Graph::PathsTraversal.pm

NAME
PathsTraversal

SYNOPSIS

use Graph::PathsTraversal;
use Graph::PathsTraversal gw(:all);

DESCRIPTION
PathsTraversal class provides the following methods:

new, Copy, GetConnectedComponentsVertices, GetPaths, GetVertices, GetVerticesDepth,
GetVerticesNeighborhoods, GetVerticesNeighborhoodsWithSuccessors, GetVerticesPredecessors, GetVerticesRoots,
PerformAllPathsSearch, PerformAllPathsSearchWithLength, PerformAllPathsSearchWithLengthUpto,
PerformBreadthFirstSearch, PerformBreadthFirstSearchWithLimit, PerformDepthFirstSearch,
PerformDepthFirstSearchWithLimit, PerformNeighborhoodVerticesSearch,
PerformNeighborhoodVerticesSearchWithRadiusUpto, PerformNeighborhoodVerticesSearchWithSuccessors,
PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto, PerformPathsSearch,
PerformPathsSearchBetween, PerformPathsSearchWithLength, PerformPathsSearchWithLengthUpto, StringifyPaths,
StringifyPathsTraversal, StringifyVerticesDepth, StringifyVerticesNeighborhoods,
StringifyVerticesNeighborhoodsWithSuccessors, StringifyVerticesPredecessors, StringifyVerticesRoots,
StringifyVerticesSuccessors

METHODS
new
$PathsTraversal = new Graph::PathsTraversal ($Graph);
Using specified Graph, new method creates a new PathsTraversal object and returns newly created
PathsTraversal object.
Copy

$PathsTraversal = $PathsTraversal->Copy();

Copies PathsTraversal and its associated data using Storable::dclone and returns a new PathsTraversal
object.
GetConnectedComponentsVertices

@Components = $PathsTraversal->GetConnectedComponentsVertices();
$NumOfComponents = $PathsTraversal->GetConnectedComponentsVertices();

Returns an array of Components containing references to arrays of vertex IDs corresponding to connected
components of graph after a search. In scalar context, the number of connected components is returned.

Connected Components is sorted in descending order of number of vertices in each connected component.

GetPaths

@Paths = $PathsTraversal->GetPaths();
$NumOfPaths = $PathsTraversal->GetPaths();

Returns an array of Paths containing references to arrays of vertex IDs corresponding to to paths traversed
in a graph after a search. In scalar context, number of paths is returned.

Paths array is sorted in ascending order of path lengths.

GetVertices

@Vertices = $PathsTraversal->GetVertices();
$NumOfVertices = $PathsTraversal->GetVertices();

Returns an array containing an ordered list of vertex IDs traversed during a search. In scalar context, the
number of vertices is returned.

GetVerticesDepth

www.MayaChemTools.org Page 1

Graph::PathsTraversal.pm

%VerticesDepth = $PathsTraversal->GetVerticesDepth();

Returns a hash VerticesDepth containing vertex ID and depth from root vertex as a key and value pair for all
vertices traversed during a search.

GetVerticesNeighborhoods

@VerticesNeighborhoods =
$PathsTraversal->GetVerticesNeighborhoods();
$NumOfVerticesNeighborhoods =
$PathsTraversal->GetVerticesNeighborhoods();

Returns an array VerticesNeighborhoods containing references to arrays corresponding to vertices collected at
various neighborhood radii around a specified vertex during a vertex neighborhood search. In scalar
context, the number of neighborhoods is returned.

GetVerticesNeighborhoodsWithSuccessors

@VerticesNeighborhoodsWithSucceessors =
$PathsTraversal->GetVerticesNeighborhoodsWithSuccessors();
$NumOfVerticesNeighborhoodsWithSucceessors =
$PathsTraversal->GetVerticesNeighborhoodsWithSuccessors();

Returns an array VerticesNeighborhoodsWithSucceessors containing references to arrays with first value
corresponding to vertex IDs corresponding to a vertex at a specific neighborhood radius level and second
value a reference to an arraty containing its successors.

GetVerticesPredecessors
%VerticesPredecessors = $PathsTraversal->GetVerticesPredecessors();

Returns a hash VerticesPredecessors containing vertex ID and predecessor vertex ID as key and value pair
for all vertices traversed during a search.

GetVerticesRoots
%VerticesRoots = $PathsTraversal->GetVerticesRoots();

Returns a hash VerticesPredecessors containing vertex ID and root vertex ID as a key and value pair for all
vertices traversed during a search.

PerformAllPathsSearch
$PathsTraversal->PerformAl IPathsSearch($StartVertexID, [$AllowCycles]);
Searches all paths starting from a StartVertexID with sharing of edges in paths traversed and returns
PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the
cycle.

PerformAllPathsSearchWithLength
$PathsTraversal->PerformAl IPathsSearchWithLength($StartVertexID,
$Length, [$AllowCycles]);
Searches all paths starting from StartVertexID of specific Length with sharing of edges in paths traversed and
returns PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the
cycle.

PerformAllPathsSearchWithLengthUpto
$PathsTraversal->PerformAl IPathsSearchWithLengthUpto($StartVertexID,
$Length, [$AllowCycles]);
Searches all paths starting from StartVertexID of length upto a Length with sharing of edges in paths
traversed and returns PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the

www.MayaChemTools.org Page 2

Graph::PathsTraversal.pm

PerforrofgteadthFirstSearch
$PathsTraversal->PerformBreadthFirstSearch();

Performs Breadth First Search (BFS) and returns PathsTraversal.

PerformBreadthFirstSearchWithLimit
$PathsTraversal->PerformBreadthFirstSearchWithLimit($DepthLimit,
[$RootVertexID]);

Performs BFS with depth up to DepthLimit starting at RootVertexID and returns PathsTraversal. By default, root
vertex ID corresponds to an arbitrary vertex.
PerformDepthFirstSearch
$Return = $PathsTraversal->PerformDepthFirstSearch();

Performs Depth First Search (DFS) and returns PathsTraversal.

PerformDepthFirstSearchWithLimit
$PathsTraversal->PerformDepthFirstSearchWithLimit($DepthLimit,
[$RootVertexID]);

Performs DFS with depth up to DepthLimit starting at RootVertexID and returns PathsTraversal. By default, root
vertex ID corresponds to an arbitrary vertex.
PerformNeighborhoodVerticesSearch

$PathsTraversal->PerformNeighborhoodVerticesSearch($StartVertexIiD);

Searches vertices around StartVertexID at all neighborhood radii and returns PathsTraversal object.

PerformNeighborhoodVerticesSearchWithRadiusUpto

$PathsTraversal->PerformNeighborhoodVerticesSearchWithRadiusUpto(
$StartVertexID, $Radius);

Searches vertices around StartVertexID with neighborhood radius up to Radius and returns PathsTraversal
object.
PerformNeighborhoodVerticesSearchWithSuccessors

$PathsTraversal->PerformNeighborhoodVerticesSearchWithSuccessors(
$StartVertexID);

Searches vertices around StartVertexID at all neighborhood radii along with identification of successor
vertices for each vertex found during the traversal and returns PathsTraversal.
PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto

$PathsTraversal->
PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto(
$StartVertexID, $Radius);

Searches vertices around StartVertexID with neighborhood radius upto Radius along with identification of
successor vertices for each vertex found during the traversal and returns PathsTraversal.
PerformPathsSearch
$PathsTraversal->PerformPathsSearch($StartVertexID, [$AllowCycles]);
Searches paths starting from StartVertexID with no sharing of edges in paths traversed and returns
PathsTraversal.
By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the
cycle.
PerformPathsSearchBetween

$PathsTraversal->PerformPathsSearchBetween($StartVertexID, $EndVertexID);

www.MayaChemTools.org Page 3

Graph::PathsTraversal.pm

Searches paths between StartVertexID and EndVertexID and returns PathsTraversal

PerformPathsSearchWithLength
$PathsTraversal->PerformPathsSearchWithLength($StartVertexID, $Length,
[$AllowCycles]);
Searches paths starting from StartVertexID with length Length with no sharing of edges in paths traversed
and returns PathsTraversal.
By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the
cycle.
PerformPathsSearchWithLengthUpto
$PathsTraversal->PerformPathsSearchWithLengthUpto($StartVertexID, $Length,
[$AllowCycles]);
Searches paths starting from StartVertexID with length upto Length with no sharing of edges in paths
traversed and returns PathsTraversal.
By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the
cycle.
StringifyPaths
$String = $PathsTraversal->StringifyPaths();

Returns a string containing information about traversed paths in PathsTraversal object

StringifyPathsTraversal
$String = $PathsTraversal->StringifyPathsTraversal();

Returns a string containing information about PathsTraversal object.
StringifyVerticesDepth
$String = $PathsTraversal->StringifyVerticesDepth();
Returns a string containing information about depth of vertices found during search by PathsTraversal object.

StringifyVerticesNeighborhoods
$String = $PathsTraversal->StringifyVerticesNeighborhoods();

Returns a string containing information about neighborhoods of vertices found during search by
PathsTraversal object.

StringifyVerticesNeighborhoodsWithSuccessors
$String = $PathsTraversal->StringifyVerticesNeighborhoodsWithSuccessors();

Returns a string containing information about neighborhoods of vertices along with their successors found
during search by PathsTraversal object.

StringifyVerticesPredecessors

$String = $PathsTraversal->StringifyVerticesPredecessors();

Returns a string containing information about predecessors of vertices found during search by PathsTraversal
object.

StringifyVerticesRoots
$String = $PathsTraversal->StringifyVerticesRoots();

Returns a string containing information about roots of vertices found during search by PathsTraversal object.

StringifyVerticesSuccessors

$String = $PathsTraversal->StringifyVerticesSuccessors();

www.MayaChemTools.org Page 4

Graph::PathsTraversal.pm

Returns a string containing information about successors of vertices found during search by PathsTraversal
object.

AUTHOR

Manish Sud <msud@san.rr.com>

SEE ALSO
Graph.pm, Path.pm

COPYRIGHT
Copyright (C) 2015 Manish Sud. All rights reserved.

This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

www.MayaChemTools.org Page 5

