
Graph

use Graph;

use Graph qw(:all);

class provides the following methods:

new, AddCycle, AddEdge, AddEdges, AddPath, AddVertex, AddVertices, ClearCycles, Copy, CopyEdgesProperties,
CopyVerticesAndEdges, CopyVerticesProperties, DeleteCycle, DeleteEdge, DeleteEdgeProperties, DeleteEdgeProperty, DeleteEdges,
DeleteEdgesProperties, DeleteEdgesProperty, DeleteGraphProperties, DeleteGraphProperty, DeletePath, DeleteVertex,
DeleteVertexProperties, DeleteVertexProperty, DeleteVertices, DeleteVerticesProperty, DetectCycles, GetAdjacencyMatrix,
GetAdmittanceMatrix, GetAllPaths, GetAllPathsStartingAt, GetAllPathsStartingAtWithLength, GetAllPathsStartingAtWithLengthUpto,
GetAllPathsWithLength, GetAllPathsWithLengthUpto, GetCircumference, GetConnectedComponentsVertices, GetCycles,
GetCyclesWithEvenSize, GetCyclesWithOddSize, GetCyclesWithSize, GetCyclesWithSizeGreaterThan, GetCyclesWithSizeLessThan,
GetDegree, GetDegreeMatrix, GetDistanceMatrix, GetEdgeCycles, GetEdgeCyclesWithEvenSize, GetEdgeCyclesWithOddSize,
GetEdgeCyclesWithSize, GetEdgeCyclesWithSizeGreaterThan, GetEdgeCyclesWithSizeLessThan, GetEdgeProperties,
GetEdgeProperty, GetEdges, GetEdgesProperty, GetFusedAndNonFusedCycles, GetGirth, GetGraphProperties, GetGraphProperty,
GetIncidenceMatrix, GetIsolatedVertices, GetKirchhoffMatrix, GetLaplacianMatrix, GetLargestCycle, GetLargestEdgeCycle,
GetLargestVertexCycle, GetLeafVertices, GetMaximumDegree, GetMininumDegree, GetNeighborhoodVertices,
GetNeighborhoodVerticesWithRadiusUpto, GetNeighborhoodVerticesWithSuccessors,
GetNeighborhoodVerticesWithSuccessorsAndRadiusUpto, GetNeighbors, GetNormalizedLaplacianMatrix, GetNumOfCycles,
GetNumOfCyclesWithEvenSize, GetNumOfCyclesWithOddSize, GetNumOfCyclesWithSize, GetNumOfCyclesWithSizeGreaterThan,
GetNumOfCyclesWithSizeLessThan, GetNumOfEdgeCycles, GetNumOfEdgeCyclesWithEvenSize, GetNumOfEdgeCyclesWithOddSize,
GetNumOfEdgeCyclesWithSize, GetNumOfEdgeCyclesWithSizeGreaterThan, GetNumOfEdgeCyclesWithSizeLessThan,
GetNumOfVertexCycles, GetNumOfVertexCyclesWithEvenSize, GetNumOfVertexCyclesWithOddSize,
GetNumOfVertexCyclesWithSize, GetNumOfVertexCyclesWithSizeGreaterThan, GetNumOfVertexCyclesWithSizeLessThan, GetPaths,
GetPathsBetween, GetPathsStartingAt, GetPathsStartingAtWithLength, GetPathsStartingAtWithLengthUpto, GetPathsWithLength,
GetPathsWithLengthUpto, GetSiedelAdjacencyMatrix, GetSizeOfLargestCycle, GetSizeOfLargestEdgeCycle,
GetSizeOfLargestVertexCycle, GetSizeOfSmallestCycle, GetSizeOfSmallestEdgeCycle, GetSizeOfSmallestVertexCycle,
GetSmallestCycle, GetSmallestEdgeCycle, GetSmallestVertexCycle, GetTopologicallySortedVertices, GetVertex, GetVertexCycles,
GetVertexCyclesWithEvenSize, GetVertexCyclesWithOddSize, GetVertexCyclesWithSize, GetVertexCyclesWithSizeGreaterThan,
GetVertexCyclesWithSizeLessThan, GetVertexProperties, GetVertexProperty, GetVertexWithLargestDegree,
GetVertexWithSmallestDegree, GetVertices, GetVerticesProperty, GetVerticesWithDegreeLessThan, HasCycle, HasEdge,
HasEdgeProperty, HasEdges, HasFusedCycles, HasGraphProperty, HasPath, HasVertex, HasVertexProperty, HasVertices, IsAcyclic,
IsAcyclicEdge, IsAcyclicVertex, IsCyclic, IsCyclicEdge, IsCyclicVertex, IsGraph, IsIsolatedVertex, IsLeafVertex, IsUnicyclic,
IsUnicyclicEdge, IsUnicyclicVertex, SetActiveCyclicPaths, SetEdgeProperties, SetEdgeProperty, SetEdgesProperty,
SetGraphProperties, SetGraphProperty, SetVertexProperties, SetVertexProperty, SetVerticesProperty, StringifyEdgesProperties,
StringifyGraph, StringifyGraphProperties, StringifyProperties, StringifyVerticesAndEdges, StringifyVerticesProperties,
UpdateEdgeProperty, UpdateVertexProperty

Using specified , method creates a new object and returns newly created object.

Examples:

Adds edges between successive pair of including an additional edge from the last to first vertex ID to complete the
cycle to and returns .

Adds an edge between and in a and returns .

Adds edges between successive pair of in a and returns .

Graph.pm

Page 1www.MayaChemTools.org

NAME

SYNOPSIS

DESCRIPTION

Graph

new

new Graph Graph

AddCycle

AddEdge

AddEdges

METHODS

$NewGraph = new Graph([@VertexIDs]);

$Graph = new Graph();
$Graph = new Graph(@VertexIDs);

$Graph->AddCycle(@VertexIDs);

$Graph->AddEdge($VertexID1, $VertexID2);

$Graph->AddEdges(@VertexIDs);

Graph VertexIDs

VertexIDs
Graph Graph

VertexID1 VertexID2 Graph Graph

VertexIDs Graph Graph

Adds edges between successive pair of in a and returns .

Adds to and returns .

Adds vertices using to and returns .

Delete all cycle properties assigned to graph, vertices, and edges by method.

Copies and its associated data using and returns a new object.

Copies all properties associated with edges from to and returns .

Copies all vertices and edges from to and returns .

Copies all properties associated with vertices from to and returns .

Deletes edges between successive pair of including an additional edge from the last to first vertex ID to complete
the cycle to and returns .

Deletes an edge between and in a and returns .

Deletes all properties associated with edge between and in a and returns .

Deletes associated with edge between and in a and returns .

Deletes edges between successive pair of and returns .

Deletes all properties associated with edges between successive pair of and returns .

Graph.pm

Page 2www.MayaChemTools.org

AddPath

AddVertex

AddVertices

ClearCycles

Copy

Storable::dclone Graph

CopyEdgesProperties

CopyVerticesAndEdges

CopyVerticesProperties

DeleteCycle

DeleteEdge

DeleteEdgeProperties

DeleteEdgeProperty

DeleteEdges

DeleteEdgesProperties

$Graph->AddPath(@VertexIDs);

$Graph->AddVertex($VertexID);

$Graph->AddVertices(@VertexIDs);

$Graph->ClearCycles();

$NewGraph = $Graph->Copy();

$OtherGraph = $Graph->CopyEdgesProperties($OtherGraph);

$OtherGraph = $Graph->CopyVerticesAndEdges($OtherGraph);

$OtherGraph = $Graph->CopyVerticesProperties($OtherGraph);

$Graph->DeleteCycle(@VertexIDs);

$Graph->DeleteEdge($VertexID1, $VertexID2);

$Graph->DeleteEdgeProperties($VertexID1, $VertexID2);

$Graph->DeleteEdgeProperty($PropertyName, $VertexID1, $VertexID2);

$Graph->DeleteEdges(@VertexIDs);

$Graph->DeleteEdgesProperties(@VertexIDs);

VertexIDs Graph Graph

VertexID Graph Graph

VertexIDs Graph Graph

DetectCycles

Graph

Graph $OtherGraph OtherGraph

Graph $OtherGraph OtherGraph

Graph $OtherGraph OtherGraph

VertexIDs
Graph Graph

VertexID1 VertexID2 Graph Graph

VertexID1 VertexID2 Graph Graph

PropertyName VertexID1 VertexID2 Graph Graph

VertexIDs Graph

VertexIDs Graph

Deletes associated with edges between successive pair of and returns .

Deletes all properties associated as graph not including properties associated to vertices or edges and returns .

Deletes a associated as graph property and returns .

Deletes edges between successive pair of in a and returns .

Deletes to and returns .

Deletes all properties associated with and returns .

Deletes a associated with and returns .

Deletes vertices specified in and returns .

Deletes a associated with and returns .

Detect cycles using class and associate found cycles to object as graph properties:
.

Notes:

Returns adjacency matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices, the adjacency matrix for G is a n x n square matrix and its elements Mij are:

Graph.pm

Page 3www.MayaChemTools.org

DeleteEdgesProperty

DeleteGraphProperties

DeleteGraphProperty

DeletePath

DeleteVertex

DeleteVertexProperties

DeleteVertexProperty

DeleteVertices

DeleteVerticesProperty

DetectCycles

CyclesDetection

GetAdjacencyMatrix

$Graph->DeleteEdgesProperty($PropertyName, @VertexIDs);

$Graph->DeleteGraphProperties();

$Graph->DeleteGraphProperty($PropertyName);

$Graph->DeletePath(@VertexIDs);

$Graph->DeleteVertex($VertexID);

$Graph->DeleteVertexProperties($VertexID);

$Graph->DeleteVertexProperty($PropertyName, $VertexID);

$Graph->DeleteVertices(@VertexIDs);

$Graph->DeleteVerticesProperty($PropertyName, @VertexIDs);

$Graph->DetectCycles();

. CyclesDetection class detects all cycles in the graph and filters
them to find independent cycles.

. All cycles related methods in the graph operate on
ActiveCyclicPaths. By default, active cyclic paths correspond
to IndependentCyclicPaths. This behavior can be changed
using SetActiveCyclicPaths method.

$GraphMatrix = $Graph->GetAdjacencyMatrix();

. 0 if i == j

. 1 if i != j and vertex Vi is adjacent to vertex Vj

. 0 if i != j and vertex Vi is not adjacent to vertex Vj

PropertyName VertexIDs Graph

Graph

PropertyName Graph

VertexIDs Graph Graph

VertexID Graph Graph

VertexID Graph

PropertyName VertexID Graph

VertexIDs Graph

PropertyName VertexIDs Graph

Graph ActiveCyclicPaths,
AllCyclicPaths, IndependentCyclicPaths

Graph GraphMatrix

Returns admittance matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices, the adjacency matrix for G is a n x n square matrix and its elements Mij are:

Returns a reference to an array containing objects corresponding to all possible lengths starting from each vertex in
graph with sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is
terminated at a vertex completing the cycle. Duplicate paths are not removed.

Returns an array of objects starting from a of any length with sharing of edges in paths traversed. By
default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

Returns an array of objects starting from a of specified with sharing of edges in paths traversed. By
default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

Returns an array of objects starting from a with length upto a with sharing of edges in paths
traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

Returns a reference to an array containing objects corresponding to paths with starting from each vertex in
graph with sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is
terminated at a vertex completing the cycle. Duplicate paths are not removed.

Returns a reference to an array containing objects corresponding to paths up to specified starting from each
vertex in graph with sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle
is terminated at a vertex completing the cycle. Duplicate paths are not removed.

Returns size of largest cycle in a

Returns an array containing referecens to arrays with vertex IDs for each component sorted in order
of their decreasing size.

Returns an array containing objects corresponding to cycles in a .

Graph.pm

Page 4www.MayaChemTools.org

GetAdmittanceMatrix

GetAllPaths

Path

GetAllPathsStartingAt

GetAllPathsStartingAtWithLength

GetAllPathsStartingAtWithLengthUpto

GetAllPathsWithLength

Path

GetAllPathsWithLengthUpto

Path

GetCircumference

GetConnectedComponentsVertices

GetCycles

$GraphMatrix = $Graph->GetAdmittanceMatrix();

. 0 if i == j

. 1 if i != j and vertex Vi is adjacent to vertex Vj

. 0 if i != j and vertex Vi is not adjacent to vertex Vj

$PathsRef = $Graph->GetAllPaths([$AllowCycles]);

@Paths = $Graph->GetAllPathsStartingAt($StartVertexID,
[$AllowCycles]);

@Paths = $Graph->GetAllPathsStartingAtWithLength($StartVertexID,
$Length, [$AllowCycles]);

@Paths = $Graph->GetAllPathsStartingAtWithLengthUpto($StartVertexID,
$Length, [$AllowCycles]);

$PathsRef = $Graph->GetAllPathsWithLength($Length,
[$AllowCycles]);

$PathsRef = $Graph->GetAllPathsWithLengthUpto($Length,
[$AllowCycles]);

$Circumference = $Graph->GetCircumference();

@ConnectedComponents = $Graph->GetConnectedComponentsVertices();

@CyclicPaths = $Graphs->GetCycles();

Graph GraphMatrix

Path StartVertexID

Path StartVertexID Length

Path StartVertexID Length

Length

Length

Graph

ConnectedComponents

CyclicPaths Path Graph

Returns an array containing objects corresponding to cycles with even size in a .

Returns an array containing objects corresponding to cycles with odd size in a .

Returns an array containing objects corresponding to cycles with in a .

Returns an array containing objects corresponding to cycles with size greater than in a .

Returns an array containing objects corresponding to cycles with size less than in a .

Returns for in a corresponding to sum of in and out vertex degree values.

Returns degree matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices, the degree matrix for G is a n x n square matrix and its elements Mij are:

Returns distance matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices, the distance matrix for G is a n x n square matrix and its elements Mij are:

In the final matrix, value of constant defined in module corresponds to vertices with no edges.

Returns an array containing objects corresponding to all cycles containing edge between and
in a .

Returns an array containing objects corresponding to cycles with even size containing edge between
and in a .

Returns an array containing objects corresponding to cycles with odd size containing edge between

Graph.pm

Page 5www.MayaChemTools.org

GetCyclesWithEvenSize

GetCyclesWithOddSize

GetCyclesWithSize

GetCyclesWithSizeGreaterThan

GetCyclesWithSizeLessThan

GetDegree

Degree

GetDegreeMatrix

GetDistanceMatrix

BigNumber Constants.pm

GetEdgeCycles

GetEdgeCyclesWithEvenSize

GetEdgeCyclesWithOddSize

@CyclicPaths = $Graph->GetCyclesWithEvenSize();

@CyclicPaths = $Graph->GetCyclesWithOddSize();

@CyclicPaths = $Graph->GetCyclesWithSize($CycleSize);

@CyclicPaths = $Graph->GetCyclesWithSizeGreaterThan($CycleSize);

@CyclicPaths = $Graph->GetCyclesWithSizeGreaterThan($CycleSize);

$Degree = $Graph->GetDegree($VertexID);

$GraphMatrix = $Graph->GetDegreeMatrix();

. deg(Vi) if i == j and deg(Vi) is the degree of vertex Vi

. 0 otherwise

$GraphMatrix = $Graph->GetDistanceMatrix();

. 0 if i == j

. d if i != j and d is the shortest distance between vertex Vi and vertex Vj

@CyclicPaths = $Graph->GetEdgeCycles($VertexID1, $VertexID2);

@CyclicPaths = $Graph->GetEdgeCyclesWithEvenSize($VertexID1,
$VertexID2);

@CyclicPaths = $Graph->GetEdgeCyclesWithOddSize($VertexID1,
$VertexID2);

CyclicPaths Path Graph

CyclicPaths Path Graph

CyclicPaths Path CycleSize Graph

CyclicPaths Path CycleSize Graph

CyclicPaths Path CycleSize Graph

VertexID Graph

Graph GraphMatrix

Graph GraphMatrix

CyclicPaths Path VertexID1
VertexID2 Graph

CyclicPaths Path
VertexID1 VertexID2 Graph

CyclicPaths Path VertexID1

and in a .

Returns an array containing objects corresponding to cycles with size containing edge between
and in a .

Returns an array containing objects corresponding to cycles with size greater than containing edge
between and in a .

Returns an array containing objects corresponding to cycles with size less than containing edge
between and .

Returns a hash containing all and pairs associated with an edge between
and in a .

Returns value of associated with an edge between and in a .

Returns an array with successive pair of IDs corresponding to edges involving or number of edges for
in a .

Returns an array containing property values corresponding to associated with edges between
successive pair of .

Returns references to arrays and containing references to arrays of cyclic objects
corresponding to fuses and non-fused cyclic paths.

Returns size of smallest cycle in a .

Returns a hash containing all and pairs associated with graph in a .

Returns value of associated with graph in a .

Graph.pm

Page 6www.MayaChemTools.org

VertexID2 Graph

CyclicPaths Path CycleSize
VertexID1 VertexID2 Graph

CyclicPaths Path CycleSize
VertexID1 VertexID2 Graph

CyclicPaths Path CycleSize
VertexID1 VertexID2

VertexID1 VertexID2 Graph

PropertyName VertexID1 VertexID2 Graph

EdgeVertexIDs VertexID
VertexID Graph

PropertyValues PropertyName
VertexIDs

FusedCycleSetsRef NonFusedCyclesRef Path

Graph

Graph

PropertyName Graph

GetEdgeCyclesWithSize

GetEdgeCyclesWithSizeGreaterThan

GetEdgeCyclesWithSizeLessThan

GetEdgeProperties

EdgeProperties PropertyName PropertyValue

GetEdgeProperty

GetEdges

GetEdgesProperty

GetFusedAndNonFusedCycles

GetGirth

GetGraphProperties

EdgeProperties PropertyName PropertyValue

GetGraphProperty

GetIncidenceMatrix

@CyclicPaths = $Graph->GetEdgeCyclesWithSize($VertexID1, $VertexID2,
$CycleSize);

@CyclicPaths = $Graph->GetEdgeCyclesWithSizeGreaterThan($VertexID1,
$VertexID2, $CycleSize);

@CyclicPaths = $Graph->GetEdgeCyclesWithSizeLessThan($VertexID1,
$VertexID2, $CycleSize);

%EdgeProperties = $Graph->GetEdgeProperties($VertexID1, $VertexID2);

$Value = $Graph->GetEdgeProperty($PropertyName, $VertexID1, $VertexID2);

@EdgeVertexIDs = $Graph->GetEdges($VertexID);
$NumOfEdges = $Graph->GetEdges($VertexID);

@PropertyValues = $Graph->GetEdgesProperty($PropertyName, @VertexIDs);

($FusedCycleSetsRef, $NonFusedCyclesRef) =
$Graph->GetFusedAndNonFusedCycles();

$Girth = $Graph->GetGirth();

%GraphProperties = $Graph->GetGraphProperties();

$PropertyValue = $Graph->GetGraphProperty($PropertyName);

Returns incidence matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices and e edges, the incidence matrix for G is a n x e matrix its elements Mij are:

Returns an array containing vertices without any edges in .

Returns Kirchhoff matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

is another name for .

Returns Laplacian matrix for as a object with row and column indices corresponding to graph vertices
returned by GetVertices method.

For a simple graph G with n vertices, the Laplacian matrix for G is a n x n square matrix and its elements Mij are:

Returns a cyclic object corresponding to largest cycle in a .

Returns a cyclic object corresponding to largest cycle containing edge between and in a .

Returns a cyclic object corresponding to largest cycle containing in a .

Returns an array containing vertices with degree of 1 in a .

Returns value of maximum vertex degree in a .

Returns value of minimum vertex degree in a .

Returns an array containing references to arrays corresponding to neighborhood vertices around a
specified at all possible radii levels.

Graph.pm

Page 7www.MayaChemTools.org

$GraphMatrix = $Graph->GetIncidenceMatrix();

. 1 if vertex Vi and the edge Ej are incident; in other words, Vi and Ej are related

. 0 otherwise

@VertexIDs = $Graph->GetIsolatedVertices();

$GraphMatrix = $Graph->GetGetKirchhoffMatrix();

$GraphMatrix = $Graph->GetLaplacianMatrix();

. deg(Vi) if i == j and deg(Vi) is the degree of vertex Vi

. -1 if i != j and vertex Vi is adjacent to vertex Vj

. 0 otherwise

$CyclicPath = $Graph->GetLargestCycle();

$CyclicPath = $Graph->GetLargestEdgeCycle($VertexID1, $VertexID2);

$CyclicPath = $Graph->GetLargestVertexCycle($VertexID);

@VertexIDs = $Graph->GetLeafVertices();

$Degree = $Graph->GetMaximumDegree();

$Degree = $Graph->GetMininumDegree();

@VertexNeighborhoods = GetNeighborhoodVertices($StartVertexID);

Graph GraphMatrix

VertexIDs Graph

Graph GraphMatrix

Graph GraphMatrix

Path Graph

Path VertexID1 VertexID2 Graph

Path VertexID Graph

VertexIDs Graph

Graph

Graph

VertexNeighborhoods
StartVertexID

GetIsolatedVertices

GetKirchhoffMatrix

KirchhoffMatrix LaplacianMatrix

GetLaplacianMatrix

GetLargestCycle

GetLargestEdgeCycle

GetLargestVertexCycle

GetLeafVertices

GetMaximumDegree

GetMininumDegree

GetNeighborhoodVertices

GetNeighborhoodVerticesWithRadiusUpto

Returns an array containing references to arrays corresponding to neighborhood vertices around a
specified upto specified levels.

Returns vertex neighborhoods around a specified , along with their successor connected vertices, collected at all
neighborhood radii as an array containing references to arrays with first value corresponding to vertex
ID and second value as reference to an array containing its successor connected vertices.

For a neighborhood vertex at each radius level, the successor connected vertices correspond to the neighborhood vertices at
the next radius level. Consequently, the neighborhood vertices at the last radius level don't contain any successor vertices
which fall outside the range of specified radius.

Returns vertex neighborhoods around a specified , along with their successor connected vertices, collected with
in a specified as an array containing references to arrays with first value corresponding to vertex
ID and second value as reference to a list containing its successor connected vertices.

For a neighborhood vertex at each radius level, the successor connected vertices correspond to the neighborhood vertices at
the next radius level. Consequently, the neighborhood vertices at the last radius level don't contain any successor vertices
which fall outside the range of specified radius.

Returns an array containing vertices connected to of number of neighbors of a in a .

Returns normalized Laplacian matrix for as a object with row and column indices corresponding to graph
vertices returned by GetVertices method.

For a simple graph G with n vertices, the normalized Laplacian matrix L for G is a n x n square matrix and its elements Lij
are:

Returns number of cycles in a .

Returns number of cycles with even size in a .

Returns number of cycles with odd size in a .

Returns number of cycles with in a .

Graph.pm

Page 8www.MayaChemTools.org

@VertexNeighborhoods = GetNeighborhoodVerticesWithRadiusUpto(
$StartVertexID, $Radius);

@VertexNeighborhoods = GetNeighborhoodVerticesWithSuccessors(
$StartVertexID);

@VertexNeighborhoods = GetNeighborhoodVerticesWithSuccessors(
$StartVertexID, $Radius);

@VertexIDs = $Graph->GetNeighbors($VertexID);
$NumOfNeighbors = $Graph->GetNeighbors($VertexID);

$GraphMatrix = $Graph->GetNormalizedLaplacianMatrix();

. 1 if i == j and deg(Vi) != 0

. -1/SQRT(deg(Vi) * deg(Vj)) if i != j and vertex Vi is adjacent to vertex Vj

. 0 otherwise

$NumOfCycles = $Graph->GetNumOfCycles();

$NumOfCycles = $Graph->GetNumOfCyclesWithEvenSize();

$NumOfCycles = $Graph->GetNumOfCyclesWithOddSize();

$NumOfCycles = $Graph->GetNumOfCyclesWithSize($CycleSize);

$NumOfCycles = $Graph->GetNumOfCyclesWithSizeGreaterThan(
$CycleSize);

VertexNeighborhoods
StartVertexID Radius

StartVertexID
VertexNeighborhoods

StartVertexID
Radius VertexNeighborhoods

VertexIDs VertexID VertextID Graph

Graph GraphMatrix

Graph

Graph

Graph

CyclesSize Graph

GetNeighborhoodVerticesWithSuccessors

GetNeighborhoodVerticesWithSuccessorsAndRadiusUpto

GetNeighbors

GetNormalizedLaplacianMatrix

GetNumOfCycles

GetNumOfCyclesWithEvenSize

GetNumOfCyclesWithOddSize

GetNumOfCyclesWithSize

GetNumOfCyclesWithSizeGreaterThan

Returns number of cycles with size greater than in a .

Returns number of cycles with size less than in a .

Returns number of cycles containing edge between and in a .

Returns number of cycles containing edge between and with even size in a .

Returns number of cycles containing edge between and with odd size in a .

Returns number of cycles containing edge between and with size in a .

Returns number of cycles containing edge between and with size greater than size in a .

Returns number of cycles containing edge between and with size less than size in a .

Returns number of cycles containing in a .

Returns number of cycles containing with even size in a .

Returns number of cycles containing with odd size in a .

Returns number of cycles containing with even size in a .

Returns number of cycles containing with size greater than in a .

Graph.pm

Page 9www.MayaChemTools.org

CyclesSize Graph

CyclesSize Graph

VertexID1 VertexID2 Graph

VertexID1 VertexID2 Graph

VertexID1 VertexID2 Graph

VertexID1 VertexID2 CycleSize Graph

VertexID1 VertexID2 CycleSize Graph

VertexID1 VertexID2 CycleSize Graph

VertexID Graph

VertexID Graph

VertexID Graph

VertexID Graph

VertexID CycleSize Graph

GetNumOfCyclesWithSizeLessThan

GetNumOfEdgeCycles

GetNumOfEdgeCyclesWithEvenSize

GetNumOfEdgeCyclesWithOddSize

GetNumOfEdgeCyclesWithSize

GetNumOfEdgeCyclesWithSizeGreaterThan

GetNumOfEdgeCyclesWithSizeLessThan

GetNumOfVertexCycles

GetNumOfVertexCyclesWithEvenSize

GetNumOfVertexCyclesWithOddSize

GetNumOfVertexCyclesWithSize

GetNumOfVertexCyclesWithSizeGreaterThan

GetNumOfVertexCyclesWithSizeLessThan

$NumOfCycles = $Graph->GetNumOfCyclesWithSizeLessThan($CycleSize);

$NumOfCycles = $Graph->GetNumOfEdgeCycles($VertexID1, $VertexID2);

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithEvenSize($VertexID1,
$VertexID2);

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithOddSize($VertexID1,
$VertexID2);

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSize($VertexID1,
$VertexID2, $CycleSize);

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSizeGreaterThan(
$VertexID1, $VertexID2, $CycleSize);

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSizeLessThan(
$VertexID1, $VertexID2, $CycleSize);

$NumOfCycles = $Graph->GetNumOfVertexCycles($VertexID);

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithEvenSize($VertexID);

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithOddSize($VertexID);

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSize($VertexID);

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSizeGreaterThan(
$VertexID, $CycleSize);

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSizeLessThan(

Returns number of cycles containing with size less than in a .

Returns a reference to an array of objects corresponding to paths of all possible lengths starting from each vertex with
no sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

Returns an arrays of objects list of paths between and . For cyclic graphs, the list contains may
contain more than one object.

Returns an array of objects corresponding to all possible lengths starting from a specified with no sharing
of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a vertex
completing the cycle.

Returns an array of objects corresponding to all paths starting from a specified with length and no
sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

Returns an array of objects corresponding to all paths starting from a specified with length upto and
no sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

Returns an array of objects corresponding to to paths starting from each vertex in graph with specified <Length> and
no sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

Returns an array of objects corresponding to to paths starting from each vertex in graph with length upto specified
and no sharing of edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is

terminated at a vertex completing the cycle.

Returns Siedel admittance matrix for as a object with row and column indices corresponding to graph
vertices returned by GetVertices method.

For a simple graph G with n vertices, the Siedal adjacency matrix for G is a n x n square matrix and its elements Mij are:

Returns size of the largest cycle in a .

Graph.pm

Page 10www.MayaChemTools.org

$VertexID, $CycleSize);

$PathsRefs = $Graph->GetPaths([$AllowCycles]);

@Paths = $Graph->GetPathsBetween($StartVertexID, $EndVertexID);

@Paths = $Graph->GetPathsStartingAt($StartVertexID, [$AllowCycles]);

@Paths = $Graph->StartingAtWithLength($StartVertexID, $Length,
$AllowCycles);

@Paths = $Graph->StartingAtWithLengthUpto($StartVertexID, $Length,
$AllowCycles);

@Paths = $Graph->GetPathsWithLength($Length, $AllowCycles);

@Paths = $Graph->GetPathsWithLengthUpto($Length, $AllowCycles);

$GraphMatrix = $Graph->GetSiedelAdjacencyMatrix();

. 0 if i == j

. -1 if i != j and vertex Vi is adjacent to vertex Vj

. 1 if i != j and vertex Vi is not adjacent to vertex Vj

$Size = $Graph->GetSizeOfLargestCycle();

VertexID CycleSize Graph

Path

Path StartVertexID EndVertexID
Path

Path StartVertexID

Path StartVertexID Length

Path StartVertexID Length

Path

Path
Length

Graph GraphMatrix

Graph

GetPaths

GetPathsBetween

GetPathsStartingAt

GetPathsStartingAtWithLength

GetPathsStartingAtWithLengthUpto

GetPathsWithLength

GetPathsWithLengthUpto

GetSiedelAdjacencyMatrix

GetSizeOfLargestCycle

GetSizeOfLargestEdgeCycle

Returns size of the largest cycle containing egde between and in a .

Returns size of the largest cycle containing in a .

Returns size of the smallest cycle in a .

Returns size of the smallest cycle containing egde between and in a .

Returns size of the smallest cycle containing in a .

Returns a cyclic object corresponding to smallest cycle in a .

Returns a cyclic object corresponding to smallest cycle containing edge between and in a .

Returns a cyclic object corresponding to smallest cycle containing in a .

Returns an array of sorted topologically starting from a specified or from an arbitrary vertex ID.

Returns vartex value for in a . Vartex IDs and values are equivalent in the current implementation of .

Returns an array containing objects corresponding to all cycles containing in a .

Returns an array containing objects corresponding to cycles with even size containing in a .

Returns an array containing objects corresponding to cycles with odd size containing in a .

Returns an array containing objects corresponding to cycles with size containing in a

Graph.pm

Page 11www.MayaChemTools.org

$Size = $Graph->GetSizeOfLargestEdgeCycle($VertexID1, $VertexID2);

$Size = $Graph->GetSizeOfLargestVertexCycle($VertexID);

$Size = $Graph->GetSizeOfSmallestCycle();

$Size = $Graph->GetSizeOfSmallestEdgeCycle($VertexID1, $VertexID2);

$Size = $Graph->GetSizeOfSmallestVertexCycle($VertexID);

$CyclicPath = $Graph->GetSmallestCycle();

$CyclicPath = $Graph->GetSmallestEdgeCycle($VertexID1, $VertexID2);

$CyclicPath = $Graph->GetSmallestVertexCycle($VertexID);

@VertexIDs = $Graph->GetTopologicallySortedVertices(
[$RootVertexID]);

$VertexValue = $Graph->GetVertex($VertexID);

@CyclicPaths = $Graph->GetVertexCycles($VertexID);

@CyclicPaths = $Graph->GetVertexCyclesWithEvenSize($VertexID);

@CyclicPaths = $Graph->GetVertexCyclesWithOddSize($VertexID);

@CyclicPaths = $Graph->GetVertexCyclesWithSize($VertexID,
$CycleSize);

VertextID1 VertexID2 Graph

VertextID Graph

Graph

VertextID1 VertexID2 Graph

VertextID Graph

Path Graph

Path VertexID1 VertexID2 Graph

Path VertexID Graph

VertexIDs RootVertexID

VertexID Graph

CyclicPaths Path VertexID Graph

CyclicPaths Path VertexID Graph

CyclicPaths Path VertexID Graph

CyclicPaths Path CycleSize VertexID Graph

GetSizeOfLargestVertexCycle

GetSizeOfSmallestCycle

GetSizeOfSmallestEdgeCycle

GetSizeOfSmallestVertexCycle

GetSmallestCycle

GetSmallestEdgeCycle

GetSmallestVertexCycle

GetTopologicallySortedVertices

GetVertex

Graph

GetVertexCycles

GetVertexCyclesWithEvenSize

GetVertexCyclesWithOddSize

GetVertexCyclesWithSize

.

Returns an array containing objects corresponding to cycles with size greater than containing
in a .

Returns an array containing objects corresponding to cycles with size less than containing
in a .

Returns a hash containing all and pairs associated with a in a
.

Returns value of associated with a in a .

Returns with largest degree in a .

Returns with smallest degree in a .

Returns an array of corresponding to all vertices in a ; in a scalar context, number of vertices is returned.

Returns an array containing property values corresponding to associated with with in a
.

Returns an array of containing vertices with degree less than in a .

Returns 1 or 0 based on whether edges between successive pair of including an additional edge from the last to
first vertex ID exists in a .

Returns 1 or 0 based on whether an edge between and exist in a .

Returns 1 or 0 based on whether has already been associated with an edge between and in
a .

Graph.pm

Page 12www.MayaChemTools.org

GetVertexCyclesWithSizeGreaterThan

GetVertexCyclesWithSizeLessThan

GetVertexProperties

VertexProperties PropertyName PropertyValue

GetVertexProperty

GetVertexWithLargestDegree

VertexID

GetVertexWithSmallestDegree

VertexID

GetVertices

GetVerticesProperty

GetVerticesWithDegreeLessThan

HasCycle

HasEdge

HasEdgeProperty

@CyclicPaths = $Graph->GetVertexCyclesWithSizeGreaterThan($VertexID,
$CycleSize);

@CyclicPaths = $Graph->GetVertexCyclesWithSizeLessThan($VertexID,
$CycleSize);

%VertexProperties = $Graph->GetVertexProperties($VertexID);

$Value = $Graph->GetVertexProperty($PropertyName, $VertexID);

$VertexID = $Graph->GetVertexWithLargestDegree();

$VertexID = $Graph->GetVertexWithSmallestDegree();

@VertexIDs = $Graph->GetVertices();
$VertexCount = $Graph->GetVertices();

@PropertyValues = $Graph->GetVerticesProperty($PropertyName, @VertexIDs);

@VertexIDs = $Graph->GetVerticesWithDegreeLessThan($Degree);

$Status = $Graph->HasCycle(@VertexIDs);

$Status = $Graph->HasEdge($VertexID1, $VertexID2);

$Status = $Graph->HasEdgeProperty($PropertyName, $VertexID1,
$VertexID2);

CyclicPaths Path CycleSize
VertexID Graph

CyclicPaths Path CycleSize VertexID
Graph

VertexID
Graph

PropertyName VertexID Graph

Graph

Graph

VertexIDs Graph

PropertyValues PropertyName VertexIDs
Graph

VertexIDs Degree Graph

VertexIDs
Graph

VertexID1 VertexID2 Graph

PropertyName VertexID1 VertexID2
Graph

Returns an array containing 1s and 0s corresponding to whether edges between successive pairs of
exist in a . In a scalar context, number of edges found is returned.

Returns 1 or 0 based on whether any fused cycles exist in a .

Returns 1 or 0 based on whether has already been associated as a graph property as opposed to vertex or
edge property in a .

Returns 1 or 0 based on whether edges between all successive pairs of exist in a .

Returns 1 or 0 based on whether exists in a .

Returns 1 or 0 based on whether has already been associated with in a .

Returns an array containing 1s and 0s corresponding to whether exist in a . In a scalar context, number of
vertices found is returned.

Returns 0 or 1 based on whether a cycle exist in a .

Returns 0 or 1 based on whether a cycle containing an edge between and exists in a .

Returns 0 or 1 based on whether a cycle containing a exists in a .

Returns 1 or 0 based on whether a cycle exist in a .

Returns 1 or 0 based on whether a cycle containing an edge between and exists in a .

Returns 1 or 0 based on whether a cycle containing a exists in a .

Graph.pm

Page 13www.MayaChemTools.org

HasEdges

HasFusedCycles

HasGraphProperty

HasPath

HasVertex

HasVertexProperty

HasVertices

IsAcyclic

IsAcyclicEdge

IsAcyclicVertex

IsCyclic

IsCyclicEdge

IsCyclicVertex

@EdgesStatus = $Graph->HasEdges(@VertexIDs);
$FoundEdgesCount = $Graph->HasEdges(@VertexIDs);

$Status = $Graph->HasFusedCycles();

$Status = $Graph->HasGraphProperty($PropertyName);

$Status = $Graph->HasPath(@VertexIDs));

$Status = $Graph->HasVertex($VertexID);

$Status = $Graph->HasGraphProperty($HasVertexProperty, $VertexID);

@VerticesStatus = $Graph->HasVertices(@VertexIDs);
$VerticesFoundCount = $Graph->HasVertices(@VertexIDs);

$Status = $Graph->IsAcyclic();

$Status = $Graph->IsAcyclicEdge($VertexID1, $VertexID2);

$Status = $Graph->IsAcyclicVertex($VertexID1);

$Status = $Graph->IsCyclic();

$Status = $Graph->IsCyclicEdge($VertexID1, $VertexID2);

$Status = $Graph->IsCyclicVertex($VertexID1);

EdgesStatus VertexIDs
Graph

Graph

PropertyName
Graph

VertexIDs Graph

VertexID Graph

PropertyName VertexID Graph

VertexIDs Graph

Graph

VertexID1 VertexID2 Graph

VertexID Graph

Graph

VertexID1 VertexID2 Graph

VertexID Graph

Returns 1 or 0 based on whether is a object.

Returns 1 or 0 based on whether is an isolated vertex in a . A vertex with zero as its degree value is
considered an isolated vertex.

Returns 1 or 0 based on whether is an isolated vertex in a . A vertex with one as its degree value is
considered an isolated vertex.

Returns 1 or 0 based on whether only one cycle is present in a .

Returns 1 or 0 based on whether only one cycle contains the edge between and in a .

Returns 1 or 0 based on whether only one cycle contains in a .

Sets the type of cyclic paths to use during all methods related to cycles and returns . Possible values for cyclic paths:
.

Associates property names and values corresponding to successive pairs of values in to an edge between
and in a and returns .

Associates property and to an edge between and in a and returns .

Associates a same property but different for different edges specified using triplets of
via in a .

Associates property names and values hash to graph as opposed to vertex or edge and returns .

Associates property and to graph as opposed to vertex or edge and returns .

Associates property names and values corresponding to successive pairs of values in to in a
and returns .

Graph.pm

Page 14www.MayaChemTools.org

IsGraph

Graph

IsIsolatedVertex

IsLeafVertex

IsUnicyclic

IsUnicyclicEdge

IsUnicyclicVertex

SetActiveCyclicPaths

SetEdgeProperties

SetEdgeProperty

SetEdgesProperty

SetGraphProperties

SetGraphProperty

SetVertexProperties

$Status = Graph::IsGraph($Object);

$Status = $Graph->IsIsolatedVertex($VertexID);

$Status = $Graph->IsLeafVertex($VertexID);

$Status = $Graph->IsUnicyclic();

$Status = $Graph->IsUnicyclicEdge($VertexID1, $VertexID2);

$Status = $Graph->IsUnicyclicVertex($VertexID);

$Graph->SetActiveCyclicPaths($CyclicPathsType);

$Graph->SetEdgeProperties($VertexID1, $VertexID2, @NamesAndValues);

$Graph->SetEdgeProperty($Name, $Value, $VertexID1, $VertexID2);

$Graph->SetEdgesProperty($Name, @ValuesAndVertexIDs);

$Graph->SetGraphProperties(%NamesAndValues);

$Graph->SetGraphProperty($Name, $Value);

$Graph->SetVertexProperties($VertexID, @NamesAndValues);

Object

VertexID Graph

VertexID Graph

Graph

VertexID1 VertexID2 Graph

VertexID Graph

Graph
Independent or All

NamesAndValues
VertexID1 VertexID2 Graph Graph

Name Value VertexID1 VertexID2 Graph Graph

Name Values PropertyValue, $VertexID1,
$VertexID2 ValuesAndVertexIDs graph

NamesAndValues Graph

Name Value Graph

NamesAndValues VertexID Graph
Graph

Associates property and to in a and returns .

Associates a same property but different for different vertices specified using doublets of
via in a .

Returns a string containing information about properties associated with all edges in a object.

Returns a string containing information about object.

Returns a string containing information about properties associated with graph as opposed to vertex. or an edge in a
object

Returns a string containing information about properties associated with graph, vertices, and edges in a object.

Returns a string containing information about vertices and edges in a object.

Returns a string containing information about properties associated with vertices a object.

Updates property for associated with an edge between and and returns .

Updates property for associated with and returns .

Manish Sud <msud@san.rr.com>

CyclesDetection.pm, Path.pm, PathGraph.pm, PathsTraversal.pm

Copyright (C) 2015 Manish Sud. All rights reserved.

This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

Graph.pm

Page 15www.MayaChemTools.org

SetVertexProperty

SetVerticesProperty

StringifyEdgesProperties

StringifyGraph

StringifyGraphProperties

StringifyProperties

StringifyVerticesAndEdges

StringifyVerticesProperties

UpdateEdgeProperty

UpdateVertexProperty

$Graph->SetVertexProperty($Name, $Value, $VertexID);

$Graph->SetVerticesProperty($Name, @ValuesAndVertexIDs));

$String = $Graph->StringifyEdgesProperties();

$String = $Graph->StringifyGraph();

$String = $Graph->StringifyGraphProperties();

$String = $Graph->StringifyProperties();

$String = $Graph->StringifyVerticesAndEdges();

$String = $Graph->StringifyVerticesProperties();

$Graph->UpdateEdgeProperty($Name, $Value, $VertexID1, $VertexID2);

$Graph->UpdateVertexProperty($Name, $Value, $VertexID);

Name Value VertexID Graph Graph

Name Values PropertyValue, $VertexID
ValuesAndVertexIDs graph

Graph

Graph

Graph

Graph

Graph

Graph

Value Name VertexID1 VertexID1 Graph

Value Name VertexID Graph

AUTHOR

SEE ALSO

COPYRIGHT

