view mayachemtools/docs/scripts/html/SimilaritySearchingFingerprints.html @ 3:e420415a1799 draft

Uploaded
author deepakjadmin
date Wed, 20 Jan 2016 12:16:47 -0500
parents 73ae111cf86f
children
line wrap: on
line source

<html>
<head>
<title>MayaChemTools:Documentation:SimilaritySearchingFingerprints.pl</title>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<link rel="stylesheet" type="text/css" href="../../css/MayaChemTools.css">
</head>
<body leftmargin="20" rightmargin="20" topmargin="10" bottommargin="10">
<br/>
<center>
<a href="http://www.mayachemtools.org" title="MayaChemTools Home"><img src="../../images/MayaChemToolsLogo.gif" border="0" alt="MayaChemTools"></a>
</center>
<br/>
<div class="DocNav">
<table width="100%" border=0 cellpadding=0 cellspacing=2>
<tr align="left" valign="top"><td width="33%" align="left"><a href="./SimilarityMatricesFingerprints.html" title="SimilarityMatricesFingerprints.html">Previous</a>&nbsp;&nbsp;<a href="./index.html" title="Table of Contents">TOC</a>&nbsp;&nbsp;<a href="./SortSDFiles.html" title="SortSDFiles.html">Next</a></td><td width="34%" align="middle"><strong>SimilaritySearchingFingerprints.pl</strong></td><td width="33%" align="right"><a href="././code/SimilaritySearchingFingerprints.html" title="View source code">Code</a>&nbsp;|&nbsp;<a href="./../pdf/SimilaritySearchingFingerprints.pdf" title="PDF US Letter Size">PDF</a>&nbsp;|&nbsp;<a href="./../pdfgreen/SimilaritySearchingFingerprints.pdf" title="PDF US Letter Size with narrow margins: www.changethemargins.com">PDFGreen</a>&nbsp;|&nbsp;<a href="./../pdfa4/SimilaritySearchingFingerprints.pdf" title="PDF A4 Size">PDFA4</a>&nbsp;|&nbsp;<a href="./../pdfa4green/SimilaritySearchingFingerprints.pdf" title="PDF A4 Size with narrow margins: www.changethemargins.com">PDFA4Green</a></td></tr>
</table>
</div>
<p>
</p>
<h2>NAME</h2>
<p>SimilaritySearchingFingerprints.pl - Perform similarity search using fingerprints strings data in SD, FP and CSV/TSV text file(s)</p>
<p>
</p>
<h2>SYNOPSIS</h2>
<p>SimilaritySearchingFingerprints.pl ReferenceFPFile DatabaseFPFile</p>
<p>SimilaritySearchingFingerprints.pl [<strong>--alpha</strong> <em>number</em>] [<strong>--beta</strong> <em>number</em>]
[<strong>-b, --BitVectorComparisonMode</strong> <em>TanimotoSimilarity | TverskySimilarity | ...</em>]
[<strong>--DatabaseColMode</strong> <em>ColNum | ColLabel</em>] [<strong>--DatabaseCompoundIDCol</strong> <em>col number | col name</em>]
[<strong>--DatabaseCompoundIDPrefix</strong> <em>text</em>] [<strong>--DatabaseCompoundIDField</strong> <em>DataFieldName</em>]
[<strong>--DatabaseCompoundIDMode</strong> <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em>]
[<strong>--DatabaseDataCols</strong> <em>&quot;DataColNum1, DataColNum2,... &quot; | DataColLabel1, DataCoLabel2,... &quot;</em>]
[<strong>--DatabaseDataColsMode</strong> <em>All | Specify | CompoundID</em>] [<strong>--DatabaseDataFields</strong> <em>&quot;FieldLabel1, FieldLabel2,... &quot;</em>]
[<strong>--DatabaseDataFieldsMode</strong> <em>All | Common | Specify | CompoundID</em>]
[<strong>--DatabaseFingerprintsCol</strong> <em>col number | col name</em>] [<strong>--DatabaseFingerprintsField</strong> <em>FieldLabel</em>]
[]<strong>--DistanceCutoff</strong> <em>number</em>] [<strong>-d, --detail</strong> <em>InfoLevel</em>] [<strong>-f, --fast</strong>]
[<strong>--FingerprintsMode</strong> <em>AutoDetect | FingerprintsBitVectorString | FingerprintsVectorString</em>]
[<strong>-g, --GroupFusionRule</strong> <em>Max, Mean, Median, Min, Sum, Euclidean</em>] [<strong>--GroupFusionApplyCutoff</strong> <em>Yes | No</em>]
[<strong>-h, --help</strong>]  [<strong>--InDelim</strong> <em>comma | semicolon</em>] [<strong>-k, --KNN</strong> <em>all | number</em>]
[<strong>-m, --mode</strong> <em>IndividualReference | MultipleReferences</em>]
[<strong>-n, --NumOfSimilarMolecules</strong> <em>number</em>] [<strong>--OutDelim</strong> <em>comma | tab | semicolon</em>]
[<strong>--output</strong> <em>SD | text | both</em>] [<strong>-o, --overwrite</strong>]
[<strong>-p, --PercentSimilarMolecules</strong> <em>number</em>] [<strong>--precision</strong> <em>number</em>] [<strong>-q, --quote</strong> <em>Yes | No</em>]
[<strong>--ReferenceColMode</strong> <em>ColNum | ColLabel</em>] [<strong>--ReferenceCompoundIDCol</strong> <em>col number | col name</em>]
[<strong>--ReferenceCompoundIDPrefix</strong> <em>text</em>] [<strong>--ReferenceCompoundIDField</strong> <em>DataFieldName</em>]
[<strong>--ReferenceCompoundIDMode</strong> <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em>]
[<strong>--ReferenceFingerprintsCol</strong> <em>col number | col name</em>] [<strong>--ReferenceFingerprintsField</strong> <em>FieldLabel</em>]
[<strong>-r, --root</strong> <em>RootName</em>] [<strong>-s, --SearchMode</strong> <em>SimilaritySearch | DissimilaritySearch</em>]
[<strong>--SimilarCountMode</strong> <em>NumOfSimilar | PercentSimilar</em>] [<strong>--SimilarityCutoff</strong> <em>number</em>]
[<strong>-v, --VectorComparisonMode</strong> <em>TanimotoSimilairy | ... | ManhattanDistance | ...</em>]
[<strong>--VectorComparisonFormulism</strong> <em>AlgebraicForm | BinaryForm | SetTheoreticForm</em>]
[<strong>-w, --WorkingDir</strong> dirname] ReferenceFingerprintsFile DatabaseFingerprintsFile</p>
<p>
</p>
<h2>DESCRIPTION</h2>
<p>Perform molecular similarity search [ Ref 94-113 ] using fingerprint bit-vector or vector strings
data in <em>SD, FP, or CSV/TSV text</em> files corresponding to <em>ReferenceFingerprintsFile</em> and
<em>DatabaseFingerprintsFile</em>, and generate SD and CSV/TSV text file(s) containing database
molecules which are similar to reference molecule(s). The reference molecules are also referred
to as query or seed molecules and database molecules as target molecules in the literature.</p>
<p>The current release of MayaChemTools supports two types of similarity search modes:
<em>IndividualReference or MultipleReferences</em>. For default value of <em>MultipleReferences</em> for <strong>-m, --mode</strong>
option, reference molecules are considered as a set and <strong>-g, --GroupFusionRule</strong> is used to calculate
similarity of a database molecule against reference molecules set. The group fusion rule is also
referred to as data fusion of consensus scoring in the literature. However, for <em>IndividualReference</em>
value of <strong>-m, --mode</strong> option, reference molecules are treated as individual molecules and each reference
molecule is compared against a database molecule by itself to identify similar molecules.</p>
<p>The molecular dissimilarity search can also be performed using <em>DissimilaritySearch</em> value for
<strong>-s, --SearchMode</strong> option. During dissimilarity search or usage of distance comparison coefficient
in similarity similarity search, the meaning of fingerprints comparison value is automatically reversed
as shown below:</p>
<div class="OptionsBox">
    SeachMode      ComparisonCoefficient  ResultsSort   ComparisonValues</div>
<div class="OptionsBox">
    Similarity     SimilarityCoefficient  Descending    Higher value imples
                                                        high similarity
<br/>    Similarity     DistanceCoefficient    Ascending     Lower value implies
                                                        high similarity</div>
<div class="OptionsBox">
    Dissimilarity  SimilarityCoefficient  Ascending     Lower value implies
                                                        high dissimilarity
<br/>    Dissimilarity  DistanceCoefficient    Descending    Higher value implies
                                                        high dissimilarity</div>
<p>During <em>IndividualReference</em> value of  <strong>-m, --Mode</strong> option for similarity search, fingerprints bit-vector
or vector string of each reference molecule is compared with database molecules using specified
similarity or distance coefficients to identify most similar molecules for each reference molecule.
Based on value of <strong>--SimilarCountMode</strong>, up to <strong>--n, --NumOfSimilarMolecules</strong> or <strong>-p,
--PercentSimilarMolecules</strong> at specified <strong>--SimilarityCutoff</strong> or <strong>--DistanceCutoff</strong> are
identified for each reference molecule.</p>
<p>During <em>MultipleReferences</em> value <strong>-m, --mode</strong> option for similarity search, all reference molecules
are considered as a set and <strong>-g, --GroupFusionRule</strong> is used to calculate similarity of a database
molecule against reference molecules set either using all reference molecules or number of k-nearest
neighbors (k-NN) to a database molecule specified using <strong>-k, --kNN</strong>. The fingerprints bit-vector
or vector string of each reference molecule in a set is compared with a database molecule using
a similarity or distance coefficient specified via <strong>-b, --BitVectorComparisonMode</strong> or <strong>-v,
--VectorComparisonMode</strong>. The reference molecules whose comparison values with a database
molecule fall outside specified <strong>--SimilarityCutoff</strong> or <strong>--DistanceCutoff</strong> are ignored during <em>Yes</em>
value of <strong>--GroupFusionApplyCutoff</strong>. The specified <strong>-g, --GroupFusionRule</strong> is applied to
<strong>-k, --kNN</strong> reference molecules to calculate final similarity value between a database molecule
and reference molecules set.</p>
<p>The input fingerprints <em>SD, FP, or Text (CSV/TSV)</em> files for <em>ReferenceFingerprintsFile</em> and
<em>DatabaseTextFile</em> must contain valid fingerprint bit-vector or vector strings data corresponding to
same type of fingerprints.</p>
<p>The valid fingerprints <em>SDFile</em> extensions are <em>.sdf</em> and <em>.sd</em>. The valid fingerprints <em>FPFile</em>
extensions are <em>.fpf</em> and <em>.fp</em>. The valid fingerprints <em>TextFile (CSV/TSV)</em> extensions are
<em>.csv</em> and <em>.tsv</em> for comma/semicolon and tab delimited text files respectively. The <strong>--indelim</strong>
option determines the format of <em>TextFile</em>. Any file which doesn't correspond to the format indicated
by <strong>--indelim</strong> option is ignored.</p>
<p>Example of <em>FP</em> file containing fingerprints bit-vector string data:</p>
<div class="OptionsBox">
    #
<br/>    # Package = MayaChemTools 7.4
<br/>    # ReleaseDate = Oct 21, 2010
<br/>    #
<br/>    # TimeStamp =  Mon Mar 7 15:14:01 2011
<br/>    #
<br/>    # FingerprintsStringType = FingerprintsBitVector
<br/>    #
<br/>    # Description = PathLengthBits:AtomicInvariantsAtomTypes:MinLength1:...
<br/>    # Size = 1024
<br/>    # BitStringFormat = HexadecimalString
<br/>    # BitsOrder = Ascending
<br/>    #
<br/>    Cmpd1 9c8460989ec8a49913991a6603130b0a19e8051c89184414953800cc21510...
<br/>    Cmpd2 000000249400840040100042011001001980410c000000001010088001120...
<br/>    ... ...
<br/>    ... ..</div>
<p>Example of <em>FP</em> file containing fingerprints vector string data:</p>
<div class="OptionsBox">
    #
<br/>    # Package = MayaChemTools 7.4
<br/>    # ReleaseDate = Oct 21, 2010
<br/>    #
<br/>    # TimeStamp =  Mon Mar 7 15:14:01 2011
<br/>    #
<br/>    # FingerprintsStringType = FingerprintsVector
<br/>    #
<br/>    # Description = PathLengthBits:AtomicInvariantsAtomTypes:MinLength1:...
<br/>    # VectorStringFormat = IDsAndValuesString
<br/>    # VectorValuesType = NumericalValues
<br/>    #
<br/>    Cmpd1 338;C F N O C:C C:N C=O CC CF CN CO C:C:C C:C:N C:CC C:CF C:CN C:
<br/>    N:C C:NC CC:N CC=O CCC CCN CCO CNC NC=O O=CO C:C:C:C C:C:C:N C:C:CC...;
<br/>    33 1 2 5 21 2 2 12 1 3 3 20 2 10 2 2 1 2 2 2 8 2 5 1 1 1 19 2 8 2 2 2 2
<br/>    6 2 2 2 2 2 2 2 2 3 2 2 1 4 1 5 1 1 18 6 2 2 1 2 10 2 1 2 1 2 2 2 2 ...
<br/>    Cmpd2 103;C N O C=N C=O CC CN CO CC=O CCC CCN CCO CNC N=CN NC=O NCN O=C
<br/>    O C CC=O CCCC CCCN CCCO CCNC CNC=N CNC=O CNCN CCCC=O CCCCC CCCCN CC...;
<br/>    15 4 4 1 2 13 5 2 2 15 5 3 2 2 1 1 1 2 17 7 6 5 1 1 1 2 15 8 5 7 2 2 2 2
<br/>    1 2 1 1 3 15 7 6 8 3 4 4 3 2 2 1 2 3 14 2 4 7 4 4 4 4 1 1 1 2 1 1 1 ...
<br/>    ... ...
<br/>    ... ...</div>
<p>Example of <em>SD</em> file containing fingerprints bit-vector string data:</p>
<div class="OptionsBox">
    ... ...
<br/>    ... ...
<br/>    $$$$
<br/>    ... ...
<br/>    ... ...
<br/>    ... ...
<br/>    41 44  0  0  0  0  0  0  0  0999 V2000
     -3.3652    1.4499    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
<br/>    ... ...
<br/>    2  3  1  0  0  0  0
<br/>    ... ...
<br/>    M  END
<br/>    &gt;  &lt;CmpdID&gt;
<br/>    Cmpd1</div>
<div class="OptionsBox">
    &gt;  &lt;PathLengthFingerprints&gt;
<br/>    FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes:MinLengt
<br/>    h1:MaxLength8;1024;HexadecimalString;Ascending;9c8460989ec8a49913991a66
<br/>    03130b0a19e8051c89184414953800cc2151082844a201042800130860308e8204d4028
<br/>    00831048940e44281c00060449a5000ac80c894114e006321264401600846c050164462
<br/>    08190410805000304a10205b0100e04c0038ba0fad0209c0ca8b1200012268b61c0026a
<br/>    aa0660a11014a011d46</div>
<div class="OptionsBox">
    $$$$
<br/>    ... ...
<br/>    ... ...</div>
<p>Example of CSV <em>TextFile</em> containing fingerprints bit-vector string data:</p>
<div class="OptionsBox">
    &quot;CompoundID&quot;,&quot;PathLengthFingerprints&quot;
<br/>    &quot;Cmpd1&quot;,&quot;FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes
<br/>    :MinLength1:MaxLength8;1024;HexadecimalString;Ascending;9c8460989ec8a4
<br/>    9913991a6603130b0a19e8051c89184414953800cc2151082844a20104280013086030
<br/>    8e8204d402800831048940e44281c00060449a5000ac80c894114e006321264401...&quot;
<br/>    ... ...
<br/>    ... ...</div>
<p>The current release of MayaChemTools supports the following types of fingerprint
bit-vector and vector strings:</p>
<div class="OptionsBox">
    FingerprintsVector;AtomNeighborhoods:AtomicInvariantsAtomTypes:MinRadi
<br/>    us0:MaxRadius2;41;AlphaNumericalValues;ValuesString;NR0-C.X1.BO1.H3-AT
<br/>    C1:NR1-C.X3.BO3.H1-ATC1:NR2-C.X1.BO1.H3-ATC1:NR2-C.X3.BO4-ATC1 NR0-C.X
<br/>    1.BO1.H3-ATC1:NR1-C.X3.BO3.H1-ATC1:NR2-C.X1.BO1.H3-ATC1:NR2-C.X3.BO4-A
<br/>    TC1 NR0-C.X2.BO2.H2-ATC1:NR1-C.X2.BO2.H2-ATC1:NR1-C.X3.BO3.H1-ATC1:NR2
<br/>    -C.X2.BO2.H2-ATC1:NR2-N.X3.BO3-ATC1:NR2-O.X1.BO1.H1-ATC1 NR0-C.X2.B...</div>
<div class="OptionsBox">
    FingerprintsVector;AtomTypesCount:AtomicInvariantsAtomTypes:ArbitraryS
<br/>    ize;10;NumericalValues;IDsAndValuesString;C.X1.BO1.H3 C.X2.BO2.H2 C.X2
<br/>    .BO3.H1 C.X3.BO3.H1 C.X3.BO4 F.X1.BO1 N.X2.BO2.H1 N.X3.BO3 O.X1.BO1.H1
<br/>    O.X1.BO2;2 4 14 3 10 1 1 1 3 2</div>
<div class="OptionsBox">
    FingerprintsVector;AtomTypesCount:SLogPAtomTypes:ArbitrarySize;16;Nume
<br/>    ricalValues;IDsAndValuesString;C1 C10 C11 C14 C18 C20 C21 C22 C5 CS F
<br/>    N11 N4 O10 O2 O9;5 1 1 1 14 4 2 1 2 2 1 1 1 1 3 1</div>
<div class="OptionsBox">
    FingerprintsVector;AtomTypesCount:SLogPAtomTypes:FixedSize;67;OrderedN
<br/>    umericalValues;IDsAndValuesString;C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C
<br/>    12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 CS N1 N
<br/>    2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 NS O1 O2 O3 O4 O5 O6 O7 O8
<br/>    O9 O10 O11 O12 OS F Cl Br I Hal P S1 S2 S3 Me1 Me2;5 0 0 0 2 0 0 0 0 1
<br/>    1 0 0 1 0 0 0 14 0 4 2 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0...</div>
<div class="OptionsBox">
    FingerprintsVector;EStateIndicies:ArbitrarySize;11;NumericalValues;IDs
<br/>    AndValuesString;SaaCH SaasC SaasN SdO SdssC SsCH3 SsF SsOH SssCH2 SssN
<br/>    H SsssCH;24.778 4.387 1.993 25.023 -1.435 3.975 14.006 29.759 -0.073 3
<br/>    .024 -2.270</div>
<div class="OptionsBox">
    FingerprintsVector;EStateIndicies:FixedSize;87;OrderedNumericalValues;
<br/>    ValuesString;0 0 0 0 0 0 0 3.975 0 -0.073 0 0 24.778 -2.270 0 0 -1.435
<br/>    4.387 0 0 0 0 0 0 3.024 0 0 0 0 0 0 0 1.993 0 29.759 25.023 0 0 0 0 1
<br/>    4.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<br/>    0 0 0 0 0 0 0 0 0 0 0 0 0 0</div>
<div class="OptionsBox">
    FingerprintsVector;ExtendedConnectivity:AtomicInvariantsAtomTypes:Radi
<br/>    us2;60;AlphaNumericalValues;ValuesString;73555770 333564680 352413391
<br/>    666191900 1001270906 1371674323 1481469939 1977749791 2006158649 21414
<br/>    08799 49532520 64643108 79385615 96062769 273726379 564565671 85514103
<br/>    5 906706094 988546669 1018231313 1032696425 1197507444 1331250018 1338
<br/>    532734 1455473691 1607485225 1609687129 1631614296 1670251330 17303...</div>
<div class="OptionsBox">
    FingerprintsVector;ExtendedConnectivityCount:AtomicInvariantsAtomTypes
<br/>    :Radius2;60;NumericalValues;IDsAndValuesString;73555770 333564680 3524
<br/>    13391 666191900 1001270906 1371674323 1481469939 1977749791 2006158649
<br/>    2141408799 49532520 64643108 79385615 96062769 273726379 564565671...;
<br/>    3 2 1 1 14 1 2 10 4 3 1 1 1 1 2 1 2 1 1 1 2 3 1 1 2 1 3 3 8 2 2 2 6 2
<br/>    1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1</div>
<div class="OptionsBox">
    FingerprintsBitVector;ExtendedConnectivityBits:AtomicInvariantsAtomTyp
<br/>    es:Radius2;1024;BinaryString;Ascending;0000000000000000000000000000100
<br/>    0000000001010000000110000011000000000000100000000000000000000000100001
<br/>    1000000110000000000000000000000000010011000000000000000000000000010000
<br/>    0000000000000000000000000010000000000000000001000000000000000000000000
<br/>    0000000000010000100001000000000000101000000000000000100000000000000...</div>
<div class="OptionsBox">
    FingerprintsVector;ExtendedConnectivity:FunctionalClassAtomTypes:Radiu
<br/>    s2;57;AlphaNumericalValues;ValuesString;24769214 508787397 850393286 8
<br/>    62102353 981185303 1231636850 1649386610 1941540674 263599683 32920567
<br/>    1 571109041 639579325 683993318 723853089 810600886 885767127 90326012
<br/>    7 958841485 981022393 1126908698 1152248391 1317567065 1421489994 1455
<br/>    632544 1557272891 1826413669 1983319256 2015750777 2029559552 20404...</div>
<div class="OptionsBox">
    FingerprintsVector;ExtendedConnectivity:EStateAtomTypes:Radius2;62;Alp
<br/>    haNumericalValues;ValuesString;25189973 528584866 662581668 671034184
<br/>    926543080 1347067490 1738510057 1759600920 2034425745 2097234755 21450
<br/>    44754 96779665 180364292 341712110 345278822 386540408 387387308 50430
<br/>    1706 617094135 771528807 957666640 997798220 1158349170 1291258082 134
<br/>    1138533 1395329837 1420277211 1479584608 1486476397 1487556246 1566...</div>
<div class="OptionsBox">
    FingerprintsBitVector;MACCSKeyBits;166;BinaryString;Ascending;00000000
<br/>    0000000000000000000000000000000001001000010010000000010010000000011100
<br/>    0100101010111100011011000100110110000011011110100110111111111111011111
<br/>    11111111111110111000</div>
<div class="OptionsBox">
    FingerprintsBitVector;MACCSKeyBits;322;BinaryString;Ascending;11101011
<br/>    1110011111100101111111000111101100110000000000000011100010000000000000
<br/>    0000000000000000000000000000000000000000000000101000000000000000000000
<br/>    0000000000000000000000000000000000000000000000000000000000000000000000
<br/>    0000000000000000000000000000000000000011000000000000000000000000000000
<br/>    0000000000000000000000000000000000000000</div>
<div class="OptionsBox">
    FingerprintsVector;MACCSKeyCount;166;OrderedNumericalValues;ValuesStri
<br/>    ng;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<br/>    0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0
<br/>    0 0 0 0 1 1 8 0 0 0 1 0 0 1 0 1 0 1 0 3 1 3 1 0 0 0 1 2 0 11 1 0 0 0
<br/>    5 0 0 1 2 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 4 0 0 1 1 0 4 6 1 1 1 2 1 1
<br/>    3 5 2 2 0 5 3 5 1 1 2 5 1 2 1 2 4 8 3 5 5 2 2 0 3 5 4 1</div>
<div class="OptionsBox">
    FingerprintsVector;MACCSKeyCount;322;OrderedNumericalValues;ValuesStri
<br/>    ng;14 8 2 0 2 0 4 4 2 1 4 0 0 2 5 10 5 2 1 0 0 2 0 5 13 3 28 5 5 3 0 0
<br/>    0 4 2 1 1 0 1 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 5 3 0 0 0 1 0
<br/>    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<br/>    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 2 0 0 0 0 0 0 0 0 0
<br/>    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...</div>
<div class="OptionsBox">
    FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes:MinLeng
<br/>    th1:MaxLength8;1024;BinaryString;Ascending;001000010011010101011000110
<br/>    0100010101011000101001011100110001000010001001101000001001001001001000
<br/>    0010110100000111001001000001001010100100100000000011000000101001011100
<br/>    0010000001000101010100000100111100110111011011011000000010110111001101
<br/>    0101100011000000010001000011000010100011101100001000001000100000000...</div>
<div class="OptionsBox">
    FingerprintsVector;PathLengthCount:AtomicInvariantsAtomTypes:MinLength
<br/>    1:MaxLength8;432;NumericalValues;IDsAndValuesPairsString;C.X1.BO1.H3 2
<br/>    C.X2.BO2.H2 4 C.X2.BO3.H1 14 C.X3.BO3.H1 3 C.X3.BO4 10 F.X1.BO1 1 N.X
<br/>    2.BO2.H1 1 N.X3.BO3 1 O.X1.BO1.H1 3 O.X1.BO2 2 C.X1.BO1.H3C.X3.BO3.H1
<br/>    2 C.X2.BO2.H2C.X2.BO2.H2 1 C.X2.BO2.H2C.X3.BO3.H1 4 C.X2.BO2.H2C.X3.BO
<br/>    4 1 C.X2.BO2.H2N.X3.BO3 1 C.X2.BO3.H1:C.X2.BO3.H1 10 C.X2.BO3.H1:C....</div>
<div class="OptionsBox">
    FingerprintsVector;PathLengthCount:MMFF94AtomTypes:MinLength1:MaxLengt
<br/>    h8;463;NumericalValues;IDsAndValuesPairsString;C5A 2 C5B 2 C=ON 1 CB 1
<br/>    8 COO 1 CR 9 F 1 N5 1 NC=O 1 O=CN 1 O=CO 1 OC=O 1 OR 2 C5A:C5B 2 C5A:N
<br/>    5 2 C5ACB 1 C5ACR 1 C5B:C5B 1 C5BC=ON 1 C5BCB 1 C=ON=O=CN 1 C=ONNC=O 1
<br/>    CB:CB 18 CBF 1 CBNC=O 1 COO=O=CO 1 COOCR 1 COOOC=O 1 CRCR 7 CRN5 1 CR
<br/>    OR 2 C5A:C5B:C5B 2 C5A:C5BC=ON 1 C5A:C5BCB 1 C5A:N5:C5A 1 C5A:N5CR ...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomPairs:AtomicInvariantsAtomTypes:MinD
<br/>    istance1:MaxDistance10;223;NumericalValues;IDsAndValuesString;C.X1.BO1
<br/>    .H3-D1-C.X3.BO3.H1 C.X2.BO2.H2-D1-C.X2.BO2.H2 C.X2.BO2.H2-D1-C.X3.BO3.
<br/>    H1 C.X2.BO2.H2-D1-C.X3.BO4 C.X2.BO2.H2-D1-N.X3.BO3 C.X2.BO3.H1-D1-...;
<br/>    2 1 4 1 1 10 8 1 2 6 1 2 2 1 2 1 2 2 1 2 1 5 1 10 12 2 2 1 2 1 9 1 3 1
<br/>    1 1 2 2 1 3 6 1 6 14 2 2 2 3 1 3 1 8 2 2 1 3 2 6 1 2 2 5 1 3 1 23 1...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomPairs:FunctionalClassAtomTypes:MinDi
<br/>    stance1:MaxDistance10;144;NumericalValues;IDsAndValuesString;Ar-D1-Ar
<br/>    Ar-D1-Ar.HBA Ar-D1-HBD Ar-D1-Hal Ar-D1-None Ar.HBA-D1-None HBA-D1-NI H
<br/>    BA-D1-None HBA.HBD-D1-NI HBA.HBD-D1-None HBD-D1-None NI-D1-None No...;
<br/>    23 2 1 1 2 1 1 1 1 2 1 1 7 28 3 1 3 2 8 2 1 1 1 5 1 5 24 3 3 4 2 13 4
<br/>    1 1 4 1 5 22 4 4 3 1 19 1 1 1 1 1 2 2 3 1 1 8 25 4 5 2 3 1 26 1 4 1 ...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomTorsions:AtomicInvariantsAtomTypes;3
<br/>    3;NumericalValues;IDsAndValuesString;C.X1.BO1.H3-C.X3.BO3.H1-C.X3.BO4-
<br/>    C.X3.BO4 C.X1.BO1.H3-C.X3.BO3.H1-C.X3.BO4-N.X3.BO3 C.X2.BO2.H2-C.X2.BO
<br/>    2.H2-C.X3.BO3.H1-C.X2.BO2.H2 C.X2.BO2.H2-C.X2.BO2.H2-C.X3.BO3.H1-O...;
<br/>    2 2 1 1 2 2 1 1 3 4 4 8 4 2 2 6 2 2 1 2 1 1 2 1 1 2 6 2 4 2 1 3 1</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomTorsions:EStateAtomTypes;36;Numerica
<br/>    lValues;IDsAndValuesString;aaCH-aaCH-aaCH-aaCH aaCH-aaCH-aaCH-aasC aaC
<br/>    H-aaCH-aasC-aaCH aaCH-aaCH-aasC-aasC aaCH-aaCH-aasC-sF aaCH-aaCH-aasC-
<br/>    ssNH aaCH-aasC-aasC-aasC aaCH-aasC-aasC-aasN aaCH-aasC-ssNH-dssC a...;
<br/>    4 4 8 4 2 2 6 2 2 2 4 3 2 1 3 3 2 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomTriplets:AtomicInvariantsAtomTypes:M
<br/>    inDistance1:MaxDistance10;3096;NumericalValues;IDsAndValuesString;C.X1
<br/>    .BO1.H3-D1-C.X1.BO1.H3-D1-C.X3.BO3.H1-D2 C.X1.BO1.H3-D1-C.X2.BO2.H2-D1
<br/>    0-C.X3.BO4-D9 C.X1.BO1.H3-D1-C.X2.BO2.H2-D3-N.X3.BO3-D4 C.X1.BO1.H3-D1
<br/>    -C.X2.BO2.H2-D4-C.X2.BO2.H2-D5 C.X1.BO1.H3-D1-C.X2.BO2.H2-D6-C.X3....;
<br/>    1 2 2 2 2 2 2 2 8 8 4 8 4 4 2 2 2 2 4 2 2 2 4 2 2 2 2 1 2 2 4 4 4 2 2
<br/>    2 4 4 4 8 4 4 2 4 4 4 2 4 4 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 8...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalAtomTriplets:SYBYLAtomTypes:MinDistance1
<br/>    :MaxDistance10;2332;NumericalValues;IDsAndValuesString;C.2-D1-C.2-D9-C
<br/>    .3-D10 C.2-D1-C.2-D9-C.ar-D10 C.2-D1-C.3-D1-C.3-D2 C.2-D1-C.3-D10-C.3-
<br/>    D9 C.2-D1-C.3-D2-C.3-D3 C.2-D1-C.3-D2-C.ar-D3 C.2-D1-C.3-D3-C.3-D4 C.2
<br/>    -D1-C.3-D3-N.ar-D4 C.2-D1-C.3-D3-O.3-D2 C.2-D1-C.3-D4-C.3-D5 C.2-D1-C.
<br/>    3-D5-C.3-D6 C.2-D1-C.3-D5-O.3-D4 C.2-D1-C.3-D6-C.3-D7 C.2-D1-C.3-D7...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalPharmacophoreAtomPairs:ArbitrarySize:Min
<br/>    Distance1:MaxDistance10;54;NumericalValues;IDsAndValuesString;H-D1-H H
<br/>    -D1-NI HBA-D1-NI HBD-D1-NI H-D2-H H-D2-HBA H-D2-HBD HBA-D2-HBA HBA-D2-
<br/>    HBD H-D3-H H-D3-HBA H-D3-HBD H-D3-NI HBA-D3-NI HBD-D3-NI H-D4-H H-D4-H
<br/>    BA H-D4-HBD HBA-D4-HBA HBA-D4-HBD HBD-D4-HBD H-D5-H H-D5-HBA H-D5-...;
<br/>    18 1 2 1 22 12 8 1 2 18 6 3 1 1 1 22 13 6 5 7 2 28 9 5 1 1 1 36 16 10
<br/>    3 4 1 37 10 8 1 35 10 9 3 3 1 28 7 7 4 18 16 12 5 1 2 1</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalPharmacophoreAtomPairs:FixedSize:MinDist
<br/>    ance1:MaxDistance10;150;OrderedNumericalValues;ValuesString;18 0 0 1 0
<br/>    0 0 2 0 0 1 0 0 0 0 22 12 8 0 0 1 2 0 0 0 0 0 0 0 0 18 6 3 1 0 0 0 1
<br/>    0 0 1 0 0 0 0 22 13 6 0 0 5 7 0 0 2 0 0 0 0 0 28 9 5 1 0 0 0 1 0 0 1 0
<br/>    0 0 0 36 16 10 0 0 3 4 0 0 1 0 0 0 0 0 37 10 8 0 0 0 0 1 0 0 0 0 0 0
<br/>    0 35 10 9 0 0 3 3 0 0 1 0 0 0 0 0 28 7 7 4 0 0 0 0 0 0 0 0 0 0 0 18...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalPharmacophoreAtomTriplets:ArbitrarySize:
<br/>    MinDistance1:MaxDistance10;696;NumericalValues;IDsAndValuesString;Ar1-
<br/>    Ar1-Ar1 Ar1-Ar1-H1 Ar1-Ar1-HBA1 Ar1-Ar1-HBD1 Ar1-H1-H1 Ar1-H1-HBA1 Ar1
<br/>    -H1-HBD1 Ar1-HBA1-HBD1 H1-H1-H1 H1-H1-HBA1 H1-H1-HBD1 H1-HBA1-HBA1 H1-
<br/>    HBA1-HBD1 H1-HBA1-NI1 H1-HBD1-NI1 HBA1-HBA1-NI1 HBA1-HBD1-NI1 Ar1-...;
<br/>    46 106 8 3 83 11 4 1 21 5 3 1 2 2 1 1 1 100 101 18 11 145 132 26 14 23
<br/>    28 3 3 5 4 61 45 10 4 16 20 7 5 1 3 4 5 3 1 1 1 1 5 4 2 1 2 2 2 1 1 1
<br/>    119 123 24 15 185 202 41 25 22 17 3 5 85 95 18 11 23 17 3 1 1 6 4 ...</div>
<div class="OptionsBox">
    FingerprintsVector;TopologicalPharmacophoreAtomTriplets:FixedSize:MinD
<br/>    istance1:MaxDistance10;2692;OrderedNumericalValues;ValuesString;46 106
<br/>    8 3 0 0 83 11 4 0 0 0 1 0 0 0 0 0 0 0 0 21 5 3 0 0 1 2 2 0 0 1 0 0 0
<br/>    0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 101 18 11 0 0 145 132 26
<br/>    14 0 0 23 28 3 3 0 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 45 10 4 0
<br/>    0 16 20 7 5 1 0 3 4 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 5 ...</div>
<p>
</p>
<h2>OPTIONS</h2>
<dl>
<dt><strong><strong>--alpha</strong> <em>number</em></strong></dt>
<dd>
<p>Value of alpha parameter for calculating <em>Tversky</em> similarity coefficient specified for
<strong>-b, --BitVectorComparisonMode</strong> option. It corresponds to weights assigned for bits set
to &quot;1&quot; in a pair of fingerprint bit-vectors during the calculation of similarity coefficient. Possible
values: <em>0 to 1</em>. Default value: &lt;0.5&gt;.</p>
</dd>
<dt><strong><strong>--beta</strong> <em>number</em></strong></dt>
<dd>
<p>Value of beta parameter for calculating <em>WeightedTanimoto</em> and  <em>WeightedTversky</em>
similarity coefficients specified for <strong>-b, --BitVectorComparisonMode</strong> option. It is used to
weight the contributions of bits set to &quot;0&quot; during the calculation of similarity coefficients. Possible
values: <em>0 to 1</em>. Default value of &lt;1&gt; makes <em>WeightedTanimoto</em> and  <em>WeightedTversky</em>
equivalent to <em>Tanimoto</em> and  <em>Tversky</em>.</p>
</dd>
<dt><strong><strong>-b, --BitVectorComparisonMode</strong> <em>TanimotoSimilarity | TverskySimilarity | ...</em></strong></dt>
<dd>
<p>Specify what similarity coefficient to use for calculating similarity between fingerprints bit-vector
string data values in <em>ReferenceFingerprintsFile</em> and <em>DatabaseFingerprintsFile</em> during similarity
search. Possible values: <em>TanimotoSimilarity | TverskySimilarity | ...</em>. Default: <em>TanimotoSimilarity</em></p>
<p>The current release supports the following similarity coefficients: <em>BaroniUrbaniSimilarity, BuserSimilarity,
CosineSimilarity, DiceSimilarity, DennisSimilarity, ForbesSimilarity, FossumSimilarity, HamannSimilarity, JacardSimilarity,
Kulczynski1Similarity, Kulczynski2Similarity, MatchingSimilarity, McConnaugheySimilarity, OchiaiSimilarity,
PearsonSimilarity, RogersTanimotoSimilarity, RussellRaoSimilarity, SimpsonSimilarity, SkoalSneath1Similarity,
SkoalSneath2Similarity, SkoalSneath3Similarity, TanimotoSimilarity, TverskySimilarity, YuleSimilarity,
WeightedTanimotoSimilarity, WeightedTverskySimilarity</em>. These similarity coefficients are described below.</p>
<p>For two fingerprint bit-vectors A and B of same size, let:</p>
<div class="OptionsBox">
    Na = Number of bits set to &quot;1&quot; in A
<br/>    Nb = Number of bits set to &quot;1&quot; in B
<br/>    Nc = Number of bits set to &quot;1&quot; in both A and B
<br/>    Nd = Number of bits set to &quot;0&quot; in both A and B</div>
<div class="OptionsBox">
    Nt = Number of bits set to &quot;1&quot; or &quot;0&quot; in A or B (Size of A or B)
<br/>    Nt = Na + Nb - Nc + Nd</div>
<div class="OptionsBox">
    Na - Nc = Number of bits set to &quot;1&quot; in A but not in B
<br/>    Nb - Nc = Number of bits set to &quot;1&quot; in B but not in A</div>
<p>Then, various similarity coefficients [ Ref. 40 - 42 ] for a pair of bit-vectors A and B are
defined as follows:</p>
<p><em>BaroniUrbaniSimilarity</em>: ( SQRT( Nc * Nd ) + Nc ) / (  SQRT ( Nc * Nd ) + Nc + ( Na - Nc )  + ( Nb - Nc ) ) ( same as Buser )</p>
<p><em>BuserSimilarity</em>: ( SQRT ( Nc * Nd ) + Nc ) / (  SQRT ( Nc * Nd ) + Nc + ( Na - Nc )  + ( Nb - Nc ) ) ( same as BaroniUrbani )</p>
<p><em>CosineSimilarity</em>: Nc / SQRT ( Na * Nb ) (same as Ochiai)</p>
<p><em>DiceSimilarity</em>: (2 * Nc) / ( Na + Nb )</p>
<p><em>DennisSimilarity</em>: ( Nc * Nd - ( ( Na - Nc ) * ( Nb - Nc ) ) ) / SQRT ( Nt * Na * Nb)</p>
<p><em>ForbesSimilarity</em>: ( Nt * Nc ) / ( Na * Nb )</p>
<p><em>FossumSimilarity</em>: ( Nt * ( ( Nc - 1/2 ) ** 2 ) / ( Na * Nb )</p>
<p><em>HamannSimilarity</em>: ( ( Nc + Nd ) - ( Na - Nc ) - ( Nb - Nc ) ) / Nt</p>
<p><em>JaccardSimilarity</em>: Nc /  ( ( Na - Nc) + ( Nb - Nc ) + Nc ) = Nc / ( Na + Nb - Nc ) (same as Tanimoto)</p>
<p><em>Kulczynski1Similarity</em>: Nc / ( ( Na - Nc ) + ( Nb - Nc) ) = Nc / ( Na + Nb - 2Nc )</p>
<p><em>Kulczynski2Similarity</em>: ( ( Nc / 2 ) * ( 2 * Nc + ( Na - Nc ) + ( Nb - Nc) ) ) / ( ( Nc + ( Na - Nc ) ) * ( Nc + ( Nb - Nc ) ) ) = 0.5 * ( Nc / Na + Nc / Nb )</p>
<p><em>MatchingSimilarity</em>: ( Nc + Nd ) / Nt</p>
<p><em>McConnaugheySimilarity</em>: ( Nc ** 2 - ( Na - Nc ) * ( Nb - Nc) ) / (  Na * Nb )</p>
<p><em>OchiaiSimilarity</em>: Nc / SQRT ( Na * Nb ) (same as Cosine)</p>
<p><em>PearsonSimilarity</em>: ( ( Nc * Nd ) - ( ( Na - Nc ) * ( Nb - Nc ) ) / SQRT ( Na * Nb * (  Na - Nc + Nd ) * ( Nb - Nc + Nd ) )</p>
<p><em>RogersTanimotoSimilarity</em>: ( Nc + Nd ) / ( ( Na - Nc)  + ( Nb  - Nc) + Nt) = ( Nc + Nd ) / ( Na  + Nb  - 2Nc + Nt)</p>
<p><em>RussellRaoSimilarity</em>: Nc / Nt</p>
<p><em>SimpsonSimilarity</em>: Nc / MIN ( Na, Nb)</p>
<p><em>SkoalSneath1Similarity</em>: Nc / ( Nc + 2 * ( Na - Nc)  + 2 * ( Nb - Nc) ) = Nc / ( 2 * Na + 2 * Nb - 3 * Nc )</p>
<p><em>SkoalSneath2Similarity</em>: ( 2 * Nc + 2 * Nd ) / ( Nc + Nd + Nt )</p>
<p><em>SkoalSneath3Similarity</em>: ( Nc + Nd ) / ( ( Na - Nc ) + ( Nb - Nc ) ) = ( Nc + Nd ) / ( Na + Nb - 2 * Nc  )</p>
<p><em>TanimotoSimilarity</em>: Nc /  ( ( Na - Nc) + ( Nb - Nc ) + Nc ) = Nc / ( Na + Nb - Nc ) (same as Jaccard)</p>
<p><em>TverskySimilarity</em>: Nc / ( alpha * ( Na - Nc ) + ( 1 - alpha) * ( Nb - Nc) + Nc ) = Nc / ( alpha * ( Na - Nb )  + Nb)</p>
<p><em>YuleSimilarity</em>: ( ( Nc * Nd ) - ( ( Na - Nc ) * ( Nb - Nc ) ) ) / ( ( Nc * Nd ) + ( ( Na - Nc ) * ( Nb - Nc ) )  )</p>
<p>Values of Tanimoto/Jaccard and Tversky coefficients are dependent on only those bit which
are set to &quot;1&quot; in both A and B. In order to take into account all bit positions, modified versions
of Tanimoto [ Ref. 42 ] and Tversky [  Ref. 43 ] have been developed.</p>
<p>Let:</p>
<div class="OptionsBox">
    Na' = Number of bits set to &quot;0&quot; in A
<br/>    Nb' = Number of bits set to &quot;0&quot; in B
<br/>    Nc' = Number of bits set to &quot;0&quot; in both A and B</div>
<p>Tanimoto': Nc' /  ( ( Na' - Nc') + ( Nb' - Nc' ) + Nc' ) = Nc' / ( Na' + Nb' - Nc' )</p>
<p>Tversky': Nc' / ( alpha * ( Na' - Nc' ) + ( 1 - alpha) * ( Nb' - Nc' ) + Nc' ) = Nc' / ( alpha * ( Na' - Nb' )  + Nb')</p>
<p>Then:</p>
<p><em>WeightedTanimotoSimilarity</em> = beta * Tanimoto + (1 - beta) * Tanimoto'</p>
<p><em>WeightedTverskySimilarity</em> = beta * Tversky + (1 - beta) * Tversky'</p>
</dd>
<dt><strong><strong>--DatabaseColMode</strong> <em>ColNum | ColLabel</em></strong></dt>
<dd>
<p>Specify how columns are identified in database fingerprints <em>TextFile</em>: using column
number or column label. Possible values: <em>ColNum or ColLabel</em>. Default value: <em>ColNum</em>.</p>
</dd>
<dt><strong><strong>--DatabaseCompoundIDCol</strong> <em>col number | col name</em></strong></dt>
<dd>
<p>This value is <strong>--DatabaseColMode</strong> mode specific. It specifies column to use for retrieving compound
ID from database fingerprints <em>TextFile</em> during similarity and dissimilarity search for output SD and
CSV/TSV text files. Possible values: <em>col number or col label</em>. Default value: <em>first column containing
the word compoundID in its column label or sequentially generated IDs</em>.</p>
<p>This is only used for <em>CompoundID</em> value of <strong>--DatabaseDataColsMode</strong> option.</p>
</dd>
<dt><strong><strong>--DatabaseCompoundIDPrefix</strong> <em>text</em></strong></dt>
<dd>
<p>Specify compound ID prefix to use during sequential generation of compound IDs for database fingerprints
<em>SDFile</em> and <em>TextFile</em>. Default value: <em>Cmpd</em>. The default value generates compound IDs which look
like Cmpd&lt;Number&gt;.</p>
<p>For database fingerprints <em>SDFile</em>, this value is only used during <em>LabelPrefix | MolNameOrLabelPrefix</em>
values of <strong>--DatabaseCompoundIDMode</strong> option; otherwise, it's ignored.</p>
<p>Examples for <em>LabelPrefix</em> or <em>MolNameOrLabelPrefix</em> value of <strong>--DatabaseCompoundIDMode</strong>:</p>
<div class="OptionsBox">
    Compound</div>
<p>The values specified above generates compound IDs which correspond to Compound&lt;Number&gt;
instead of default value of Cmpd&lt;Number&gt;.</p>
</dd>
<dt><strong><strong>--DatabaseCompoundIDField</strong> <em>DataFieldName</em></strong></dt>
<dd>
<p>Specify database fingerprints <em>SDFile</em> datafield label for generating compound IDs. This value is
only used during <em>DataField</em> value of <strong>--DatabaseCompoundIDMode</strong> option.</p>
<p>Examples for <em>DataField</em> value of <strong>--DatabaseCompoundIDMode</strong>:</p>
<div class="OptionsBox">
    MolID
<br/>    ExtReg</div>
</dd>
<dt><strong><strong>--DatabaseCompoundIDMode</strong> <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em></strong></dt>
<dd>
<p>Specify how to generate compound IDs from database fingerprints <em>SDFile</em> during similarity and
dissimilarity search for output SD and CSV/TSV text files: use a <em>SDFile</em> datafield value; use
molname line from <em>SDFile</em>; generate a sequential ID with specific prefix; use combination of both
MolName and LabelPrefix with usage of LabelPrefix values for empty molname lines.</p>
<p>Possible values: <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em>.
Default: <em>LabelPrefix</em>.</p>
<p>For <em>MolNameAndLabelPrefix</em> value of <strong>--DatabaseCompoundIDMode</strong>, molname line in <em>SDFile</em> takes
precedence over sequential compound IDs generated using <em>LabelPrefix</em> and only empty molname
values are replaced with sequential compound IDs.</p>
<p>This is only used for <em>CompoundID</em> value of <strong>--DatabaseDataFieldsMode</strong> option.</p>
</dd>
<dt><strong><strong>--DatabaseDataCols</strong> <em>&quot;DataColNum1,DataColNum2,... &quot; | DataColLabel1,DataCoLabel2,... &quot;</em></strong></dt>
<dd>
<p>This value is <strong>--DatabaseColMode</strong> mode specific. It is a comma delimited list of database fingerprints
<em>TextFile</em> data column numbers or labels to extract and write to SD and CSV/TSV text files along with
other information for <em>SD | text | both</em> values of <strong>--output</strong> option.</p>
<p>This is only used for <em>Specify</em> value of <strong>--DatabaseDataColsMode</strong> option.</p>
<p>Examples:</p>
<div class="OptionsBox">
    1,2,3
<br/>    CompoundName,MolWt</div>
</dd>
<dt><strong><strong>--DatabaseDataColsMode</strong> <em>All | Specify | CompoundID</em></strong></dt>
<dd>
<p>Specify how data columns from database fingerprints <em>TextFile</em> are transferred to output SD and
CSV/TSV text files along with other information for <em>SD | text | both</em> values of <strong>--output</strong> option:
transfer all data columns; extract specified data columns; generate a compound ID database compound
prefix. Possible values: <em>All | Specify | CompoundID</em>. Default value: <em>CompoundID</em>.</p>
</dd>
<dt><strong><strong>--DatabaseDataFields</strong> <em>&quot;FieldLabel1,FieldLabel2,... &quot;</em></strong></dt>
<dd>
<p>Comma delimited list of database fingerprints <em>SDFile</em> data fields to extract and write to SD
and CSV/TSV text files along with other information for <em>SD | text | both</em> values of
<strong>--output</strong> option.</p>
<p>This is only used for <em>Specify</em> value of <strong>--DatabaseDataFieldsMode</strong> option.</p>
<p>Examples:</p>
<div class="OptionsBox">
    Extreg
<br/>    MolID,CompoundName</div>
</dd>
<dt><strong><strong>--DatabaseDataFieldsMode</strong> <em>All | Common | Specify | CompoundID</em></strong></dt>
<dd>
<p>Specify how data fields from database fingerprints <em>SDFile</em> are transferred to output SD and
CSV/TSV text files along with other information for <em>SD | text | both</em> values of <strong>--output</strong>
option: transfer all SD data field; transfer SD data files common to all compounds; extract
specified data fields; generate a compound ID using molname line, a compound prefix, or a
combination of both. Possible values: <em>All | Common | specify | CompoundID</em>. Default value:
<em>CompoundID</em>.</p>
</dd>
<dt><strong><strong>--DatabaseFingerprintsCol</strong> <em>col number | col name</em></strong></dt>
<dd>
<p>This value is <strong>--DatabaseColMode</strong> specific. It specifies fingerprints column to use during similarity
and dissimilarity search for database fingerprints <em>TextFile</em>. Possible values: <em>col number or col label</em>.
Default value: <em>first column containing the word Fingerprints in its column label</em>.</p>
</dd>
<dt><strong><strong>--DatabaseFingerprintsField</strong> <em>FieldLabel</em></strong></dt>
<dd>
<p>Fingerprints field label to use during similarity and dissimilarity search for database fingerprints <em>SDFile</em>.
Default value: <em>first data field label containing the word Fingerprints in its label</em></p>
</dd>
<dt><strong><strong>--DistanceCutoff</strong> <em>number</em></strong></dt>
<dd>
<p>Distance cutoff value to use during comparison of distance value between a pair of database
and reference molecule calculated by distance comparison methods for fingerprints vector
string data values. Possible values: <em>Any valid number</em>. Default value: <em>10</em>.</p>
<p>The comparison value between a pair of database and reference molecule must meet the cutoff
criterion as shown below:</p>
<div class="OptionsBox">
    SeachMode      CutoffCriterion  ComparisonValues</div>
<div class="OptionsBox">
    Similarity     &lt;=               Lower value implies high similarity
<br/>    Dissimilarity  &gt;=               Higher value implies high dissimilarity</div>
<p>This option is only used during distance coefficients values of <strong>-v, --VectorComparisonMode</strong>
option.</p>
<p>This option is ignored during <em>No</em> value of <strong>--GroupFusionApplyCutoff</strong> for <em>MultipleReferences</em>
<strong>-m, --mode</strong>.</p>
</dd>
<dt><strong><strong>-d, --detail</strong> <em>InfoLevel</em></strong></dt>
<dd>
<p>Level of information to print about lines being ignored. Default: <em>1</em>. Possible values:
<em>1, 2 or 3</em>.</p>
</dd>
<dt><strong><strong>-f, --fast</strong></strong></dt>
<dd>
<p>In this mode, fingerprints columns specified using <strong>--FingerprintsCol</strong> for reference and database
fingerprints <em>TextFile(s)</em>, and <strong>--FingerprintsField</strong> for reference and database fingerprints <em>SDFile(s)</em>
are assumed to contain valid fingerprints data and no checking is performed before performing similarity
and dissimilarity search. By default, fingerprints data is validated before computing pairwise similarity and
distance coefficients.</p>
</dd>
<dt><strong><strong>--FingerprintsMode</strong> <em>AutoDetect | FingerprintsBitVectorString | FingerprintsVectorString</em></strong></dt>
<dd>
<p>Format of fingerprint strings data in reference and database fingerprints <em>SD, FP, or Text (CSV/TSV)</em>
files: automatically detect format of fingerprints string created by MayaChemTools fingerprints
generation scripts or explicitly specify its format. Possible values: <em>AutoDetect | FingerprintsBitVectorString |
FingerprintsVectorString</em>. Default value: <em>AutoDetect</em>.</p>
</dd>
<dt><strong><strong>-g, --GroupFusionRule</strong> <em>Max, Min, Mean, Median, Sum, Euclidean</em></strong></dt>
<dd>
<p>Specify what group fusion [ Ref 94-97, Ref 100, Ref 105 ] rule to use for calculating similarity of
a database molecule against a set of reference molecules during <em>MultipleReferences</em> value of
similarity search <strong>-m, --mode</strong>. Possible values: <em>Max, Min, Mean, Median, Sum, Euclidean</em>. Default
value: <em>Max</em>. <em>Mean</em> value corresponds to average or arithmetic mean. The group fusion rule is
also referred to as data fusion of consensus scoring in the literature.</p>
<p>For a reference molecules set and a database molecule, let:</p>
<div class="OptionsBox">
    N = Number of reference molecules in a set</div>
<div class="OptionsBox">
    i = ith reference reference molecule in a set
<br/>    n = Nth reference reference molecule in a set</div>
<div class="OptionsBox">
    d = dth database molecule</div>
<div class="OptionsBox">
    Crd = Fingerprints comparison value between rth reference and dth database
          molecule - similarity/dissimilarity comparison using similarity or
          distance coefficient</div>
<p>Then, various group fusion rules to calculate fused similarity between a database molecule and
reference molecules set are defined as follows:</p>
<p><strong>Max</strong>: MAX ( C1d, C2d, ..., Cid, ..., Cnd )</p>
<p><strong>Min</strong>: MIN ( C1d, C2d, ..., Cid, ..., Cnd )</p>
<p><strong>Mean</strong>: SUM ( C1d, C2d, ..., Cid, ..., Cnd ) / N</p>
<p><strong>Median</strong>: MEDIAN (  C1d, C2d, ..., Cid, ..., Cnd )</p>
<p><strong>Sum</strong>: SUM (  C1d, C2d, ..., Cid, ..., Cnd )</p>
<p><strong>Euclidean</strong>: SQRT( SUM( C1d ** 2, C2d ** 2, ..., Cid ** 2, ..., Cnd *** 2) )</p>
<p>The fingerprints bit-vector or vector string of each reference molecule in a set is compared
with a database molecule using a similarity or distance coefficient specified via <strong>-b,
--BitVectorComparisonMode</strong> or <strong>-v, --VectorComparisonMode</strong>. The reference molecules
whose comparison values with a database molecule fall outside specified <strong>--SimilarityCutoff</strong>
or <strong>--DistanceCutoff</strong> are ignored during <em>Yes</em> value of <strong>--GroupFusionApplyCutoff</strong>. The
specified <strong>-g, --GroupFusionRule</strong> is applied to <strong>-k, --kNN</strong> reference molecules to calculate
final fused similarity value between a database molecule and reference molecules set.</p>
<p>During dissimilarity search or usage of distance comparison coefficient in similarity search,
the meaning of fingerprints comaprison value is automatically reversed as shown below:</p>
<div class="OptionsBox">
    SeachMode      ComparisonCoefficient  ComparisonValues</div>
<div class="OptionsBox">
    Similarity     SimilarityCoefficient  Higher value imples high similarity
<br/>    Similarity     DistanceCoefficient    Lower value implies high similarity</div>
<div class="OptionsBox">
    Dissimilarity  SimilarityCoefficient  Lower value implies high
                                          dissimilarity
<br/>    Dissimilarity  DistanceCoefficient    Higher value implies high
                                          dissimilarity</div>
<p>Consequently, <em>Max</em> implies highest and lowest comparison value for usage of similarity and
distance coefficient respectively during similarity search. And it corresponds to lowest and highest
comparison value for usage of similarity and distance coefficient respectively during dissimilarity
search. During <em>Min</em> fusion rule, the highest and lowest comparison values are appropriately
reversed.</p>
</dd>
<dt><strong><strong>--GroupFusionApplyCutoff</strong> <em>Yes | No</em></strong></dt>
<dd>
<p>Specify whether to apply <strong>--SimilarityCutoff</strong> or <strong>--DistanceCutoff</strong> values during application
of <strong>-g, --GroupFusionRule</strong> to reference molecules set. Possible values: <em>Yes or No</em>. Default
value: <em>Yes</em>.</p>
<p>During <em>Yes</em> value of <strong>--GroupFusionApplyCutoff</strong>, the reference molecules whose comparison
values with a database molecule fall outside specified <strong>--SimilarityCutoff</strong> or <strong>--DistanceCutoff</strong>
are not used to calculate final fused similarity value between a database molecule and reference
molecules set.</p>
</dd>
<dt><strong><strong>-h, --help</strong></strong></dt>
<dd>
<p>Print this help message.</p>
</dd>
<dt><strong><strong>--InDelim</strong> <em>comma | semicolon</em></strong></dt>
<dd>
<p>Input delimiter for reference and database fingerprints CSV <em>TextFile(s)</em>. Possible values:
<em>comma or semicolon</em>. Default value: <em>comma</em>. For TSV files, this option is ignored
and <em>tab</em> is used as a delimiter.</p>
</dd>
<dt><strong><strong>-k, --kNN</strong> <em>all | number</em></strong></dt>
<dd>
<p>Number of k-nearest neighbors (k-NN) reference molecules to use during <strong>-g, --GroupFusionRule</strong>
for calculating similarity of a database molecule against a set of reference molecules. Possible values:
<em>all | positive integers</em>. Default: <em>all</em>.</p>
<p>After ranking similarity values between a database molecule and reference molecules during
<em>MultipleReferences</em> value of similarity search <strong>-m, --mode</strong> option, a top <strong>-k, --KNN</strong> reference
molecule are selected and used during <strong>-g, --GroupFusionRule</strong>.</p>
<p>This option is <strong>-s, --SearchMode</strong> dependent: It corresponds to dissimilar molecules during
<em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option.</p>
</dd>
<dt><strong><strong>-m, --mode</strong> <em>IndividualReference | MultipleReferences</em></strong></dt>
<dd>
<p>Specify how to treat reference molecules in <em>ReferenceFingerprintsFile</em> during similarity search:
Treat each reference molecule individually during similarity search or perform similarity
search by treating multiple reference molecules as a set. Possible values: <em>IndividualReference
| MultipleReferences</em>. Default value: <em>MultipleReferences</em>.</p>
<p>During <em>IndividualReference</em> value of  <strong>-m, --Mode</strong> for similarity search, fingerprints bit-vector
or vector string of each reference molecule is compared with database molecules using specified
similarity or distance coefficients to identify most similar molecules for each reference molecule.
Based on value of <strong>--SimilarCountMode</strong>, upto <strong>--n, NumOfSimilarMolecules</strong> or <strong>-p,
--PercentSimilarMolecules</strong> at specified &lt;--SimilarityCutoff&gt; or <strong>--DistanceCutoff</strong> are
identified for each reference molecule.</p>
<p>During <em>MultipleReferences</em> value <strong>-m, --mode</strong> for similarity search, all reference molecules
are considered as a set and <strong>-g, --GroupFusionRule</strong> is used to calculate similarity of a database
molecule against reference molecules set either using all reference molecules or number of k-nearest
neighbors (k-NN) to a database molecule specified using <strong>-k, --kNN</strong>. The fingerprints bit-vector
or vector string of each reference molecule in a set is compared with a database molecule using
a similarity or distance coefficient specified via <strong>-b, --BitVectorComparisonMode</strong> or <strong>-v,
--VectorComparisonMode</strong>. The reference molecules whose comparison values with a database
molecule fall outside specified <strong>--SimilarityCutoff</strong> or <strong>--DistanceCutoff</strong> are ignored. The
specified <strong>-g, --GroupFusionRule</strong> is applied to rest of <strong>-k, --kNN</strong> reference molecules to calculate
final similarity value between a database molecule and reference molecules set.</p>
<p>The meaning of similarity and distance is automatically reversed during <em>DissimilaritySearch</em> value
of <strong>-s, --SearchMode</strong> along with appropriate handling of <strong>--SimilarityCutoff</strong> or
<strong>--DistanceCutoff</strong> values.</p>
</dd>
<dt><strong><strong>-n, --NumOfSimilarMolecules</strong> <em>number</em></strong></dt>
<dd>
<p>Maximum number of most similar database molecules to find for each reference molecule or set of
reference molecules based on <em>IndividualReference</em> or <em>MultipleReferences</em> value of similarity
search <strong>-m, --mode</strong> option. Default: <em>10</em>. Valid values: positive integers.</p>
<p>This option is ignored during <em>PercentSimilar</em> value of <strong>--SimilarCountMode</strong> option.</p>
<p>This option is <strong>-s, --SearchMode</strong> dependent: It corresponds to dissimilar molecules during
<em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option.</p>
</dd>
<dt><strong><strong>--OutDelim</strong> <em>comma | tab | semicolon</em></strong></dt>
<dd>
<p>Delimiter for output CSV/TSV text file. Possible values: <em>comma, tab, or semicolon</em>
Default value: <em>comma</em>.</p>
</dd>
<dt><strong><strong>--output</strong> <em>SD | text | both</em></strong></dt>
<dd>
<p>Type of output files to generate. Possible values: <em>SD, text, or both</em>. Default value: <em>text</em>.</p>
</dd>
<dt><strong><strong>-o, --overwrite</strong></strong></dt>
<dd>
<p>Overwrite existing files</p>
</dd>
<dt><strong><strong>-p, --PercentSimilarMolecules</strong> <em>number</em></strong></dt>
<dd>
<p>Maximum percent of mosy similar database molecules to find for each reference molecule or set of
reference molecules based on <em>IndividualReference</em> or <em>MultipleReferences</em> value of similarity
search <strong>-m, --mode</strong> option. Default: <em>1</em> percent of database molecules. Valid values: non-zero values
in between <em>0 to 100</em>.</p>
<p>This option is ignored during <em>NumOfSimilar</em> value of <strong>--SimilarCountMode</strong> option.</p>
<p>During <em>PercentSimilar</em> value of <strong>--SimilarCountMode</strong> option, the number of molecules
in <em>DatabaseFingerprintsFile</em> is counted and number of similar molecules correspond to
<strong>--PercentSimilarMolecules</strong> of the total number of database molecules.</p>
<p>This option is <strong>-s, --SearchMode</strong> dependent: It corresponds to dissimilar molecules during
<em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option.</p>
</dd>
<dt><strong><strong>--precision</strong> <em>number</em></strong></dt>
<dd>
<p>Precision of calculated similarity values for comparison and generating output files. Default: up to <em>2</em>
decimal places. Valid values: positive integers.</p>
</dd>
<dt><strong><strong>-q, --quote</strong> <em>Yes | No</em></strong></dt>
<dd>
<p>Put quote around column values in output CSV/TSV text file. Possible values:
<em>Yes or No</em>. Default value: <em>Yes</em>.</p>
</dd>
<dt><strong><strong>--ReferenceColMode</strong> <em>ColNum | ColLabel</em></strong></dt>
<dd>
<p>Specify how columns are identified in reference fingerprints <em>TextFile</em>: using column
number or column label. Possible values: <em>ColNum or ColLabel</em>. Default value: <em>ColNum</em>.</p>
</dd>
<dt><strong><strong>--ReferenceCompoundIDCol</strong> <em>col number | col name</em></strong></dt>
<dd>
<p>This value is <strong>--ReferenceColMode</strong> mode specific. It specifies column to use for retrieving compound
ID from reference fingerprints <em>TextFile</em> during similarity and dissimilarity search for output SD and CSV/TSV
text files. Possible values: <em>col number or col label</em>. Default value: <em>first column containing the word compoundID
in its column label or sequentially generated IDs</em>.</p>
</dd>
<dt><strong><strong>--ReferenceCompoundIDPrefix</strong> <em>text</em></strong></dt>
<dd>
<p>Specify compound ID prefix to use during sequential generation of compound IDs for reference fingerprints
<em>SDFile</em> and <em>TextFile</em>. Default value: <em>Cmpd</em>. The default value generates compound IDs which looks
like Cmpd&lt;Number&gt;.</p>
<p>For reference fingerprints <em>SDFile</em>, this value is only used during <em>LabelPrefix | MolNameOrLabelPrefix</em>
values of <strong>--ReferenceCompoundIDMode</strong> option; otherwise, it's ignored.</p>
<p>Examples for <em>LabelPrefix</em> or <em>MolNameOrLabelPrefix</em> value of <strong>--DatabaseCompoundIDMode</strong>:</p>
<div class="OptionsBox">
    Compound</div>
<p>The values specified above generates compound IDs which correspond to Compound&lt;Number&gt;
instead of default value of Cmpd&lt;Number&gt;.</p>
</dd>
<dt><strong><strong>--ReferenceCompoundIDField</strong> <em>DataFieldName</em></strong></dt>
<dd>
<p>Specify reference fingerprints <em>SDFile</em> datafield label for generating compound IDs.
This value is only used during <em>DataField</em> value of <strong>--ReferenceCompoundIDMode</strong> option.</p>
<p>Examples for <em>DataField</em> value of <strong>--ReferenceCompoundIDMode</strong>:</p>
<div class="OptionsBox">
    MolID
<br/>    ExtReg</div>
</dd>
<dt><strong><strong>--ReferenceCompoundIDMode</strong> <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em></strong></dt>
<dd>
<p>Specify how to generate compound IDs from reference fingerprints <em>SDFile</em> during similarity and
dissimilarity search for output SD and CSV/TSV text files: use a <em>SDFile</em> datafield value; use
molname line from <em>SDFile</em>; generate a sequential ID with specific prefix; use combination of both
MolName and LabelPrefix with usage of LabelPrefix values for empty molname lines.</p>
<p>Possible values: <em>DataField | MolName | LabelPrefix | MolNameOrLabelPrefix</em>.
Default: <em>LabelPrefix</em>.</p>
<p>For <em>MolNameAndLabelPrefix</em> value of <strong>--ReferenceCompoundIDMode</strong>, molname line in <em>SDFiles</em>
takes precedence over sequential compound IDs generated using <em>LabelPrefix</em> and only empty molname
values are replaced with sequential compound IDs.</p>
</dd>
<dt><strong><strong>--ReferenceFingerprintsCol</strong> <em>col number | col name</em></strong></dt>
<dd>
<p>This value is <strong>--ReferenceColMode</strong> specific. It specifies fingerprints column to use during similarity
and dissimilarity search for reference fingerprints <em>TextFile</em>. Possible values: <em>col number or col label</em>.
Default value: <em>first column containing the word Fingerprints in its column label</em>.</p>
</dd>
<dt><strong><strong>--ReferenceFingerprintsField</strong> <em>FieldLabel</em></strong></dt>
<dd>
<p>Fingerprints field label to use during similarity and dissimilarity search for reference fingerprints <em>SDFile</em>.
Default value: <em>first data field label containing the word Fingerprints in its label</em></p>
</dd>
<dt><strong><strong>-r, --root</strong> <em>RootName</em></strong></dt>
<dd>
<p>New file name is generated using the root: &lt;Root&gt;.&lt;Ext&gt;. Default for new file name:
&lt;ReferenceFileName&gt;SimilaritySearching.&lt;Ext&gt;. The output file type determines &lt;Ext&gt;
value. The sdf, csv, and tsv &lt;Ext&gt; values are used for SD, comma/semicolon, and tab delimited
text files respectively.</p>
</dd>
<dt><strong><strong>-s, --SearchMode</strong> <em>SimilaritySearch | DissimilaritySearch</em></strong></dt>
<dd>
<p>Specify how to find molecules from database molecules for individual reference molecules or
set of reference molecules: Find similar molecules or dissimilar molecules from database molecules.
Possible values: <em>SimilaritySearch | DissimilaritySearch</em>. Default value: <em>SimilaritySearch</em>.</p>
<p>During <em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option, the meaning of the following
options is switched and they correspond to dissimilar molecules instead of similar molecules:
<strong>--SimilarCountMode</strong>, <strong>-n, --NumOfSimilarMolecules</strong>, <strong>--PercentSimilarMolecules</strong>,
<strong>-k, --kNN</strong>.</p>
</dd>
<dt><strong><strong>--SimilarCountMode</strong> <em>NumOfSimilar | PercentSimilar</em></strong></dt>
<dd>
<p>Specify method used to count similar molecules found from database molecules for individual
reference molecules or set of reference molecules: Find number of similar molecules or percent
of similar molecules from database molecules. Possible values: <em>NumOfSimilar | PercentSimilar</em>.
Default value: <em>NumOfSimilar</em>.</p>
<p>The values for number of similar molecules and percent similar molecules are specified
using options <strong>-n, NumOfSimilarMolecule</strong> and <strong>--PercentSimilarMolecules</strong>.</p>
<p>This option is <strong>-s, --SearchMode</strong> dependent: It corresponds to dissimilar molecules during
<em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option.</p>
</dd>
<dt><strong><strong>--SimilarityCutoff</strong> <em>number</em></strong></dt>
<dd>
<p>Similarity cutoff value to use during comparison of similarity value between a pair of database
and reference molecules calculated by similarity comparison methods for fingerprints bit-vector
vector strings data values. Possible values: <em>Any valid number</em>. Default value: <em>0.75</em>.</p>
<p>The comparison value between a pair of database and reference molecule must meet the cutoff
criterion as shown below:</p>
<div class="OptionsBox">
    SeachMode      CutoffCriterion  ComparisonValues</div>
<div class="OptionsBox">
    Similarity     &gt;=               Higher value implies high similarity
<br/>    Dissimilarity  &lt;=               Lower value implies high dissimilarity</div>
<p>This option is ignored during <em>No</em> value of <strong>--GroupFusionApplyCutoff</strong> for <em>MultipleReferences</em>
<strong>-m, --mode</strong>.</p>
<p>This option is <strong>-s, --SearchMode</strong> dependent: It corresponds to dissimilar molecules during
<em>DissimilaritySearch</em> value of <strong>-s, --SearchMode</strong> option.</p>
</dd>
<dt><strong><strong>-v, --VectorComparisonMode</strong> <em>SupportedSimilarityName | SupportedDistanceName</em></strong></dt>
<dd>
<p>Specify what similarity or distance coefficient to use for calculating similarity between fingerprint
vector strings data values in <em>ReferenceFingerprintsFile</em> and <em>DatabaseFingerprintsFile</em> during
similarity search. Possible values:  <em>TanimotoSimilairy | ... | ManhattanDistance | ...</em>. Default
value: <em>TanimotoSimilarity</em>.</p>
<p>The value of <strong>-v, --VectorComparisonMode</strong>, in conjunction with <strong>--VectorComparisonFormulism</strong>,
decides which type of similarity and distance coefficient formulism gets used.</p>
<p>The current releases supports the following similarity and distance coefficients: <em>CosineSimilarity,
CzekanowskiSimilarity, DiceSimilarity, OchiaiSimilarity, JaccardSimilarity, SorensonSimilarity, TanimotoSimilarity,
CityBlockDistance, EuclideanDistance, HammingDistance, ManhattanDistance, SoergelDistance</em>. These
similarity and distance coefficients are described below.</p>
<p><strong>FingerprintsVector.pm</strong> module, used to calculate similarity and distance coefficients,
provides support to perform comparison between vectors containing three different types of
values:</p>
<p>Type I: OrderedNumericalValues</p>
<div class="OptionsBox">
    . Size of two vectors are same
<br/>    . Vectors contain real values in a specific order. For example: MACCS keys
      count, Topological pharmnacophore atom pairs and so on.</div>
<p>Type II: UnorderedNumericalValues</p>
<div class="OptionsBox">
    . Size of two vectors might not be same
<br/>    . Vectors contain unordered real value identified by value IDs. For example:
      Toplogical atom pairs, Topological atom torsions and so on</div>
<p>Type III: AlphaNumericalValues</p>
<div class="OptionsBox">
    . Size of two vectors might not be same
<br/>    . Vectors contain unordered alphanumerical values. For example: Extended
      connectivity fingerprints, atom neighborhood fingerprints.</div>
<p>Before performing similarity or distance calculations between vectors containing UnorderedNumericalValues
or AlphaNumericalValues, the vectors are transformed into vectors containing unique OrderedNumericalValues
using value IDs for UnorderedNumericalValues and values itself for AlphaNumericalValues.</p>
<p>Three forms of similarity and distance calculation between two vectors, specified using <strong>--VectorComparisonFormulism</strong>
option, are supported: <em>AlgebraicForm, BinaryForm or SetTheoreticForm</em>.</p>
<p>For <em>BinaryForm</em>, the ordered list of processed final vector values containing the value or
count of each unique value type is simply converted into a binary vector containing 1s and 0s
corresponding to presence or absence of values before calculating similarity or distance between
two vectors.</p>
<p>For two fingerprint vectors A and B of same size containing OrderedNumericalValues, let:</p>
<div class="OptionsBox">
    N = Number values in A or B</div>
<div class="OptionsBox">
    Xa = Values of vector A
<br/>    Xb = Values of vector B</div>
<div class="OptionsBox">
    Xai = Value of ith element in A
<br/>    Xbi = Value of ith element in B</div>
<div class="OptionsBox">
   SUM = Sum of i over N values</div>
<p>For SetTheoreticForm of calculation between two vectors, let:</p>
<div class="OptionsBox">
    SetIntersectionXaXb = SUM ( MIN ( Xai, Xbi ) )
<br/>    SetDifferenceXaXb = SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN ( Xai, Xbi ) )</div>
<p>For BinaryForm of calculation between two vectors, let:</p>
<div class="OptionsBox">
    Na = Number of bits set to &quot;1&quot; in A = SUM ( Xai )
<br/>    Nb = Number of bits set to &quot;1&quot; in B = SUM ( Xbi )
<br/>    Nc = Number of bits set to &quot;1&quot; in both A and B = SUM ( Xai * Xbi )
<br/>    Nd = Number of bits set to &quot;0&quot; in both A and B
       = SUM ( 1 - Xai - Xbi + Xai * Xbi)</div>
<div class="OptionsBox">
    N = Number of bits set to &quot;1&quot; or &quot;0&quot; in A or B = Size of A or B = Na + Nb - Nc + Nd</div>
<p>Additionally, for BinaryForm various values also correspond to:</p>
<div class="OptionsBox">
    Na = | Xa |
<br/>    Nb = | Xb |
<br/>    Nc = | SetIntersectionXaXb |
<br/>    Nd = N - | SetDifferenceXaXb |</div>
<div class="OptionsBox">
    | SetDifferenceXaXb | = N - Nd = Na + Nb - Nc + Nd - Nd = Na + Nb - Nc
                          =  | Xa | + | Xb | - | SetIntersectionXaXb |</div>
<p>Various similarity and distance coefficients [ Ref 40, Ref 62, Ref 64 ] for a pair of vectors A and B
in <em>AlgebraicForm, BinaryForm and SetTheoreticForm</em> are defined as follows:</p>
<p><strong>CityBlockDistance</strong>: ( same as HammingDistance and ManhattanDistance)</p>
<p><em>AlgebraicForm</em>: SUM ( ABS ( Xai - Xbi ) )</p>
<p><em>BinaryForm</em>: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc</p>
<p><em>SetTheoreticForm</em>: | SetDifferenceXaXb | - | SetIntersectionXaXb | = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )</p>
<p><strong>CosineSimilarity</strong>:  ( same as OchiaiSimilarityCoefficient)</p>
<p><em>AlgebraicForm</em>: SUM ( Xai * Xbi ) / SQRT ( SUM ( Xai ** 2) * SUM ( Xbi ** 2) )</p>
<p><em>BinaryForm</em>: Nc / SQRT ( Na * Nb)</p>
<p><em>SetTheoreticForm</em>: | SetIntersectionXaXb | / SQRT ( |Xa| * |Xb| ) = SUM ( MIN ( Xai, Xbi ) ) / SQRT ( SUM ( Xai ) * SUM ( Xbi ) )</p>
<p><strong>CzekanowskiSimilarity</strong>: ( same as DiceSimilarity and SorensonSimilarity)</p>
<p><em>AlgebraicForm</em>: ( 2 * ( SUM ( Xai * Xbi ) )  ) / ( SUM ( Xai ** 2) + SUM ( Xbi **2 ) )</p>
<p><em>BinaryForm</em>: 2 * Nc / ( Na + Nb )</p>
<p><em>SetTheoreticForm</em>: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) = 2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )</p>
<p><strong>DiceSimilarity</strong>: ( same as CzekanowskiSimilarity and SorensonSimilarity)</p>
<p><em>AlgebraicForm</em>: ( 2 * ( SUM ( Xai * Xbi ) )  ) / ( SUM ( Xai ** 2) + SUM ( Xbi **2 ) )</p>
<p><em>BinaryForm</em>: 2 * Nc / ( Na + Nb )</p>
<p><em>SetTheoreticForm</em>: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) = 2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )</p>
<p><strong>EuclideanDistance</strong>:</p>
<p><em>AlgebraicForm</em>: SQRT ( SUM ( ( ( Xai - Xbi ) ** 2 ) ) )</p>
<p><em>BinaryForm</em>: SQRT ( ( Na - Nc ) + ( Nb - Nc ) ) = SQRT ( Na + Nb - 2 * Nc )</p>
<p><em>SetTheoreticForm</em>: SQRT ( | SetDifferenceXaXb | - | SetIntersectionXaXb | ) = SQRT (  SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) ) )</p>
<p><strong>HammingDistance</strong>:  ( same as CityBlockDistance and ManhattanDistance)</p>
<p><em>AlgebraicForm</em>: SUM ( ABS ( Xai - Xbi ) )</p>
<p><em>BinaryForm</em>: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc</p>
<p><em>SetTheoreticForm</em>: | SetDifferenceXaXb | - | SetIntersectionXaXb | = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )</p>
<p><strong>JaccardSimilarity</strong>: ( same as TanimotoSimilarity)</p>
<p><em>AlgebraicForm</em>:  SUM ( Xai * Xbi ) / ( SUM ( Xai ** 2 ) + SUM ( Xbi ** 2 ) - SUM ( Xai * Xbi ) )</p>
<p><em>BinaryForm</em>:  Nc / ( ( Na - Nc ) + ( Nb - Nc ) + Nc ) = Nc / ( Na + Nb - Nc )</p>
<p><em>SetTheoreticForm</em>: | SetIntersectionXaXb | / | SetDifferenceXaXb | = SUM ( MIN ( Xai, Xbi ) ) / (  SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN ( Xai, Xbi ) ) )</p>
<p><strong>ManhattanDistance</strong>:  ( same as CityBlockDistance and HammingDistance)</p>
<p><em>AlgebraicForm</em>: SUM ( ABS ( Xai - Xbi ) )</p>
<p><em>BinaryForm</em>: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc</p>
<p><em>SetTheoreticForm</em>: | SetDifferenceXaXb | - | SetIntersectionXaXb | = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )</p>
<p><strong>OchiaiSimilarity</strong>:  ( same as CosineSimilarity)</p>
<p><em>AlgebraicForm</em>: SUM ( Xai * Xbi ) / SQRT ( SUM ( Xai ** 2) * SUM ( Xbi ** 2) )</p>
<p><em>BinaryForm</em>: Nc / SQRT ( Na * Nb)</p>
<p><em>SetTheoreticForm</em>: | SetIntersectionXaXb | / SQRT ( |Xa| * |Xb| ) = SUM ( MIN ( Xai, Xbi ) ) / SQRT ( SUM ( Xai ) * SUM ( Xbi ) )</p>
<p><strong>SorensonSimilarity</strong>: ( same as CzekanowskiSimilarity and DiceSimilarity)</p>
<p><em>AlgebraicForm</em>: ( 2 * ( SUM ( Xai * Xbi ) )  ) / ( SUM ( Xai ** 2) + SUM ( Xbi **2 ) )</p>
<p><em>BinaryForm</em>: 2 * Nc / ( Na + Nb )</p>
<p><em>SetTheoreticForm</em>: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) = 2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )</p>
<p><strong>SoergelDistance</strong>:</p>
<p><em>AlgebraicForm</em>:  SUM ( ABS ( Xai - Xbi ) ) / SUM ( MAX ( Xai, Xbi ) )</p>
<p><em>BinaryForm</em>: 1 - Nc / ( Na + Nb - Nc ) = ( Na + Nb - 2 * Nc ) / ( Na + Nb - Nc )</p>
<p><em>SetTheoreticForm</em>: ( | SetDifferenceXaXb | - | SetIntersectionXaXb | ) / | SetDifferenceXaXb | = ( SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN ( Xai, Xbi ) ) )</p>
<p><strong>TanimotoSimilarity</strong>:  ( same as JaccardSimilarity)</p>
<p><em>AlgebraicForm</em>:  SUM ( Xai * Xbi ) / ( SUM ( Xai ** 2 ) + SUM ( Xbi ** 2 ) - SUM ( Xai * Xbi ) )</p>
<p><em>BinaryForm</em>:  Nc / ( ( Na - Nc ) + ( Nb - Nc ) + Nc ) = Nc / ( Na + Nb - Nc )</p>
<p><em>SetTheoreticForm</em>: | SetIntersectionXaXb | / | SetDifferenceXaXb | = SUM ( MIN ( Xai, Xbi ) ) / (  SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN ( Xai, Xbi ) ) )</p>
</dd>
<dt><strong><strong>--VectorComparisonFormulism</strong> <em>AlgebraicForm | BinaryForm | SetTheoreticForm</em></strong></dt>
<dd>
<p>Specify fingerprints vector comparison formulism to use for calculation similarity and distance
coefficients during <strong>-v, --VectorComparisonMode</strong>. Possible values: <em>AlgebraicForm | BinaryForm |
SetTheoreticForm</em>. Default value: <em>AlgebraicForm</em>.</p>
<p>For fingerprint vector strings containing <strong>AlphaNumericalValues</strong> data values - <strong>ExtendedConnectivityFingerprints</strong>,
<strong>AtomNeighborhoodsFingerprints</strong> and so on - all three formulism result in same value during similarity and distance
calculations.</p>
</dd>
<dt><strong><strong>-w, --WorkingDir</strong> <em>DirName</em></strong></dt>
<dd>
<p>Location of working directory. Default: current directory.</p>
</dd>
</dl>
<p>
</p>
<h2>EXAMPLES</h2>
<p>To perform similarity search using Tanimoto coefficient by treating all reference molecules as a set
to find 10 most similar database molecules with application of Max group fusion rule and similarity
cutoff to supported fingerprints strings data in SD fingerprints files present in a data fields with
Fingerprint substring in their labels, and create a ReferenceFPHexSimilaritySearching.csv file containing
sequentially generated database compound IDs with Cmpd prefix, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -o ReferenceSampleFPHex.sdf
      DatabaseSampleFPHex.sdf</div>
<p>To perform similarity search using Tanimoto coefficient by treating all reference molecules as a set
to find 10 most similar database molecules with application of Max group fusion rule and similarity
cutoff to supported fingerprints strings data in FP fingerprints files, and create a
SimilaritySearchResults.csv file containing database compound IDs retireved from FP file, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -r SimilaritySearchResults -o
      ReferenceSampleFPBin.fpf DatabaseSampleFPBin.fpf</div>
<p>To perform similarity search using Tanimoto coefficient by treating all reference molecules as a set
to find 10 most similar database database molecules with application of Max group fusion rule and
similarity cutoff to supported fingerprints strings data in text fingerprints files present in a column
names containing Fingerprint substring in their names, and create a ReferenceFPHexSimilaritySearching.csv
file containing database compound IDs retireved column name containing CompoundID substring or
sequentially generated compound IDs, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -o ReferenceSampleFPCount.csv
      DatabaseSampleFPCount.csv</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find 10 most similar database molecules for each reference molecule with application of similarity cutoff to
supported fingerprints strings data in SD fingerprints files present in a data fields with Fingerprint substring
in their labels, and create a ReferenceFPHexSimilaritySearching.csv file containing sequentially generated
reference and database compound IDs with Cmpd prefix, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
      ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find 10 most similar database molecules for each reference molecule with application of similarity cutoff to
supported fingerprints strings data in FP fingerprints files, and create a ReferenceFPHexSimilaritySearching.csv
file containing references and database compound IDs retireved from FP file, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
      ReferenceSampleFPHex.fpf DatabaseSampleFPHex.fpf</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find 10 most similar database molecules for each reference molecule with application of similarity cutoff to
supported fingerprints strings data in text fingerprints files present in a column names containing Fingerprint
substring in their names, and create a ReferenceFPHexSimilaritySearching.csv file containing reference and
database compound IDs retrieved column name containing CompoundID substring or sequentially generated
compound IDs, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
      ReferenceSampleFPHex.csv DatabaseSampleFPHex.csv</div>
<p>To perform dissimilarity search using Tanimoto coefficient by treating all reference molecules as a set
to find 10 most dissimilar database molecules with application of Max group fusion rule and similarity
cutoff to supported fingerprints strings data in SD fingerprints files present in a data fields with
Fingerprint substring in their labels, and create a ReferenceFPHexSimilaritySearching.csv file containing
sequentially generated database compound IDs with Cmpd prefix, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl --mode MultipleReferences --SearchMode
      DissimilaritySearch -o ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf</div>
<p>To perform similarity search using CityBlock distance by treating reference molecules as individual molecules
to find 10 most similar database molecules for each reference molecule with application of distance cutoff
to supported vector fingerprints strings data in SD fingerprints files present in a data fields with Fingerprint
substring in their labels, and create a ReferenceFPHexSimilaritySearching.csv file containing sequentially generated
reference and database compound IDs with Cmpd prefix, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl -mode IndividualReference
      --VectorComparisonMode CityBlockDistance --VectorComparisonFormulism
      AlgebraicForm --DistanceCutoff 10 -o
      ReferenceSampleFPCount.sdf DatabaseSampleFPCount.sdf</div>
<p>To perform similarity search using Tanimoto coefficient by treating all reference molecules as a set
to find 100 most similar database molecules with application of Mean group fusion rule to to top 10
reference molecules with in similarity cutoff of 0.75 to supported fingerprints strings data in FP fingerprints
files, and create a ReferenceFPHexSimilaritySearching.csv file containing database compound IDs retrieved
from FP file, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl --mode MultipleReferences --SearchMode
      SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
      --GroupFusionRule Mean --GroupFusionApplyCutoff Yes --kNN 10
      --SimilarityCutoff 0.75 --SimilarCountMode NumOfSimilar
      --NumOfSimilarMolecules 100 -o
      ReferenceSampleFPHex.fpf DatabaseSampleFPHex.fpf</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find 2 percent of most similar database molecules for each reference molecule with application of similarity
cutoff of 0.85 to supported fingerprints strings data in text fingerprints files present in specific columns and
create a ReferenceFPHexSimilaritySearching.csv file containing reference and database compoundIDs retrieved
from specific columns, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
      SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
      --ReferenceColMode ColLabel --ReferenceFingerprintsCol Fingerprints
      --ReferenceCompoundIDCol CompoundID --DatabaseColMode Collabel
      --DatabaseCompoundIDCol CompoundID --DatabaseFingerprintsCol
      Fingerprints --SimilarityCutoff 0.85 --SimilarCountMode PercentSimilar
      --PercentSimilarMolecules 2 -o
      ReferenceSampleFPHex.csv DatabaseSampleFPHex.csv</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find top 50 most similar database molecules for each reference molecule with application of similarity
cutoff of 0.85 to supported fingerprints strings data in SD fingerprints files present in specific data fields and
create both ReferenceFPHexSimilaritySearching.csv and ReferenceFPHexSimilaritySearching.sdf files containing
reference and database compoundIDs retrieved from specific data fields, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
      SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
      --ReferenceFingerprintsField Fingerprints
      --DatabaseFingerprintsField Fingerprints
      --ReferenceCompoundIDMode DataField --ReferenceCompoundIDField CmpdID
      --DatabaseCompoundIDMode DataField --DatabaseCompoundIDField CmpdID
      --SimilarityCutoff 0.85 --SimilarCountMode NumOfSimilar
      --NumOfSimilarMolecules 50 --output both -o
      ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf</div>
<p>To perform similarity search  using Tanimoto coefficient by treating reference molecules as individual molecules
to find 1 percent of  most similar database molecules for each reference molecule with application of similarity
cutoff to supported fingerprints strings data in SD fingerprints files present in specific data field labels, and create
both ReferenceFPHexSimilaritySearching.csv ReferenceFPHexSimilaritySearching.sdf files containing reference and
database compound IDs retrieved from specific data field labels along with other specific data for database
molecules, type:</p>
<div class="ExampleBox">
    % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
      SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
      --ReferenceFingerprintsField Fingerprints
      --DatabaseFingerprintsField Fingerprints
      --ReferenceCompoundIDMode DataField --ReferenceCompoundIDField CmpdID
      --DatabaseCompoundIDMode DataField --DatabaseCompoundIDField CmpdID
      --DatabaseDataFieldsMode Specify --DatabaseDataFields &quot;TPSA,SLogP&quot;
      --SimilarityCutoff 0.75 --SimilarCountMode PercentSimilar
      --PercentSimilarMolecules 1 --output both --OutDelim comma --quote Yes
      --precision 3 -o ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf</div>
<p>
</p>
<h2>AUTHOR</h2>
<p><a href="mailto:msud@san.rr.com">Manish Sud</a></p>
<p>
</p>
<h2>SEE ALSO</h2>
<p><a href="./InfoFingerprintsFiles.html">InfoFingerprintsFiles.pl</a>,&nbsp<a href="./SimilarityMatricesFingerprints.html">SimilarityMatricesFingerprints.pl</a>,&nbsp<a href="./AtomNeighborhoodsFingerprints.html">AtomNeighborhoodsFingerprints.pl</a>,&nbsp
<a href="./ExtendedConnectivityFingerprints.html">ExtendedConnectivityFingerprints.pl</a>,&nbsp<a href="./MACCSKeysFingerprints.html">MACCSKeysFingerprints.pl</a>,&nbsp<a href="./PathLengthFingerprints.html">PathLengthFingerprints.pl</a>,&nbsp
<a href="./TopologicalAtomPairsFingerprints.html">TopologicalAtomPairsFingerprints.pl</a>,&nbsp<a href="./TopologicalAtomTorsionsFingerprints.html">TopologicalAtomTorsionsFingerprints.pl</a>,&nbsp
<a href="./TopologicalPharmacophoreAtomPairsFingerprints.html">TopologicalPharmacophoreAtomPairsFingerprints.pl</a>,&nbsp<a href="./TopologicalPharmacophoreAtomTripletsFingerprints.html">TopologicalPharmacophoreAtomTripletsFingerprints.pl</a>
</p>
<p>
</p>
<h2>COPYRIGHT</h2>
<p>Copyright (C) 2015 Manish Sud. All rights reserved.</p>
<p>This file is part of MayaChemTools.</p>
<p>MayaChemTools is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.</p>
<p>&nbsp</p><p>&nbsp</p><div class="DocNav">
<table width="100%" border=0 cellpadding=0 cellspacing=2>
<tr align="left" valign="top"><td width="33%" align="left"><a href="./SimilarityMatricesFingerprints.html" title="SimilarityMatricesFingerprints.html">Previous</a>&nbsp;&nbsp;<a href="./index.html" title="Table of Contents">TOC</a>&nbsp;&nbsp;<a href="./SortSDFiles.html" title="SortSDFiles.html">Next</a></td><td width="34%" align="middle"><strong>March 29, 2015</strong></td><td width="33%" align="right"><strong>SimilaritySearchingFingerprints.pl</strong></td></tr>
</table>
</div>
<br />
<center>
<img src="../../images/h2o2.png">
</center>
</body>
</html>