>>= | |
433 | |
434 ## OPTION: in small samples sizes, you may not want to set aside a | |
435 ## training set and focus on the resampling results. | |
436 | |
437 set.seed(1234) | |
438 dataX <- rawData[,1:length(rawData)-1] | |
439 dataY <- rawData[,length(rawData)] | |
440 | |
441 Smpling <- "$SAAMPLING" | |
442 | |
443 if(Smpling=="downsampling") | |
444 { | |
445 dwnsmpl <- downSample(dataX,dataY) | |
446 rawData <- dwnsmpl[,1:length(dwnsmpl)-1] | |
447 rawData$outcome <- dwnsmpl[,length(dwnsmpl)] | |
448 remove("dwnsmpl") | |
449 remove("dataX") | |
450 remove("dataY") | |
451 }else if(Smpling=="upsampling"){ | |
452 upsmpl <- upSample(dataX,dataY) | |
453 rawData <- upsmpl[,1:length(upsmpl)-1] | |
454 rawData$outcome <- upsmpl[,length(upsmpl)] | |
455 remove("upsmpl") | |
456 remove("dataX") | |
457 remove("dataY") | |
458 }else{remove("dataX") | |
459 remove("dataY") | |
460 } | |
461 | |
462 | |
463 | |
464 numSamples <- nrow(rawData) | |
465 | |
466 predictorNames <- names(rawData)[names(rawData) != "outcome"] | |
467 numPredictors <- length(predictorNames) | |
468 | |
469 | |
470 classDist1 <- table(rawData$outcome) | |
471 classDistString1 <- paste("``", | |
472 names(classDist1), | |
473 "'' ($n$=", | |
474 classDist1, | |
475 ")", | |
476 sep = "") | |
477 classDistString1 <- listString(classDistString1) | |
478 | |
479 pctTrain <- $PERCENT | |
480 | |
481 if(pctTrain < 1) | |
482 { | |
483 ## OPTION: seed number can be changed | |
484 set.seed(1) | |
485 inTrain <- createDataPartition(rawData$$outcome, | |
486 p = pctTrain, | |
487 list = FALSE) | |
488 trainX <- rawData[ inTrain, predictorNames] | |
489 testX <- rawData[-inTrain, predictorNames] | |
490 trainY <- rawData[ inTrain, "outcome"] | |
491 testY <- rawData[-inTrain, "outcome"] | |
492 splitText <- paste("The original data were split into ", | |
493 "a training set ($$n$$=", | |
494 nrow(trainX), | |
495 ") and a test set ($$n$$=", | |
496 nrow(testX), | |
497 ") in a manner that preserved the ", | |
498 "distribution of the classes.", | |
499 sep = "") | |
500 isZeroVar <- apply(trainX, 2, | |
501 function(x) length(unique(x)) < 2) | |
502 if(any(isZeroVar)) | |
503 { | |
504 trainX <- trainX[, !isZeroVar, drop = FALSE] | |
505 testX <- testX[, !isZeroVar, drop = FALSE] | |
506 } | |
507 | |
508 } else { | |
509 trainX <- rawData[, predictorNames] | |
510 testX <- NULL | |
511 trainY <- rawData[, "outcome"] | |
512 testY <- NULL | |
513 splitText <- "The entire data set was used as the training set." | |
514 } | |
515 trainDist <- table(trainY) | |
516 nir <- max(trainDist)/length(trainY)*100 | |
517 niClass <- names(trainDist)[which.max(trainDist)] | |
518 nirText <- paste("The non--information rate is the accuracy that can be ", | |
519 "achieved by predicting all samples using the most ", | |
520 "dominant class. For these data, the rate is ", | |
521 round(nir, 2), "\\\\% using the ``", | |
522 niClass, | |
523 "'' class.", | |
524 sep = "") | |
525 | |
526 remove("rawData") | |
527 | |
528 @ | |
529 | |
530 \Sexpr{splitText} | |
531 | |
532 \Sexpr{nirText} | |
533 | |
534 The data set for model building consisted of \Sexpr{numSamples} samples and | |
535 \Sexpr{numPredictors} predictor variables. The breakdown of the | |
536 outcome data classes were: \Sexpr{classDistString1}. | |
537 | |
538 <<nzv, eval= $NZVEVAL, results = $NZVRESULT, echo = $NZVECHO>>= | |
539 ## OPTION: other pre-processing steps can be used | |
540 ppSteps <- caret:::suggestions(modName) | |
541 | |
542 set.seed(2) | |
543 if(ppSteps["nzv"]) | |
544 { | |
545 nzv <- nearZeroVar(trainX) | |
546 if(length(nzv) > 0) | |
547 { | |
548 nzvVars <- names(trainX)[nzv] | |
549 trainX <- trainX[, -nzv] | |
550 nzvText <- paste("There were ", | |
551 length(nzv), | |
552 " predictors that were removed from train set due to", | |
553 " severely unbalanced distributions that", | |
554 " could negatively affect the model", | |
555 ifelse(length(nzv) > 10, | |
556 ".", | |
557 paste(": ", | |
558 listString(nzvVars), | |
559 ".", | |
560 sep = "")), | |
561 sep = "") | |
562 testX <- testX[, -nzv] | |
563 } else nzvText <- "" | |
564 } else nzvText <- "" | |
565 @ | |
566 | |
567 \Sexpr{nzvText} | |
568 | |
569 | |
570 <<corrFilter, eval = $CORRFILTEREVAL, results = $CORRFILTERRESULT, echo = $CORRFILTERECHO>>= | |
571 if(ppSteps["corr"]) | |
572 { | |
573 ## OPTION: | |
574 corrThresh <- $THRESHHOLDCOR | |
575 highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"), | |
576 corrThresh) | |
577 if(length(highCorr) > 0) | |
578 { | |
579 corrVars <- names(trainX)[highCorr] | |
580 trainX <- trainX[, -highCorr] | |
581 corrText <- paste("There were ", | |
582 length(highCorr), | |
583 " predictors that were removed due to", | |
584 " large between--predictor correlations that", | |
585 " could negatively affect the model fit", | |
586 ifelse(length(highCorr) > 10, | |
587 ".", | |
588 paste(": ", | |
589 listString(highCorr), | |
590 ".", | |
591 sep = "")), | |
592 " Removing these predictors forced", | |
593 " all pair--wise correlations to be", | |
594 " less than ", | |
595 corrThresh, | |
596 ".", | |
597 sep = "") | |
598 testX <- testX[, -highCorr] | |
599 } else corrText <- "No correlation among data on given threshold" | |
600 }else corrText <- "" | |
601 @ | |
602 | |
603 \Sexpr{corrText} | |
604 | |
605 <<preProc, eval = $PREPROCEVAL, echo = $PREPROCECHO, results = $PREPROCRESULT>>= | |
606 ppMethods <- NULL | |
607 if(ppSteps["center"]) ppMethods <- c(ppMethods, "center") | |
608 if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale") | |
609 if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute") | |
610 ##OPTION other methods, such as spatial sign, can be added to this list | |
611 | |
612 if(length(ppMethods) > 0) | |
613 { | |
614 ppInfo <- preProcess(trainX, method = ppMethods) | |
615 trainX <- predict(ppInfo, trainX) | |
616 if(pctTrain < 1) testX <- predict(ppInfo, testX) | |
617 ppText <- paste("The following pre--processing methods were", | |
618 " applied to the training", | |
619 ifelse(pctTrain < 1, " and test", ""), | |
620 " data: ", | |
621 listString(ppMethods), | |
622 ".", | |
623 sep = "") | |
624 ppText <- gsub("center", "mean centering", ppText) | |
625 ppText <- gsub("scale", "scaling to unit variance", ppText) | |
626 ppText <- gsub("knnImpute", | |
627 paste(ppInfo$$k, "--nearest neighbor imputation", sep = ""), | |
628 ppText) | |
629 ppText <- gsub("spatialSign", "the spatial sign transformation", ppText) | |
630 ppText <- gsub("pca", "principal component feature extraction", ppText) | |
631 ppText <- gsub("ica", "independent component feature extraction", ppText) | |
632 } else { | |
633 ppInfo <- NULL | |
634 ppText <- "" | |
635 } | |
636 | |
637 predictorNames <- names(trainX) | |
638 if(nzvText != "" | corrText != "" | ppText != "") | |
639 { | |
640 varText <- paste("After pre--processing, ", | |
641 ncol(trainX), | |
642 "predictors remained for modeling.") | |
643 } else varText <- "" | |
644 | |
645 @ | |
646 | |
647 \Sexpr{ppText} | |
648 \Sexpr{varText} | |
649 | |
650 \clearpage | |
651 | |
652 \section*{Model Building} | |
653 | |
654 <<setupWorkers, eval = TRUE, echo = $SETUPWORKERSECHO, results = $SETUPWORKERSRESULT>>= | |
655 numWorkers <- $NUMWORKERS | |
656 ##OPTION: turn up numWorkers to use MPI | |
657 if(numWorkers > 1) | |
658 { | |
659 mpiCalcs <- function(X, FUN, ...) | |
660 { | |
661 theDots <- list(...) | |
662 parLapply(theDots$$cl, X, FUN) | |
663 } | |
664 | |
665 library(snow) | |
666 cl <- makeCluster(numWorkers, "MPI") | |
667 } | |
668 @ | |
669 | |
670 <<setupResampling, echo = $SETUPRESAMPLINGECHO, results = $SETUPRESAMPLINGRESULT>>= | |
671 ##OPTION: the resampling options can be changed. See | |
672 ## ?trainControl for details | |
673 | |
674 resampName <- "$RESAMPNAME" | |
675 resampNumber <- $RESAMPLENUMBER | |
676 numRepeat <- $NUMREPEAT | |
677 resampP <- $RESAMPLENUMBERPERCENT | |
678 | |
679 modelInfo <- modelLookup(modName) | |
680 | |
681 if(numClasses == 2) | |
682 { | |
683 foo <- if(any(modelInfo$$probModel)) twoClassSummary else twoClassNoProbs | |
684 } else foo <- defaultSummary | |
685 | |
686 set.seed(3) | |
687 ctlObj <- trainControl(method = resampName, | |
688 number = resampNumber, | |
689 repeats = numRepeat, | |
690 p = resampP, | |
691 classProbs = any(modelInfo$$probModel), | |
692 summaryFunction = foo) | |
693 | |
694 | |
695 ##OPTION select other performance metrics as needed | |
696 optMetric <- if(numClasses == 2 & any(modelInfo$$probModel)) "ROC" else "Kappa" | |
697 | |
698 if(numWorkers > 1) | |
699 { | |
700 ctlObj$$workers <- numWorkers | |
701 ctlObj$$computeFunction <- mpiCalcs | |
702 ctlObj$$computeArgs <- list(cl = cl) | |
703 } | |
704 @ | |
705 | |
706 <<setupGrid, results = $SETUPGRIDRESULT, echo = $SETUPGRIDECHO>>= | |
707 ##OPTION expand or contract these grids as needed (or | |
708 ## add more models | |
709 | |
710 gridSize <- $SETUPGRIDSIZE | |
711 | |
712 if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "lvq", "ctree2", "ctree")) gridSize <- 5 | |
713 if(modName %in% c("earth", "fda")) gridSize <- 7 | |
714 if(modName %in% c("knn", "rocc", "glmboost", "rf", "nodeHarvest")) gridSize <- 10 | |
715 | |
716 if(modName %in% c("nb")) gridSize <- 2 | |
717 if(modName %in% c("pam", "rpart")) gridSize <- 15 | |
718 if(modName %in% c("pls")) gridSize <- min(20, ncol(trainX)) | |
719 | |
720 if(modName == "gbm") | |
721 { | |
722 tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 , | |
723 .n.trees = (1:10)*20, | |
724 .shrinkage = .1) | |
725 } | |
726 | |
727 if(modName == "nnet") | |
728 { | |
729 tGrid <- expand.grid(.size = -1 + (1:5)*2 , | |
730 .decay = c(0, .001, .01, .1)) | |
731 } | |
732 | |
733 if(modName == "ada") | |
734 { | |
735 tGrid <- expand.grid(.maxdepth = 1, .iter = c(100,200,300,400), .nu = 1 ) | |
736 | |
737 } | |
738 | |
739 | |
740 @ | |
741 | |
742 <<fitModel, results = $FITMODELRESULT, echo = $FITMODELECHO, eval = $FITMODELEVAL>>= | |
743 ##OPTION alter as needed | |
744 | |
745 set.seed(4) | |
746 modelFit <- switch(modName, | |
747 gbm = | |
748 { | |
749 mix <- sample(seq(along = trainY)) | |
750 train( | |
751 trainX[mix,], trainY[mix], modName, | |
752 verbose = FALSE, | |
753 bag.fraction = .9, | |
754 metric = optMetric, | |
755 trControl = ctlObj, | |
756 tuneGrid = tGrid) | |
757 }, | |
758 | |
759 multinom = | |
760 { | |
761 train( | |
762 trainX, trainY, modName, | |
763 trace = FALSE, | |
764 metric = optMetric, | |
765 maxiter = 1000, | |
766 MaxNWts = 5000, | |
767 trControl = ctlObj, | |
768 tuneLength = gridSize) | |
769 }, | |
770 | |
771 nnet = | |
772 { | |
773 train( | |
774 trainX, trainY, modName, | |
775 metric = optMetric, | |
776 linout = FALSE, | |
777 trace = FALSE, | |
778 maxiter = 1000, | |
779 MaxNWts = 5000, | |
780 trControl = ctlObj, | |
781 tuneGrid = tGrid) | |
782 | |
783 }, | |
784 | |
785 svmRadial =, svmPoly =, svmLinear = | |
786 { | |
787 train( | |
788 trainX, trainY, modName, | |
789 metric = optMetric, | |
790 scaled = TRUE, | |
791 trControl = ctlObj, | |
792 tuneLength = gridSize) | |
793 }, | |
794 { | |
795 train(trainX, trainY, modName, | |
796 trControl = ctlObj, | |
797 metric = optMetric, | |
798 tuneLength = gridSize) | |
799 }) | |
800 | |
801 @ | |
802 | |
803 <<modelDescr, echo = $MODELDESCRECHO, results = $MODELDESCRRESULT>>= | |
804 summaryText <- "" | |
805 | |
806 resampleName <- switch(tolower(modelFit$$control$$method), | |
807 boot = paste("the bootstrap (", length(modelFit$$control$$index), " reps)", sep = ""), | |
808 boot632 = paste("the bootstrap 632 rule (", length(modelFit$$control$$index), " reps)", sep = ""), | |
809 cv = paste("cross-validation (", modelFit$$control$$number, " fold)", sep = ""), | |
810 repeatedcv = paste("cross-validation (", modelFit$$control$$number, " fold, repeated ", | |
811 modelFit$$control$$repeats, " times)", sep = ""), | |
812 lgocv = paste("repeated train/test splits (", length(modelFit$$control$$index), " reps, ", | |
813 round(modelFit$$control$$p, 2), "$$\\%$$)", sep = "")) | |
814 | |
815 tuneVars <- latexTranslate(tolower(modelInfo$$label)) | |
816 tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE) | |
817 if(ncol(modelFit$$bestTune) == 1 && colnames(modelFit$$bestTune) == ".parameter") | |
818 { | |
819 summaryText <- paste(summaryText, | |
820 "\n\n", | |
821 "There are no tuning parameters associated with this model.", | |
822 "To characterize the model performance on the training set,", | |
823 resampleName, | |
824 "was used.", | |
825 "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile}", | |
826 "show summaries of the resampling results. ") | |
827 | |
828 } else { | |
829 summaryText <- paste("There", | |
830 ifelse(nrow(modelInfo) > 1, "are", "is"), | |
831 nrow(modelInfo), | |
832 ifelse(nrow(modelInfo) > 1, "tuning parameters", "tuning parameter"), | |
833 "associated with this model:", | |
834 listString(tuneVars, period = TRUE)) | |
835 | |
836 | |
837 | |
838 paramNames <- gsub(".", "", names(modelFit$$bestTune), fixed = TRUE) | |
839 for(i in seq(along = paramNames)) | |
840 { | |
841 check <- modelInfo$$parameter %in% paramNames[i] | |
842 if(any(check)) | |
843 { | |
844 paramNames[i] <- modelInfo$$label[which(check)] | |
845 } | |
846 } | |
847 | |
848 paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE) | |
849 ## Check to see if there was only one combination fit | |
850 summaryText <- paste(summaryText, | |
851 "To choose", | |
852 ifelse(nrow(modelInfo) > 1, | |
853 "appropriate values of the tuning parameters,", | |
854 "an appropriate value of the tuning parameter,"), | |
855 resampleName, | |
856 "was used to generated a profile of performance across the", | |
857 nrow(modelFit$$results), | |
858 ifelse(nrow(modelInfo) > 1, | |
859 "combinations of the tuning parameters.", | |
860 "candidate values."), | |
861 | |
862 "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile} show", | |
863 "summaries of the resampling profile. ", "The final model fitted to the entire training set was:", | |
864 listString(paste(latexTranslate(tolower(paramNames)), "=", modelFit$$bestTune[1,]), period = TRUE)) | |
865 | |
866 } | |
867 @ | |
868 | |
869 \Sexpr{summaryText} | |
870 | |
871 <<resampTable, echo = $RESAMPTABLEECHO, results = $RESAMPTABLERESULT>>= | |
872 tableData <- modelFit$$results | |
873 | |
874 if(all(modelInfo$$parameter == "parameter") && resampName == "boot632") | |
875 { | |
876 tableData <- tableData[,-1, drop = FALSE] | |
877 colNums <- c( length(modelFit$perfNames), length(modelFit$perfNames), length(modelFit$perfNames)) | |
878 colLabels <- c("Mean", "Standard Deviation","Apparant") | |
879 constString <- "" | |
880 isConst <- NULL | |
881 }else if (all(modelInfo$$parameter == "parameter") && (resampName == "boot" | resampName == "cv" | resampName = "repeatedcv" )){ | |
882 tableData <- tableData[,-1, drop = FALSE] | |
883 colNums <- c(length(modelFit$perfNames), length(modelFit$perfNames)) | |
884 colLabels <- c("Mean", "Standard Deviation") | |
885 constString <- "" | |
886 isConst <- NULL | |
887 }else if (all(modelInfo$$parameter == "parameter") && resampName == "LOOCV" ){ | |
888 tableData <- tableData[,-1, drop = FALSE] | |
889 colNums <- length(modelFit$perfNames) | |
890 colLabels <- c("Measures") | |
891 constString <- "" | |
892 isConst <- NULL | |
893 }else if (all(modelInfo$$parameter != "parameter") && (resampName == "boot" | resampName == "cv" | resampName = "repeatedcv" )){ | |
894 isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE], | |
895 2, | |
896 function(x) length(unique(x)) == 1) | |
897 | |
898 numParamInTable <- sum(!isConst) | |
899 | |
900 if(any(isConst)) | |
901 { | |
902 constParam <- modelInfo$$parameter[isConst] | |
903 constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE] | |
904 tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE] | |
905 constString <- paste("The tuning", | |
906 ifelse(sum(isConst) > 1, | |
907 "parmeters", | |
908 "parameter"), | |
909 listString(paste("``", names(constValues), "''", sep = "")), | |
910 ifelse(sum(isConst) > 1, | |
911 "were", | |
912 "was"), | |
913 "held constant at", | |
914 ifelse(sum(isConst) > 1, | |
915 (sum(isConst) > 1, | |
916 "a value of", | |
917 "values of"), | |
918 listString(constValues[1,])) | |
919 | |
920 } else constString <- "" | |
921 | |
922 cn <- colnames(tableData) | |
923 for(i in seq(along = cn)) | |
924 { | |
925 check <- modelInfo$$parameter %in% cn[i] | |
926 if(any(check)) | |
927 { | |
928 cn[i] <- modelInfo$$label[which(check)] | |
929 } | |
930 } | |
931 colnames(tableData) <- cn | |
932 | |
933 colNums <- c(numParamInTable, | |
934 length(modelFit$perfNames), | |
935 length(modelFit$perfNames)) | |
936 colLabels <- c("", "Meaures", "Standard Deviation") | |
937 | |
938 } else if (all(modelInfo$$parameter != "parameter") && (resampName == "LOOCV" )){ | |
939 isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE], | |
940 2, | |
941 function(x) length(unique(x)) == 1) | |
942 | |
943 numParamInTable <- sum(!isConst) | |
944 | |
945 if(any(isConst)) | |
946 { | |
947 constParam <- modelInfo$$parameter[isConst] | |
948 constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE] | |
949 tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE] | |
950 constString <- paste("The tuning", | |
951 ifelse(sum(isConst) > 1, | |
952 "parmeters", | |
953 "parameter"), | |
954 listString(paste("``", names(constValues), "''", sep = "")), | |
955 ifelse(sum(isConst) > 1, | |
956 "were", | |
957 "was"), | |
958 "held constant at", | |
959 ifelse(sum(isConst) > 1, | |
960 (sum(isConst) > 1, | |
961 "a value of", | |
962 "values of"), | |
963 listString(constValues[1,])) | |
964 | |
965 } else constString <- "" | |
966 | |
967 cn <- colnames(tableData) | |
968 for(i in seq(along = cn)) | |
969 { | |
970 check <- modelInfo$$parameter %in% cn[i] | |
971 if(any(check)) | |
972 { | |
973 cn[i] <- modelInfo$$label[which(check)] | |
974 } | |
975 } | |
976 colnames(tableData) <- cn | |
977 | |
978 colNums <- c(numParamInTable, | |
979 length(modelFit$perfNames)) | |
980 colLabels <- c("", "Measures" ) | |
981 | |
982 | |
983 } else if (all(modelInfo$$parameter != "parameter") && (resampName == "boot632" )) { | |
984 isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE], | |
985 2, | |
986 function(x) length(unique(x)) == 1) | |
987 | |
988 numParamInTable <- sum(!isConst) | |
989 | |
990 if(any(isConst)) | |
991 { | |
992 constParam <- modelInfo$$parameter[isConst] | |
993 constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE] | |
994 tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE] | |
995 constString <- paste("The tuning", | |
996 ifelse(sum(isConst) > 1, | |
997 "parmeters", | |
998 "parameter"), | |
999 listString(paste("``", names(constValues), "''", sep = "")), | |
1000 ifelse(sum(isConst) > 1, | |
1001 "were", | |
1002 "was"), | |
1003 "held constant at", | |
1004 ifelse(sum(isConst) > 1, | |
1005 (sum(isConst) > 1, | |
1006 "a value of", | |
1007 "values of"), | |
1008 listString(constValues[1,])) | |
1009 | |
1010 } else constString <- "" | |
1011 | |
1012 cn <- colnames(tableData) | |
1013 for(i in seq(along = cn)) | |
1014 { | |
1015 check <- modelInfo$$parameter %in% cn[i] | |
1016 if(any(check)) | |
1017 { | |
1018 cn[i] <- modelInfo$$label[which(check)] | |
1019 } | |
1020 } | |
1021 colnames(tableData) <- cn | |
1022 | |
1023 colNums <- c(numParamInTable, | |
1024 length(modelFit$$perfNames), | |
1025 length(modelFit$$perfNames), | |
1026 length(modelFit$$perfNames)) | |
1027 colLabels <- c("", "Mean", "Standard Deviation", "Apparant") | |
1028 } else { | |
1029 constString <- paste("you played with wrong parameters in resampling method") | |
1030 } | |
1031 | |
1032 | |
1033 | |
1034 | |
1035 colnames(tableData) <- gsub("SD$$", "", colnames(tableData)) | |
1036 colnames(tableData) <- gsub("Apparent$$", "", colnames(tableData)) | |
1037 colnames(tableData) <- latexTranslate(colnames(tableData)) | |
1038 rownames(tableData) <- latexTranslate(rownames(tableData)) | |
1039 | |
1040 latex(tableData, | |
1041 rowname = NULL, | |
1042 file = "", | |
1043 cgroup = colLabels, | |
1044 n.cgroup = colNums, | |
1045 where = "h!", | |
1046 digits = 4, | |
1047 longtable = nrow(tableData) > 30, | |
1048 caption = paste(resampleName, "results from the model fit.", constString), | |
1049 label = "T:resamps") | |
1050 @ | |
1051 | |
1052 \setkeys{Gin}{ width = 0.9\textwidth} | |
1053 \begin{figure}[b] | |
1054 \begin{center} | |
1055 | |
1056 <<profilePlot, echo = $PROFILEPLOTECHO, fig = $PROFILEPLOTFIG, width = 8, height = 6>>= | |
1057 trellis.par.set(caretTheme(), warn = TRUE) | |
1058 if(all(modelInfo$$parameter == "parameter") | all(isConst) | modName == "nb") | |
1059 { | |
1060 resultsPlot <- resampleHist(modelFit) | |
1061 plotCaption <- paste("Distributions of model performance from the ", | |
1062 "training set estimated using ", | |
1063 resampleName) | |
1064 } else { | |
1065 if(modName %in% c("svmPoly", "svmRadial", "svmLinear")) | |
1066 { | |
1067 resultsPlot <- plot(modelFit, | |
1068 metric = optMetric, | |
1069 xTrans = function(x) log10(x)) | |
1070 resultsPlot <- update(resultsPlot, | |
1071 type = c("g", "p", "l"), | |
1072 ylab = paste(optMetric, " (", resampleName, ")", sep = "")) | |
1073 | |
1074 } else { | |
1075 resultsPlot <- plot(modelFit, | |
1076 metric = optMetric) | |
1077 resultsPlot <- update(resultsPlot, | |
1078 type = c("g", "p", "l"), | |
1079 ylab = paste(optMetric, " (", resampleName, ")", sep = "")) | |
1080 } | |
1081 plotCaption <- paste("A plot of the estimates of the", | |
1082 optMetric, | |
1083 "values calculated using", | |
1084 resampleName) | |
1085 } | |
1086 print(resultsPlot) | |
1087 @ | |
1088 \caption[Performance Plot]{\Sexpr{plotCaption}.} | |
1089 \label{F:profile} | |
1090 \end{center} | |
1091 \end{figure} | |
1092 | |
1093 | |
1094 <<stopWorkers, echo = $STOPWORKERSECHO, results = $STOPWORKERSRESULT>>= | |
1095 if(numWorkers > 1) stopCluster(cl) | |
1096 @ | |
1097 | |
1098 <<testPred, results = $TESTPREDRESULT, echo = $TESTPREDECHO>>= | |
1099 if(pctTrain < 1) | |
1100 { | |
1101 cat("\\clearpage\n\\section*{Test Set Results}\n\n") | |
1102 classPred <- predict(modelFit, testX) | |
1103 cm <- confusionMatrix(classPred, testY) | |
1104 values <- cm$$overall[c("Accuracy", "Kappa", "AccuracyPValue", "McnemarPValue")] | |
1105 | |
1106 values <- values[!is.na(values) & !is.nan(values)] | |
1107 values <- c(format(values[1:2], digits = 3), | |
1108 format.pval(values[-(1:2)], digits = 5)) | |
1109 nms <- c("the overall accuracy", "the Kappa statistic", | |
1110 "the $$p$$--value that accuracy is greater than the no--information rate", | |
1111 "the $$p$$--value of concordance from McNemar's test") | |
1112 nms <- nms[seq(along = values)] | |
1113 names(values) <- nms | |
1114 | |
1115 if(any(modelInfo$$probModel)) | |
1116 { | |
1117 classProbs <- extractProb(list(fit = modelFit), | |
1118 testX = testX, | |
1119 testY = testY) | |
1120 classProbs <- subset(classProbs, dataType == "Test") | |
1121 if(numClasses == 2) | |
1122 { | |
1123 tmp <- twoClassSummary(classProbs, lev = levels(classProbs$$obs)) | |
1124 tmp <- c(format(tmp, digits = 3)) | |
1125 names(tmp) <- c("the sensitivity", "the specificity", | |
1126 "the area under the ROC curve") | |
1127 values <- c(values, tmp) | |
1128 | |
1129 } | |
1130 probPlot <- plotClassProbs(classProbs) | |
1131 } | |
1132 testString <- paste("Based on the test set of", | |
1133 nrow(testX), | |
1134 "samples,", | |
1135 listString(paste(names(values), "was", values), period = TRUE), | |
1136 "The confusion matrix for the test set is shown in Table", | |
1137 "\\\\ref{T:cm}.") | |
1138 testString <- paste(testString, | |
1139 " Using ", resampleName, | |
1140 ", the training set estimates were ", | |
1141 resampleStats(modelFit), | |
1142 ".", | |
1143 sep = "") | |
1144 | |
1145 if(any(modelInfo$$probModel)) testString <- paste(testString, | |
1146 "Histograms of the class probabilities", | |
1147 "for the test set samples are shown in", | |
1148 "Figure \\\\ref{F:probs}", | |
1149 ifelse(numClasses == 2, | |
1150 " and the test set ROC curve is in Figure \\\\ref{F:roc}.", | |
1151 ".")) | |
1152 | |
1153 | |
1154 | |
1155 latex(cm$$table, | |
1156 title = "", | |
1157 file = "", | |
1158 where = "h", | |
1159 cgroup = "Observed Values", | |
1160 n.cgroup = numClasses, | |
1161 caption = "The confusion matrix for the test set", | |
1162 label = "T:cm") | |
1163 | |
1164 } else testString <- "" | |
1165 @ | |
1166 \Sexpr{testString} | |
1167 | |
1168 | |
1169 <<classProbsTex, results = $CLASSPROBSTEXRESULT, echo = $CLASSPROBSTEXECHO>>= | |
1170 if(any(modelInfo$$probModel)) | |
1171 { | |
1172 cat( | |
1173 paste("\\begin{figure}[p]\n", | |
1174 "\\begin{center}\n", | |
1175 "\\includegraphics{classProbs}", | |
1176 "\\caption[PCA Plot]{Class probabilities", | |
1177 "for the test set. Each panel contains ", | |
1178 "separate classes}\n", | |
1179 "\\label{F:probs}\n", | |
1180 "\\end{center}\n", | |
1181 "\\end{figure}")) | |
1182 } | |
1183 if(any(modelInfo$$probModel) & numClasses == 2) | |
1184 { | |
1185 cat( | |
1186 paste("\\begin{figure}[p]\n", | |
1187 "\\begin{center}\n", | |
1188 "\\includegraphics[clip, width = .8\\textwidth]{roc}", | |
1189 "\\caption[ROC Plot]{ROC Curve", | |
1190 "for the test set.}\n", | |
1191 "\\label{F:roc}\n", | |
1192 "\\end{center}\n", | |
1193 "\\end{figure}")) | |
1194 } | |
1195 @ | |
1196 <<classProbsTex, results = $CLASSPROBSTEXRESULT1, echo = $CLASSPROBSTEXECHO1 >>= | |
1197 if(any(modelInfo$$probModel)) | |
1198 { | |
1199 pdf("classProbs.pdf", height = 7, width = 7) | |
1200 trellis.par.set(caretTheme(), warn = FALSE) | |
1201 print(probPlot) | |
1202 dev.off() | |
1203 } | |
1204 | |
1205 if(any(modelInfo$$probModel) & numClasses == 2) | |
1206 { resPonse<-testY | |
1207 preDictor<-classProbs[, levels(trainY)[1]] | |
1208 pdf("roc.pdf", height = 8, width = 8) | |
1209 # from pROC example at http://web.expasy.org/pROC/screenshots.htm | |
1210 plot.roc(resPonse, preDictor, # data | |
1211 percent=TRUE, # show all values in percent | |
1212 partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial AUC (pAUC) | |
1213 print.auc=TRUE, #display pAUC value on the plot with following options: | |
1214 print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col="#1c61b6", | |
1215 auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a polygon | |
1216 max.auc.polygon=TRUE, max.auc.polygon.col="#1c61b622", # also show the 100% polygon | |
1217 main="Partial AUC (pAUC)") | |
1218 plot.roc(resPonse, preDictor, | |
1219 percent=TRUE, add=TRUE, type="n", # add to plot, but don't re-add the ROC itself (useless) | |
1220 partial.auc=c(100, 90), partial.auc.correct=TRUE, | |
1221 partial.auc.focus="se", # focus pAUC on the sensitivity | |
1222 print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col="#008600", | |
1223 print.auc.y=40, # do not print auc over the previous one | |
1224 auc.polygon=TRUE, auc.polygon.col="#008600", | |
1225 max.auc.polygon=TRUE, max.auc.polygon.col="#00860022") | |
1226 dev.off() | |
1227 } | |
1228 | |
1229 | |
1230 @ | |
1231 | |
1232 \section*{Versions} | |
1233 | |
1234 <<versions, echo = FALSE, results = tex>>= | |
1235 toLatex(sessionInfo()) | |
1236 | |
1237 @ | |
1238 | |
1239 <<save-data, echo = $SAVEDATAECHO, results = $SAVEDATARESULT>>= | |
1240 ## change this to the name of modName.... | |
1241 Fit<-modelFit | |
1242 save(Fit,file="$METHOD-Fit.RData") | |
1243 @ | |
1244 The model was built using $METHOD and is saved as $METHOD-Fit.RData for reuse. This contains the variable Fit. | |
1245 | |
1246 \end{document}''' | |
1247 | |
1248 return template4Rnw |