comparison caret_future/tool3/test/tmp1/Preold_advance.R @ 0:68300206e90d draft default tip

Uploaded
author deepakjadmin
date Thu, 05 Nov 2015 02:41:30 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:68300206e90d
1 ##########
2 args <- commandArgs(T)
3 arg1 <- args[1]
4 arg2 <- args[2]
5 arg3 <- args[3]
6 #source("~/galaxy-dist/tools/mpdstoolsV2/tool3/Preold.R")
7 #pre(arg1,arg2,arg3)
8
9 pre <- function(args1,args2,args3){
10 #args <- commandArgs(TRUE)
11 nTrain <- read.csv(args1,row.names= 1, header = T) # example nTrain.csv file of unknown activity
12 #save(nTrain,file = "nTrain.RData")
13 #load("nTrain.RData")
14 load(args2) # model generated from previous programn
15 newdata <- nTrain
16 modelFit <- Fit
17 ###########
18 # input csv file must contaion the exact same column as used in model building #
19 # Also do pre-proccessing by means of centering and scaling
20 ## problem in s4 object so first check that the given model has s4 object in
21 ## >isS4(Fit$finalmodel) if it is s4 than add in with elseif loop
22 ## eg . isS4(plsFit$finalModel) == TRUE
23
24 library(caret)
25
26 #if(as.character(!isS4(Fit$finalModel == "TRUE")))
27 if(Fit$method != "svmRadial")
28 {
29 reqcol <- Fit$finalModel$xNames
30 newdata <- newdata[,reqcol]
31 newdata1 <- preProcess(newdata, method = c("center", "scale"))
32 newdata11 <- predict(newdata1,newdata)
33 ###########
34 library(stats)
35 testpredict <- predict(modelFit,newdata11)
36 Label <- levels(testpredict)
37 a1 <- Label[1]
38 a2 <- Label[2]
39 probpredict <- predict(modelFit,newdata11,type="prob")
40 names <- as.data.frame(rownames(nTrain))
41 colnames(names) <- "COMPOUND"
42 activity <- as.data.frame(testpredict)
43 colnames(activity) <- "PREDICTED ACTIVITY"
44 colnames(probpredict) <- c(eval(a1),eval(a2))
45 Prob <- as.data.frame(probpredict)
46 dw <- format(cbind(names,Prob,activity),justify="centre")
47 write.table(dw,file=args3,row.names=FALSE,sep="\t")
48 }
49 else if(Fit$method == "svmRadial")
50 {
51 library(stats)
52 newdata1 <- preProcess(newdata, method = c("center", "scale"))
53 newdata11 <- predict(newdata1,newdata)
54 #library(stats)
55 #testpredict <- predict(modelFit,newdata11)
56 #names <- as.data.frame(rownames(nTrain))
57 #colnames(names) <- "COMPOUND"
58 #activity <- as.data.frame(testpredict)
59 #colnames(activity) <- "ACTIVITY"
60 #dw <- cbind(names,activity)
61 #write.csv(dw,file=args3,row.names=FALSE)
62 library(stats)
63 testpredict <- predict(modelFit,newdata11)
64 Label <- levels(testpredict)
65 a1 <- Label[1]
66 a2 <- Label[2]
67 probpredict <- predict(modelFit,newdata11,type="prob")
68 names <- as.data.frame(rownames(nTrain))
69 colnames(names) <- "COMPOUND"
70 activity <- as.data.frame(testpredict)
71 colnames(activity) <- "PREDICTED ACTIVITY"
72 colnames(probpredict) <- c(eval(a1),eval(a2))
73 Prob <- as.data.frame(probpredict)
74 dw <- format(cbind(names,Prob,activity),justify="centre")
75 write.table(dw,file=args3,row.names=FALSE,sep="\t")
76 }
77 else {
78 dw <- "There is something wrong in data or model"
79 write.csv(dw,file=args3,row.names=FALSE)
80
81 }
82
83 }
84 pre(arg1,arg2,arg3)