Graph.pm

NAME

Graph
SYNOPSIS

use Graph;

use Graph gw(:all);

DESCRIPTION
Graph class provides the following methods:

new, AddCycle, AddEdge, AddEdges, AddPath, AddVertex, AddVertices, ClearCycles, Copy,
CopyEdgesProperties, CopyVerticesAndEdges, CopyVerticesProperties, DeleteCycle, DeleteEdge,
DeleteEdgeProperties, DeleteEdgeProperty, DeleteEdges, DeleteEdgesProperties, DeleteEdgesProperty,
DeleteGraphProperties, DeleteGraphProperty, DeletePath, DeleteVertex, DeleteVertexProperties,
DeleteVertexProperty, DeleteVertices, DeleteVerticesProperty, DetectCycles, GetAdjacencyMatrix,
GetAdmittanceMatrix, GetAllPaths, GetAllPathsStartingAt, GetAllPathsStartingAtWithLength,
GetAllPathsStartingAtWithLengthUpto, GetAllPathsWithLength, GetAllPathsWithLengthUpto, GetCircumference,
GetConnectedComponentsVertices, GetCycles, GetCyclesWithEvenSize, GetCyclesWithOddSize,
GetCyclesWithSize, GetCyclesWithSizeGreaterThan, GetCyclesWithSizeLessThan, GetDegree, GetDegreeMatrix,
GetDistanceMatrix, GetEdgeCycles, GetEdgeCyclesWithEvenSize, GetEdgeCyclesWithOddSize,
GetEdgeCyclesWithSize, GetEdgeCyclesWithSizeGreaterThan, GetEdgeCyclesWithSizeLessThan,
GetEdgeProperties, GetEdgeProperty, GetEdges, GetEdgesProperty, GetFusedAndNonFusedCycles, GetGirth,
GetGraphProperties, GetGraphProperty, GetlncidenceMatrix, GetlsolatedVertices, GetKirchhoffMatrix,
GetLaplacianMatrix, GetLargestCycle, GetLargestEdgeCycle, GetLargestVertexCycle, GetLeafVertices,
GetMaximumbDegree, GetMininumDegree, GetNeighborhoodVertices, GetNeighborhoodVerticesWithRadiusUpto,
GetNeighborhoodVerticesWithSuccessors, GetNeighborhoodVerticesWithSuccessorsAndRadiusUpto,
GetNeighbors, GetNormalizedLaplacianMatrix, GetNumOfCycles, GetNumOfCyclesWithEvenSize,
GetNumOfCyclesWithOddSize, GetNumOfCyclesWithSize, GetNumOfCyclesWithSizeGreaterThan,
GetNumOfCyclesWithSizeLessThan, GetNumOfEdgeCycles, GetNumOfEdgeCyclesWithEvenSize,
GetNumOfEdgeCyclesWithOddSize, GetNumOfEdgeCyclesWithSize, GetNumOfEdgeCyclesWithSizeGreaterThan,
GetNumOfEdgeCyclesWithSizeLessThan, GetNumOfVertexCycles, GetNumOfVertexCyclesWithEvenSize,
GetNumOfVertexCyclesWithOddSize, GetNumOfVertexCyclesWithSize,
GetNumOfVertexCyclesWithSizeGreaterThan, GetNumOfVertexCyclesWithSizeLessThan, GetPaths,
GetPathsBetween, GetPathsStartingAt, GetPathsStartingAtWithLength, GetPathsStartingAtWithLengthUpto,
GetPathsWithLength, GetPathsWithLengthUpto, GetSiedelAdjacencyMatrix, GetSizeOfLargestCycle,
GetSizeOfLargestEdgeCycle, GetSizeOfLargestVertexCycle, GetSizeOfSmallestCycle,
GetSizeOfSmallestEdgeCycle, GetSizeOfSmallestVertexCycle, GetSmallestCycle, GetSmallestEdgeCycle,
GetSmallestVertexCycle, GetTopologicallySortedVertices, GetVertex, GetVertexCycles,
GetVertexCyclesWithEvenSize, GetVertexCyclesWithOddSize, GetVertexCyclesWithSize,
GetVertexCyclesWithSizeGreaterThan, GetVertexCyclesWithSizeLessThan, GetVertexProperties,
GetVertexProperty, GetVertexWithLargestDegree, GetVertexWithSmallestDegree, GetVertices,
GetVerticesProperty, GetVerticesWithDegreeLessThan, HasCycle, HasEdge, HasEdgeProperty, HasEdges,
HasFusedCycles, HasGraphProperty, HasPath, HasVertex, HasVertexProperty, HasVertices, IsAcyclic,
IsAcyclicEdge, IsAcyclicVertex, IsCyclic, IsCyclicEdge, IsCyclicVertex, IsGraph, IslsolatedVertex, IsLeafVertex,
IsUnicyclic, IsUnicyclicEdge, IsUnicyclicVertex, SetActiveCyclicPaths, SetEdgeProperties, SetEdgeProperty,
SetEdgesProperty, SetGraphProperties, SetGraphProperty, SetVertexProperties, SetVertexProperty,
SetVerticesProperty, StringifyEdgesProperties, StringifyGraph, StringifyGraphProperties, StringifyProperties,
StringifyVerticesAndEdges, StringifyVerticesProperties, UpdateEdgeProperty, UpdateVertexProperty

METHODS
new
$NewGraph = new Graph([@VertexIDs]);
Using specified Graph VertexIDs, new method creates a new Graph object and returns newly created
Graph object.
Examples:
$Graph = new Graph(Q);
$Graph = new Graph(@VertexIDs);
AddCycle

$Graph->AddCycle(@VertexIDs);

Adds edges between successive pair of VertexIDs including an additional edge from the last to first
vertex ID to complete the cycle to Graph and returns Graph.

www.MayaChemTools.org Page 1

Graph.pm

AddEdge
$Graph->AddEdge($VertexID1l, $VertexiD2);

Adds an edge between VertexID1 and VertexID2 in a Graph and returns Graph.

AddEdges
$Graph->AddEdges(@VertexIDs);

Adds edges between successive pair of VertexIDs in a Graph and returns Graph.

AddPath
$Graph->AddPath(@vertexIDs);

Adds edges between successive pair of VertexIDs in a Graph and returns Graph.

AddVertex
$Graph->AddVertex($VertexlID);

Adds VertexID to Graph and returns Graph.

AddVertices
$Graph->AddVertices(@VertexIDs);

Adds vertices using VertexIDs to Graph and returns Graph.

ClearCycles
$Graph->ClearCycles();

Delete all cycle properties assigned to graph, vertices, and edges by DetectCycles method.

Copy
$NewGraph = $Graph->Copy();

Copies Graph and its associated data using Storable::dclone and returns a new Graph object.

CopyEdgesProperties
$0therGraph = $Graph->CopyEdgesProperties($0therGraph);

Copies all properties associated with edges from Graph to $OtherGraph and returns OtherGraph.

CopyVerticesAndEdges
$0therGraph = $Graph->CopyVerticesAndEdges($0therGraph);

Copies all vertices and edges from Graph to $OtherGraph and returns OtherGraph.

CopyVerticesProperties

$0therGraph = $Graph->CopyVerticesProperties($0therGraph);

Copies all properties associated with vertices from Graph to $OtherGraph and returns OtherGraph.

DeleteCycle
$Graph->DeleteCycle(@VertexIDs);

Deletes edges between successive pair of VertexIDs including an additional edge from the last to first
vertex ID to complete the cycle to Graph and returns Graph.

DeleteEdge
$Graph->DeleteEdge($VertexID1l, $VertexiD2);

Deletes an edge between VertexID1 and VertexID2 in a Graph and returns Graph.

DeleteEdgeProperties
$Graph->DeleteEdgeProperties($VertexID1l, $VertexID2);

Deletes all properties associated with edge between VertexID1 and VertexID2 in a Graph and returns
Graph.

www.MayaChemTools.org Page 2

Graph.pm

DeleteEdgeProperty
$Graph->DeleteEdgeProperty($PropertyName, $VertexID1l, $VertexiD2);

Deletes PropertyName associated with edge between VertexID1 and VertexID2 in a Graph and returns Graph

DeleteEdges
$Graph->DeleteEdges(@VertexIDs);

Deletes edges between successive pair of VertexIDs and returns Graph.

DeleteEdgesProperties
$Graph->DeleteEdgesProperties(@VertexIDs);

Deletes all properties associated with edges between successive pair of VertexIDs and returns Graph.

DeleteEdgesProperty
$Graph->DeleteEdgesProperty($PropertyName, @VertexIDs);

Deletes PropertyName associated with edges between successive pair of VertexIDs and returns Graph.

DeleteGraphProperties
$Graph->DeleteGraphProperties();

Deletes all properties associated as graph not including properties associated to vertices or edges and
returns Graph.

DeleteGraphProperty
$Graph->DeleteGraphProperty($PropertyName);

Deletes a PropertyName associated as graph property and returns Graph.

DeletePath
$Graph->DeletePath(@VertexIDs);

Deletes edges between successive pair of VertexIDs in a Graph and returns Graph.

DeleteVertex
$Graph->DeleteVertex($VertexID);

Deletes VertexID to Graph and returns Graph.

DeleteVertexProperties

$Graph->DeleteVertexProperties($VertexIiD);

Deletes all properties associated with VertexID and returns Graph.

DeleteVertexProperty
$Graph->DeleteVertexProperty($PropertyName, $VertexIiD);

Deletes a PropertyName associated with VertexID and returns Graph.

DeleteVertices
$Graph->DeleteVertices(@VertexIDs);

Deletes vertices specified in VertexIDs and returns Graph.

DeleteVerticesProperty

$Graph->DeleteVerticesProperty($PropertyName, @VertexIDs);

Deletes a PropertyName associated with VertexIDs and returns Graph.

DetectCycles
$Graph->DetectCycles();

Detect cycles using CyclesDetection class and associate found cycles to Graph object as graph

www.MayaChemTools.org Page 3

Graph.pm

properties: ActiveCyclicPaths, AllCyclicPaths, IndependentCyclicPaths.
Notes:

. CyclesDetection class detects all cycles in the graph and filters
them to find independent cycles.

. All cycles related methods in the graph operate on
ActiveCyclicPaths. By default, active cyclic paths correspond
to IndependentCyclicPaths. This behavior can be changed
using SetActiveCyclicPaths method.

GetAdjacencyMatrix
$GraphMatrix = $Graph->GetAdjacencyMatrix();
Returns adjacency matrix for Graph as a GraphMatrix object with row and column indices corresponding
to graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the adjacency matrix for G is a n x n square matrix and its
elements Mij are:

-0 ifi==]j
-1 if 1 1= j and vertex Vi is adjacent to vertex Vj
.0 if 1 !I= j and vertex Vi is not adjacent to vertex Vj

GetAdmittanceMatrix
$GraphMatrix = $Graph->GetAdmittanceMatrix();
Returns admittance matrix for Graph as a GraphMatrix object with row and column indices corresponding
to graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the adjacency matrix for G is a n x n square matrix and its
elements Mij are:

-0 ifi==]j
-1 if 1 = j and vertex Vi is adjacent to vertex Vj
.0 if 1 I= j and vertex Vi is not adjacent to vertex Vj

GetAllPaths
$PathsRef = $Graph->GetAllPaths([$AllowCycles]);

Returns a reference to an array containing Path objects corresponding to all possible lengths starting
from each vertex in graph with sharing of edges in paths traversed. By default, cycles are included in
paths. A path containing a cycle is terminated at a vertex completing the cycle. Duplicate paths are not
removed.

GetAllPathsStartingAt

@Paths = $Graph->GetAllPathsStartingAt($StartVertexID,
[$AllowCycles]);

Returns an array of Path objects starting from a StartVertexID of any length with sharing of edges in
paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

GetAllPathsStartingAtWithLength

@Paths = $Graph->GetAllPathsStartingAtWithLength($StartVertexID,
$Length, [$AllowCycles]);

Returns an array of Path objects starting from a StartVertexID of specified Length with sharing of edges in
paths traversed. By default, cycles are included in paths. A path containing a cycle is terminated at a
vertex completing the cycle.

GetAllPathsStartingAtWithLengthUpto

@Paths = $Graph->GetAllPathsStartingAtWithLengthUpto($StartVertexID,
$Length, [$AllowCycles]);

Returns an array of Path objects starting from a StartVertexID with length upto a Length with sharing of
edges in paths traversed. By default, cycles are included in paths. A path containing a cycle is
terminated at a vertex completing the cycle.

www.MayaChemTools.org Page 4

Graph.pm

GetAllPathsWithLength

$PathsRef = $Graph->GetAllPathsWithLength($Length,
[$AllowCycles]);

Returns a reference to an array containing Path objects corresponding to paths with Length starting
from each vertex in graph with sharing of edges in paths traversed. By default, cycles are included in
paths. A path containing a cycle is terminated at a vertex completing the cycle. Duplicate paths are not
removed.

GetAllPathsWithLengthUpto

$PathsRef = $Graph->GetAllPathsWithLengthUpto($Length,
[$AllowCycles]);

Returns a reference to an array containing Path objects corresponding to paths up to specified Length
starting from each vertex in graph with sharing of edges in paths traversed. By default, cycles are
included in paths. A path containing a cycle is terminated at a vertex completing the cycle. Duplicate
paths are not removed.

GetCircumference

$Circumference = $Graph->GetCircumference();

Returns size of largest cycle in a Graph

GetConnectedComponentsVertices

@ConnectedComponents = $Graph->GetConnectedComponentsVertices();

Returns an array ConnectedComponents containing referecens to arrays with vertex IDs for each
component sorted in order of their decreasing size.

GetCycles
@CyclicPaths = $Graphs->GetCycles();
Returns an array CyclicPaths containing Path objects corresponding to cycles in a Graph.
GetCyclesWithEvenSize
@CyclicPaths = $Graph->GetCyclesWithEvenSize();
Returns an array CyclicPaths containing Path objects corresponding to cycles with even size in a Graph.
GetCyclesWithOddSize
@CyclicPaths = $Graph->GetCyclesWithOddSize();
Returns an array CyclicPaths containing Path objects corresponding to cycles with odd size in a Graph.
GetCyclesWithSize
@CyclicPaths = $Graph->GetCyclesWithSize($CycleSize);
Returns an array CyclicPaths containing Path objects corresponding to cycles with CycleSize in a Graph.

GetCyclesWithSizeGreaterThan
@CyclicPaths = $Graph->GetCyclesWithSizeGreaterThan($CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size greater than
CycleSize in a Graph.

GetCyclesWithSizeLessThan
@CyclicPaths = $Graph->GetCyclesWithSizeGreaterThan($CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size less than
CycleSize in a Graph.

GetDegree
$Degree = $Graph->GetDegree($VertexID);

Returns Degree for VertexID in a Graph corresponding to sum of in and out vertex degree values.

www.MayaChemTools.org Page 5

Graph.pm

GetDegreeMatrix
$GraphMatrix = $Graph->GetDegreeMatrix();
Returns degree matrix for Graph as a GraphMatrix object with row and column indices corresponding to
graph vertices returned by GetVertices method.
For a simple graph G with n vertices, the degree matrix for G is a n x n square matrix and its elements
Mij are:

. deg(Vi) if 1 == j and deg(Vi) is the degree of vertex Vi
-0 otherwise

GetDistanceMatrix
$GraphMatrix = $Graph->GetDistanceMatrix();

Returns distance matrix for Graph as a GraphMatrix object with row and column indices corresponding to
graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the distance matrix for G is a n x n square matrix and its
elements Mij are:

.0 fi==]j

. d if 1 = j and d is the shortest distance between vertex Vi and vertex Vj

In the final matrix, value of constant BigNumber defined in Constants.pm module corresponds to
vertices with no edges.

GetEdgeCycles
@CyclicPaths = $Graph->GetEdgeCycles($VertexID1l, $VertexID2);

Returns an array CyclicPaths containing Path objects corresponding to all cycles containing edge
between VertexID1 and VertexID2 in a Graph.

GetEdgeCyclesWithEvenSize
@CyclicPaths = $Graph->GetEdgeCyclesWithEvenSize($VertexID1,
$VertexID2);

Returns an array CyclicPaths containing Path objects corresponding to cycles with even size containing
edge between VertexID1 and VertexID2 in a Graph.

GetEdgeCyclesWithOddSize
@CyclicPaths = $Graph->GetEdgeCyclesWithOddSize($VertexID1,
$VertexID2);

Returns an array CyclicPaths containing Path objects corresponding to cycles with odd size containing
edge between VertexID1 and VertexID2 in a Graph.

GetEdgeCyclesWithSize
@CyclicPaths = $Graph->GetEdgeCyclesWithSize($VertexID1l, $VertexID2,
$CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size CycleSize
containing edge between VertexID1 and VertexID2 in a Graph.

GetEdgeCyclesWithSizeGreaterThan
@CyclicPaths = $Graph->GetEdgeCyclesWithSizeGreaterThan($VertexID1,
$VertexID2, $CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size greater than
CycleSize containing edge between VertexID1 and VertexID2 in a Graph.

GetEdgeCyclesWithSizeLessThan

@CyclicPaths = $Graph->GetEdgeCyclesWithSizelLessThan($VertexID1,
$VertexID2, $CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size less than
CycleSize containing edge between VertexID1 and VertexID2.

GetEdgeProperties

www.MayaChemTools.org Page 6

Graph.pm

%EdgeProperties = $Graph->GetEdgeProperties($VertexID1l, $VertexlD2);

Returns a hash EdgeProperties containing all PropertyName and PropertyValue pairs associated
with an edge between VertexID1 and VertexID2 in a Graph.
GetEdgeProperty
$Value = $Graph->GetEdgeProperty($PropertyName, $VertexID1l, $VertexiD2);

Returns value of PropertyName associated with an edge between VertexID1 and VertexID2 in a Graph.

GetEdges

@EdgeVertexIDs = $Graph->GetEdges($VertexID);
$NumOfEdges = $Graph->GetEdges($VertexIiD);

Returns an array EdgeVertexIDs with successive pair of IDs corresponding to edges involving VertexID or
number of edges for VertexID in a Graph.
GetEdgesProperty
@PropertyValues = $Graph->GetEdgesProperty($PropertyName, @VertexIDs);

Returns an array PropertyValues containing property values corresponding to PropertyName associated
with edges between successive pair of VertexIDs.
GetFusedAndNonFusedCycles

($FusedCycleSetsRef, $NonFusedCyclesRef) =
$Graph->GetFusedAndNonFusedCycles();

Returns references to arrays FusedCycleSetsRef and NonFusedCyclesRef containing references to arrays
of cyclic Path objects corresponding to fuses and non-fused cyclic paths.

GetGirth
$Girth = $Graph->GetGirth();
Returns size of smallest cycle in a Graph.

GetGraphProperties
%GraphProperties = $Graph->GetGraphProperties();

Returns a hash EdgeProperties containing all PropertyName and PropertyValue pairs associated
with graph in a Graph.
GetGraphProperty
$PropertyValue = $Graph->GetGraphProperty($PropertyName);

Returns value of PropertyName associated with graph in a Graph.

GetlncidenceMatrix

$GraphMatrix = $Graph->GetlncidenceMatrix();

Returns incidence matrix for Graph as a GraphMatrix object with row and column indices corresponding
to graph vertices returned by GetVertices method.

For a simple graph G with n vertices and e edges, the incidence matrix for G is a n X e matrix its
elements Mij are:

-1 if vertex Vi and the edge Ej are incident; in other words, Vi and Ej are
related
-0 otherwise

GetlsolatedVertices
@VertexIDs = $Graph->GetlsolatedVertices();

Returns an array VertexIDs containing vertices without any edges in Graph.

GetKirchhoffMatrix
$GraphMatrix = $Graph->GetGetKirchhoffMatrix();

www.MayaChemTools.org Page 7

Graph.pm

Returns Kirchhoff matrix for Graph as a GraphMatrix object with row and column indices corresponding to
graph vertices returned by GetVertices method.

KirchhoffMatrix is another name for LaplacianMatrix.

GetLaplacianMatrix
$GraphMatrix = $Graph->GetLaplacianMatrix();
Returns Laplacian matrix for Graph as a GraphMatrix object with row and column indices corresponding
to graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the Laplacian matrix for G is a n x n square matrix and its
elements Mij are:

. deg(Vi) if 1 == j and deg(Vi) is the degree of vertex Vi
. -1 if 1 1= j and vertex Vi is adjacent to vertex Vj
.0 otherwise

GetLargestCycle
$CyclicPath = $Graph->GetLargestCycle();

Returns a cyclic Path object corresponding to largest cycle in a Graph.

GetLargestEdgeCycle
$CyclicPath = $Graph->GetLargestEdgeCycle($VertexID1l, $VertexID2);

Returns a cyclic Path object corresponding to largest cycle containing edge between VertexID1 and
VertexID2 in a Graph.

GetLargestVertexCycle
$CyclicPath = $Graph->GetLargestVertexCycle($VertexID);

Returns a cyclic Path object corresponding to largest cycle containing VertexID in a Graph.

GetLeafVertices
@VertexIDs = $Graph->GetLeafVertices();

Returns an array VertexIDs containing vertices with degree of 1 in a Graph.

GetMaximumbDegree
$Degree = $Graph->GetMaximumDegree();

Returns value of maximum vertex degree in a Graph.
GetMininumDegree
$Degree = $Graph->GetMininumDegree();
Returns value of minimum vertex degree in a Graph.

GetNeighborhoodVertices
@VertexNeighborhoods = GetNeighborhoodVertices($StartVertexID);

Returns an array VertexNeighborhoods containing references to arrays corresponding to neighborhood
vertices around a specified StartVertexID at all possible radii levels.
GetNeighborhoodVerticesWithRadiusUpto

@VertexNeighborhoods = GetNeighborhoodVerticesWithRadiusUpto(
$StartVertexID, $Radius);

Returns an array VertexNeighborhoods containing references to arrays corresponding to neighborhood
vertices around a specified StartVertexID upto specified Radius levels.
GetNeighborhoodVerticesWithSuccessors

@VertexNeighborhoods = GetNeighborhoodVerticesWithSuccessors(
$StartVertexID);

Returns vertex neighborhoods around a specified StartVertexID, along with their successor connected
vertices, collected at all neighborhood radii as an array VertexNeighborhoods containing references to

www.MayaChemTools.org Page 8

Graph.pm

arrays with first value corresponding to vertex ID and second value as reference to an array containing
its successor connected vertices.

For a neighborhood vertex at each radius level, the successor connected vertices correspond to the
neighborhood vertices at the next radius level. Consequently, the neighborhood vertices at the last
radius level don't contain any successor vertices which fall outside the range of specified radius.
GetNeighborhoodVerticesWithSuccessorsAndRadiusUpto
@VertexNeighborhoods = GetNeighborhoodVerticesWithSuccessors(
$StartVertexID, $Radius);

Returns vertex neighborhoods around a specified StartVertexID, along with their successor connected
vertices, collected with in a specified Radius as an array VertexNeighborhoods containing references to
arrays with first value corresponding to vertex ID and second value as reference to a list containing its
successor connected vertices.

For a neighborhood vertex at each radius level, the successor connected vertices correspond to the
neighborhood vertices at the next radius level. Consequently, the neighborhood vertices at the last
radius level don't contain any successor vertices which fall outside the range of specified radius.
GetNeighbors
@VertexIDs = $Graph->GetNeighbors($VertexID);
$NumOfNeighbors = $Graph->GetNeighbors($VvertexID);

Returns an array VertexIDs containing vertices connected to VertexID of number of neighbors of a
VertextID in a Graph.
GetNormalizedLaplacianMatrix
$GraphMatrix = $Graph->GetNormalizedLaplacianMatrix();
Returns normalized Laplacian matrix for Graph as a GraphMatrix object with row and column indices
corresponding to graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the normalized Laplacian matrix L for G is a n X n square matrix
and its elements Lij are:

.1 if 1 == j and deg(Vi) =0
. -1/SQRT(deg(Vi) * deg(Vj)) if i != j and vertex Vi is adjacent to vertex Vj
. 0 otherwise

GetNumOfCycles
$NumOfCycles = $Graph->GetNumOfCycles();
Returns number of cycles in a Graph.
GetNumOfCyclesWithEvenSize
$NumOfCycles = $Graph->GetNumOfCyclesWithEvenSize();
Returns number of cycles with even size in a Graph.
GetNumOfCyclesWithOddSize
$NumOfCycles = $Graph->GetNumOfCyclesWithOddSize();
Returns number of cycles with odd size in a Graph.
GetNumOfCyclesWithSize
$NumOfCycles = $Graph->GetNumOfCyclesWithSize($CycleSize);
Returns number of cycles with CyclesSize in a Graph.

GetNumOfCyclesWithSizeGreaterThan

$NumOfCycles = $Graph->GetNumOfCyclesWithSizeGreaterThan(
$CycleSize);

Returns number of cycles with size greater than CyclesSize in a Graph.

GetNumOfCyclesWithSizeLessThan
$NumOfCycles = $Graph->GetNumOfCyclesWithSizeLessThan($CycleSize);

www.MayaChemTools.org Page 9

Graph.pm

Returns number of cycles with size less than CyclesSize in a Graph.
GetNumOfEdgeCycles
$NumOfCycles = $Graph->GetNumOfEdgeCycles($VertexID1l, $VertexliD2);
Returns number of cycles containing edge between VertexID1 and VertexID2 in a Graph.

GetNumOfEdgeCyclesWithEvenSize

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithEvenSize($VertexID1,
$VertexID2);

Returns number of cycles containing edge between VertexID1 and VertexID2 with even size in a Graph.

GetNumOfEdgeCyclesWithOddSize

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithOddSize($VertexID1,
$VertexID2);

Returns number of cycles containing edge between VertexID1 and VertexID2 with odd size in a Graph.

GetNumOfEdgeCyclesWithSize

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSize($VertexIiD1,
$VertexID2, $CycleSize);

Returns number of cycles containing edge between VertexID1 and VertexID2 with CycleSize size in a Graph

GetNumOfEdgeCyclesWithSizeGreaterThan

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSizeGreaterThan(
$VertexID1, $VertexlID2, $CycleSize);

Returns number of cycles containing edge between VertexID1 and VertexID2 with size greater than
CycleSize size in a Graph.

GetNumOfEdgeCyclesWithSizeLessThan

$NumOfCycles = $Graph->GetNumOfEdgeCyclesWithSizelLessThan(
$VertexID1, $VertexlID2, $CycleSize);

Returns number of cycles containing edge between VertexID1 and VertexID2 with size less than CycleSize
size in a Graph.

GetNumOfVertexCycles
$NumOfCycles = $Graph->GetNumOfVertexCycles($VertexIiD);

Returns number of cycles containing VertexID in a Graph.
GetNumOfVertexCyclesWithEvenSize
$NumOfCycles = $Graph->GetNumOfVertexCyclesWithEvenSize($VertexID);
Returns number of cycles containing VertexID with even size in a Graph.

GetNumOfVertexCyclesWithOddSize
$NumOfCycles = $Graph->GetNumOfVertexCyclesWithOddSize($VertexID);

Returns number of cycles containing VertexID with odd size in a Graph.
GetNumOfVertexCyclesWithSize
$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSize($VertexIiD);
Returns number of cycles containing VertexID with even size in a Graph.

GetNumOfVertexCyclesWithSizeGreaterThan

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSizeGreaterThan(
$VertexID, $CycleSize);

Returns number of cycles containing VertexID with size greater than CycleSize in a Graph.

GetNumOfVertexCyclesWithSizeLessThan

www.MayaChemTools.org Page 10

Graph.pm

$NumOfCycles = $Graph->GetNumOfVertexCyclesWithSizelLessThan(
$VertexID, $CycleSize);

Returns number of cycles containing VertexID with size less than CycleSize in a Graph.

GetPaths
$PathsRefs = $Graph->GetPaths([$AllowCycles]);
Returns a reference to an array of Path objects corresponding to paths of all possible lengths starting

from each vertex with no sharing of edges in paths traversed. By default, cycles are included in paths.
A path containing a cycle is terminated at a vertex completing the cycle.

GetPathsBetween
@Paths = $Graph->GetPathsBetween($StartVertexID, $EndVertexID);
Returns an arrays of Path objects list of paths between StartVertexID and EndVertexID. For cyclic graphs,
the list contains may contain more than one Path object.
GetPathsStartingAt
@Paths = $Graph->GetPathsStartingAt($StartVertexID, [$AllowCycles]);
Returns an array of Path objects corresponding to all possible lengths starting from a specified
StartVertexID with no sharing of edges in paths traversed. By default, cycles are included in paths. A
path containing a cycle is terminated at a vertex completing the cycle.
GetPathsStartingAtWithLength
@Paths = $Graph->StartingAtWithLength($StartVertexID, $Length,
$AllowCycles);

Returns an array of Path objects corresponding to all paths starting from a specified StartVertexID with

length Length and no sharing of edges in paths traversed. By default, cycles are included in paths. A

path containing a cycle is terminated at a vertex completing the cycle.
GetPathsStartingAtWithLengthUpto

@Paths = $Graph->StartingAtWithLengthUpto($StartVertexID, $Length,
$AllowCycles);

Returns an array of Path objects corresponding to all paths starting from a specified StartVertexID with
length upto Length and no sharing of edges in paths traversed. By default, cycles are included in paths.
A path containing a cycle is terminated at a vertex completing the cycle.

GetPathsWithLength

@Paths = $Graph->GetPathsWithLength($Length, $AllowCycles);
Returns an array of Path objects corresponding to to paths starting from each vertex in graph with
specified <Length> and no sharing of edges in paths traversed. By default, cycles are included in
paths. A path containing a cycle is terminated at a vertex completing the cycle.
GetPathsWithLengthUpto
@Paths = $Graph->GetPathsWithLengthUpto($Length, $AllowCycles);
Returns an array of Path objects corresponding to to paths starting from each vertex in graph with
length upto specified Length and no sharing of edges in paths traversed. By default, cycles are included
in paths. A path containing a cycle is terminated at a vertex completing the cycle.
GetSiedelAdjacencyMatrix
$GraphMatrix = $Graph->GetSiedelAdjacencyMatrix();
Returns Siedel admittance matrix for Graph as a GraphMatrix object with row and column indices
corresponding to graph vertices returned by GetVertices method.

For a simple graph G with n vertices, the Siedal adjacency matrix for G is a n X n square matrix and its
elements Mij are:

-0 ifi==]j
. -1 if 1 I= j and vertex Vi is adjacent to vertex Vj
.1 if 1 != j and vertex Vi is not adjacent to vertex Vj

www.MayaChemTools.org Page 11

Graph.pm

GetSizeOfLargestCycle
$Size = $Graph->GetSizeOfLargestCycle();

Returns size of the largest cycle in a Graph.

GetSizeOflLargestEdgeCycle
$Size = $Graph->GetSizeOfLargestEdgeCycle($VertexID1l, $VertexID2);

Returns size of the largest cycle containing egde between VertextID1 and VertexID2 in a Graph.

GetSizeOfLargestVertexCycle
$Size = $Graph->GetSizeOfLargestVertexCycle($VertexIiD);

Returns size of the largest cycle containing VertextID in a Graph.

GetSizeOfSmallestCycle
$Size = $Graph->GetSizeOfSmallestCycle();

Returns size of the smallest cycle in a Graph.

GetSizeOfSmallestEdgeCycle
$Size = $Graph->GetSizeOfSmal lestEdgeCycle($VertexID1l, $VertexlID2);

Returns size of the smallest cycle containing egde between VertextID1 and VertexID2 in a Graph.

GetSizeOfSmallestVertexCycle
$Size = $Graph->GetSizeOfSmal lestVertexCycle($VertexIiD);

Returns size of the smallest cycle containing VertextlD in a Graph.

GetSmallestCycle
$CyclicPath = $Graph->GetSmallestCycle();

Returns a cyclic Path object corresponding to smallest cycle in a Graph.

GetSmallestEdgeCycle
$CyclicPath = $Graph->GetSmal lestEdgeCycle($VertexID1l, $VertexlID2);

Returns a cyclic Path object corresponding to smallest cycle containing edge between VertexID1 and
VertexID2 in a Graph.

GetSmallestVertexCycle
$CyclicPath = $Graph->GetSmal lestVertexCycle($VertexlID);
Returns a cyclic Path object corresponding to smallest cycle containing VertexID in a Graph.

GetTopologicallySortedVertices

@VertexIDs = $Graph->GetTopologicallySortedVertices(
[$RootVertexID]);

Returns an array of VertexIDs sorted topologically starting from a specified RootVertexID or from an
arbitrary vertex ID.

GetVertex
$VertexValue = $Graph->GetVertex($VertexlID);

Returns vartex value for VertexID in a Graph. Vartex IDs and values are equivalent in the current
implementation of Graph.

GetVertexCycles
@CyclicPaths = $Graph->GetVertexCycles($VertexID);

Returns an array CyclicPaths containing Path objects corresponding to all cycles containing VertexID in a
Graph.

GetVertexCyclesWithEvenSize

www.MayaChemTools.org Page 12

Graph.pm

@CyclicPaths = $Graph->GetVertexCyclesWithEvenSize($VertexlID);

Returns an array CyclicPaths containing Path objects corresponding to cycles with even size containing
VertexID in a Graph.

GetVertexCyclesWithOddSize
@CyclicPaths = $Graph->GetVertexCyclesWithOddSize($VertexlID);

Returns an array CyclicPaths containing Path objects corresponding to cycles with odd size containing
VertexID in a Graph.

GetVertexCyclesWithSize

@CyclicPaths = $Graph->GetVertexCyclesWithSize($VertexID,
$CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size CycleSize
containing VertexID in a Graph.

GetVertexCyclesWithSizeGreaterThan

@CyclicPaths = $Graph->GetVertexCyclesWithSizeGreaterThan($VertexID,
$CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size greater than
CycleSize containing VertexID in a Graph.

GetVertexCyclesWithSizeLessThan

@CyclicPaths = $Graph->GetVertexCyclesWithSizeLessThan($VertexID,
$CycleSize);

Returns an array CyclicPaths containing Path objects corresponding to cycles with size less than
CycleSize containing VertexID in a Graph.

GetVertexProperties
%VertexProperties = $Graph->GetVertexProperties($VertexIiD);

Returns a hash VertexProperties containing all PropertyName and PropertyValue pairs associated
with a VertexID in a Graph.

GetVertexProperty
$Value = $Graph->GetVertexProperty($PropertyName, $VertexID);

Returns value of PropertyName associated with a VertexID in a Graph.

GetVertexWithLargestDegree
$VertexID = $Graph->GetVertexWithLargestDegree();

Returns VertexID with largest degree in a Graph.

GetVertexWithSmallestDegree
$VertexID = $Graph->GetVertexWithSmal lestDegree();

Returns VertexID with smallest degree in a Graph.

GetVertices

@VertexIDs = $Graph->GetVertices();
$VertexCount = $Graph->GetVertices();

Returns an array of VertexIDs corresponding to all vertices in a Graph; in a scalar context, number of
vertices is returned.

GetVerticesProperty
@PropertyValues = $Graph->GetVerticesProperty($PropertyName, @VertexIDs);

Returns an array PropertyValues containing property values corresponding to PropertyName associated
with with VertexIDs in a Graph.

GetVerticesWithDegreeLessThan

www.MayaChemTools.org Page 13

Graph.pm

@VertexIDs = $Graph->GetVerticesWithDegreeLessThan($Degree);

Returns an array of VertexIDs containing vertices with degree less than Degree in a Graph.

HasCycle
$Status = $Graph->HasCycle(@VertexIDs);

Returns 1 or O based on whether edges between successive pair of VertexIDs including an additional
edge from the last to first vertex ID exists in a Graph.

HasEdge
$Status = $Graph->HasEdge($VertexID1l, $VertexlID2);

Returns 1 or O based on whether an edge between VertexID1 and VertexID2 exist in a Graph.

HasEdgeProperty

$Status = $Graph->HasEdgeProperty($PropertyName, $VertexIiD1,
$VertexID2);

Returns 1 or O based on whether PropertyName has already been associated with an edge between
VertexID1 and VertexID2 in a Graph.

HasEdges

@EdgesStatus = $Graph->HasEdges(@VertexIDs);
$FoundEdgesCount = $Graph->HasEdges(@VertexIDs);

Returns an array EdgesStatus containing 1s and Os corresponding to whether edges between successive
pairs of VertexIDs exist in a Graph. In a scalar context, number of edges found is returned.

HasFusedCycles
$Status = $Graph->HasFusedCycles();

Returns 1 or O based on whether any fused cycles exist in a Graph.

HasGraphProperty
$Status = $Graph->HasGraphProperty($PropertyName);

Returns 1 or O based on whether PropertyName has already been associated as a graph property as
opposed to vertex or edge property in a Graph.

HasPath
$Status = $Graph->HasPath(@VertexIDs));

Returns 1 or O based on whether edges between all successive pairs of VertexIDs exist in a Graph.

HasVertex
$Status = $Graph->HasVertex($VertexID);

Returns 1 or O based on whether VertexID exists in a Graph.

HasVertexProperty

$Status = $Graph->HasGraphProperty($HasVertexProperty, $VertexID);

Returns 1 or O based on whether PropertyName has already been associated with VertexID in a Graph.

HasVertices

@VerticesStatus = $Graph->HasVertices(@VertexIDs);
$VerticesFoundCount = $Graph->HasVertices(@VertexIDs);

Returns an array containing 1s and Os corresponding to whether VertexIDs exist in a Graph. In a scalar
context, number of vertices found is returned.

IsAcyclic
$Status = $Graph->IsAcyclic();

Returns O or 1 based on whether a cycle exist in a Graph.

www.MayaChemTools.org Page 14

Graph.pm

IsAcyclicEdge
$Status = $Graph->IsAcyclicEdge($VertexID1l, $VertexID2);

Returns O or 1 based on whether a cycle containing an edge between VertexID1 and VertexID2 exists in a
Graph.

IsAcyclicVertex
$Status = $Graph->IsAcyclicVertex($VertexIiDl);

Returns O or 1 based on whether a cycle containing a VertexID exists in a Graph.
IsCyclic
$Status = $Graph->IsCyclic();
Returns 1 or O based on whether a cycle exist in a Graph.

IsCyclicEdge
$Status = $Graph->1sCyclicEdge($VertexID1l, $VertexID2);

Returns 1 or O based on whether a cycle containing an edge between VertexID1 and VertexID2 exists in a
Graph.

IsCyclicVertex
$Status = $Graph->IsCyclicVertex($VertexIiD1l);

Returns 1 or O based on whether a cycle containing a VertexID exists in a Graph.

IsGraph
$Status = Graph::IsGraph($0Object);

Returns 1 or O based on whether Object is a Graph object.

IslsolatedVertex
$Status = $Graph->IslsolatedVertex($VertexIiD);

Returns 1 or O based on whether VertexID is an isolated vertex in a Graph. A vertex with zero as its
degree value is considered an isolated vertex.

IsLeafVertex
$Status = $Graph->IsLeafVertex($VertexlID);

Returns 1 or O based on whether VertexID is an isolated vertex in a Graph. A vertex with one as its
degree value is considered an isolated vertex.

IsUnicyclic
$Status = $Graph->IsUnicyclic();
Returns 1 or O based on whether only one cycle is present in a Graph.

IsUnicyclicEdge
$Status = $Graph->IsUnicyclicEdge($VertexID1, $VertexID2);

Returns 1 or O based on whether only one cycle contains the edge between VertexID1 and VertexID2 in a
Graph.

IsUnicyclicVertex
$Status = $Graph->IsUnicyclicVertex($VertexID);
Returns 1 or O based on whether only one cycle contains VertexID in a Graph.

SetActiveCyclicPaths
$Graph->SetActiveCyclicPaths($CyclicPathsType);

Sets the type of cyclic paths to use during all methods related to cycles and returns Graph. Possible
values for cyclic paths: Independent or All.

www.MayaChemTools.org Page 15

Graph.pm

SetEdgeProperties
$Graph->SetEdgeProperties($VertexID1l, $VertexID2, @NamesAndValues);

Associates property names and values corresponding to successive pairs of values in NamesAndValues to
an edge between VertexID1 and VertexID2 in a Graph and returns Graph.

SetEdgeProperty
$Graph->SetEdgeProperty($Name, $Value, $VertexID1l, $VertexlID2);

Associates property Name and Value to an edge between VertexID1 and VertexID2 in a Graph and returns
Graph.

SetEdgesProperty
$Graph->SetEdgesProperty($Name, @ValuesAndVertexIDs);

Associates a same property Name but different Values for different edges specified using triplets of
PropertyValue, $VertexID1, $VertexID2 via ValuesAndVertexIDs in a graph.

SetGraphProperties
$Graph->SetGraphProperties(%NamesAndValues);

Associates property names and values NamesAndValues hash to graph as opposed to vertex or edge and
returns Graph.

SetGraphProperty
$Graph->SetGraphProperty($Name, $Value);

Associates property Name and Value to graph as opposed to vertex or edge and returns Graph.

SetVertexProperties

$Graph->SetVertexProperties($VertexID, @NamesAndValues);

Associates property names and values corresponding to successive pairs of values in NamesAndValues to
VertexID in a Graph and returns Graph.

SetVertexProperty
$Graph->SetVertexProperty($Name, $Value, $VertexiD);

Associates property Name and Value to VertexID in a Graph and returns Graph.

SetVerticesProperty
$Graph->SetVerticesProperty($Name, @ValuesAndVertexIDs));

Associates a same property Name but different Values for different vertices specified using doublets of
PropertyValue, $VertexID via ValuesAndVertexIDs in a graph.

StringifyEdgesProperties
$String = $Graph->StringifyEdgesProperties();
Returns a string containing information about properties associated with all edges in a Graph object.
StringifyGraph
$String = $Graph->StringifyGraph();
Returns a string containing information about Graph object.
StringifyGraphProperties

$String = $Graph->StringifyGraphProperties();

Returns a string containing information about properties associated with graph as opposed to vertex. or
an edge in a Graph object

StringifyProperties
$String = $Graph->StringifyProperties();

Returns a string containing information about properties associated with graph, vertices, and edges in a

www.MayaChemTools.org Page 16

Graph.pm

Graph object.
StringifyVerticesAndEdges
$String = $Graph->StringifyVerticesAndEdges();
Returns a string containing information about vertices and edges in a Graph object.
StringifyVerticesProperties
$String = $Graph->StringifyVerticesProperties();
Returns a string containing information about properties associated with vertices a Graph object.
UpdateEdgeProperty

$Graph->UpdateEdgeProperty($Name, $Value, $VertexID1l, $VertexliD2);

Updates property Value for Name associated with an edge between VertexID1 and VertexID1 and returns
Graph.

UpdateVertexProperty

$Graph->UpdateVertexProperty($Name, $Value, $VertexID);

Updates property Value for Name associated with VertexID and returns Graph.

AUTHOR

Manish Sud <msud@san.rr.com>

SEE ALSO
CyclesDetection.pm, Path.pm, PathGraph.pm, PathsTraversal.pm

COPYRIGHT
Copyright (C) 2015 Manish Sud. All rights reserved.
This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or (at
your option) any later version.

www.MayaChemTools.org Page 17

