Graph::PathsTraversal.pm

NAME

PathsTraversal

SYNOPSIS
use Graph::PathsTraversal;

use Graph::PathsTraversal qw(:all);

DESCRIPTION
PathsTraversal class provides the following methods:
new, Copy, GetConnectedComponentsVertices, GetPaths, GetVertices, GetVerticesDepth, GetVerticesNeighborhoods,
GetVerticesNeighborhoodsWithSuccessors, GetVerticesPredecessors, GetVerticesRoots, PerformAllPathsSearch,
PerformAllPathsSearchWithLength, PerformAllPathsSearchWithLengthUpto, PerformBreadthFirstSearch,
PerformBreadthFirstSearchWithLimit, PerformDepthFirstSearch, PerformDepthFirstSearchWithLimit,
PerformNeighborhoodVerticesSearch, PerformNeighborhoodVerticesSearchWithRadiusUpto,
PerformNeighborhoodVerticesSearchWithSuccessors, PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto,
PerformPathsSearch, PerformPathsSearchBetween, PerformPathsSearchWithLength, PerformPathsSearchWithLengthUpto,
StringifyPaths, StringifyPathsTraversal, StringifyVerticesDepth, StringifyVerticesNeighborhoods,
StringifyVerticesNeighborhoodsWithSuccessors, StringifyVerticesPredecessors, StringifyVerticesRoots, StringifyVerticesSuccessors
METHODS
new

$PathsTraversal = new Graph::PathsTraversal ($Graph);

Using specified Graph, new method creates a new PathsTraversal object and returns newly created PathsTraversal
object.

Copy
$PathsTraversal = $PathsTraversal->Copy();

Copies PathsTraversal and its associated data using Storable::dclone and returns a new PathsTraversal object.

GetConnectedComponentsVertices

@Components = $PathsTraversal->GetConnectedComponentsVertices();
$NumOfComponents = $PathsTraversal->GetConnectedComponentsVertices();

Returns an array of Components containing references to arrays of vertex IDs corresponding to connected components of
graph after a search. In scalar context, the number of connected components is returned.

Connected Components is sorted in descending order of number of vertices in each connected component.

GetPaths

@Paths = $PathsTraversal->GetPaths();
$NumOfPaths = $PathsTraversal->GetPaths();

Returns an array of Paths containing references to arrays of vertex IDs corresponding to to paths traversed in a graph after
a search. In scalar context, number of paths is returned.

Paths array is sorted in ascending order of path lengths.

GetVertices

@Vertices = $PathsTraversal->GetVertices();
$NumOfVertices = $PathsTraversal->GetVertices();

Returns an array containing an ordered list of vertex IDs traversed during a search. In scalar context, the number of
vertices is returned.
GetVerticesDepth
%VerticesDepth = $PathsTraversal->GetVerticesDepth();

Returns a hash VerticesDepth containing vertex ID and depth from root vertex as a key and value pair for all vertices
traversed during a search.

GetVerticesNeighborhoods

@VerticesNeighborhoods =
$PathsTraversal->GetVerticesNeighborhoods();

$NumOfVerticesNeighborhoods =
$PathsTraversal->GetVerticesNeighborhoods();

Returns an array VerticesNeighborhoods containing references to arrays corresponding to vertices collected at various

www.MayaChemTools.org Page 1

Graph::PathsTraversal.pm

neighborhood radii around a specified vertex during a vertex neighborhood search. In scalar context, the number of
neighborhoods is returned.
GetVerticesNeighborhoodsWithSuccessors

@VerticesNeighborhoodsWithSucceessors =
$PathsTraversal->GetVerticesNeighborhoodsWithSuccessors();

$NumOfVerticesNeighborhoodsWithSucceessors =
$PathsTraversal->GetVerticesNeighborhoodsWithSuccessors();

Returns an array VerticesNeighborhoodsWithSucceessors containing references to arrays with first value corresponding to
vertex IDs corresponding to a vertex at a specific neighborhood radius level and second value a reference to an arraty
containing its successors.
GetVerticesPredecessors
%VerticesPredecessors = $PathsTraversal->GetVerticesPredecessors();
Returns a hash VerticesPredecessors containing vertex ID and predecessor vertex ID as key and value pair for all vertices
traversed during a search.
GetVerticesRoots
%VerticesRoots = $PathsTraversal->GetVerticesRoots();
Returns a hash VerticesPredecessors containing vertex ID and root vertex ID as a key and value pair for all vertices traversed
during a search.
PerformAllPathsSearch
$PathsTraversal->PerformAl IPathsSearch($StartVertexID, [$AllowCycles]);

Searches all paths starting from a StartVertexID with sharing of edges in paths traversed and returns PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

PerformAllPathsSearchWithLength
$PathsTraversal->PerformAl IPathsSearchWithLength($StartVertexID,
$Length, [$AllowCycles]);
Searches all paths starting from StartVertexID of specific Length with sharing of edges in paths traversed and returns
PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

PerformAllPathsSearchWithLengthUpto
$PathsTraversal->PerformAl IPathsSearchWithLengthUpto($StartVertexID,
$Length, [$AllowCycles]);
Searches all paths starting from StartVertexID of length upto a Length with sharing of edges in paths traversed and returns
PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.
PerformBreadthFirstSearch
$PathsTraversal->PerformBreadthFirstSearch();
Performs Breadth First Search (BFS) and returns PathsTraversal.

PerformBreadthFirstSearchWithLimit

$PathsTraversal->PerformBreadthFirstSearchWithLimit($DepthLimit,
[$RootVertexlID]);

Performs BFS with depth up to DepthLimit starting at RootVertexID and returns PathsTraversal. By default, root vertex ID
corresponds to an arbitrary vertex.

PerformDepthFirstSearch
$Return = $PathsTraversal->PerformDepthFirstSearch();

Performs Depth First Search (DFS) and returns PathsTraversal.

PerformDepthFirstSearchWithLimit

$PathsTraversal->PerformDepthFirstSearchWithLimit($DepthLimit,
[$RootVertexID]);

Performs DFS with depth up to DepthLimit starting at RootVertexID and returns PathsTraversal. By default, root vertex ID

www.MayaChemTools.org Page 2

Graph::PathsTraversal.pm

corresponds to an arbitrary vertex.

PerformNeighborhoodVerticesSearch
$PathsTraversal->PerformNeighborhoodVerticesSearch($StartVertexID);

Searches vertices around StartVertexID at all neighborhood radii and returns PathsTraversal object.

PerformNeighborhoodVerticesSearchWithRadiusUpto
$PathsTraversal->PerformNeighborhoodVerticesSearchWithRadiusUpto(
$StartVertexID, $Radius);

Searches vertices around StartVertexID with neighborhood radius up to Radius and returns PathsTraversal object.

PerformNeighborhoodVerticesSearchWithSuccessors
$PathsTraversal->PerformNeighborhoodVerticesSearchWithSuccessors(
$StartVertexID);

Searches vertices around StartVertexID at all neighborhood radii along with identification of successor vertices for each vertex
found during the traversal and returns PathsTraversal.
PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto

$PathsTraversal->
PerformNeighborhoodVerticesSearchWithSuccessorsAndRadiusUpto(
$StartVertexID, $Radius);

Searches vertices around StartVertexID with neighborhood radius upto Radius along with identification of successor vertices
for each vertex found during the traversal and returns PathsTraversal.

PerformPathsSearch
$PathsTraversal->PerformPathsSearch($StartVertexID, [$AllowCycles]);
Searches paths starting from StartVertexID with no sharing of edges in paths traversed and returns PathsTraversal.
By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.
PerformPathsSearchBetween
$PathsTraversal->PerformPathsSearchBetween($StartVertexID, $EndVertexID);

Searches paths between StartVertexID and EndVertexID and returns PathsTraversal

PerformPathsSearchWithLength
$PathsTraversal->PerformPathsSearchWithLength($StartVertexID, $Length,
[$AllowCycles]);
Searches paths starting from StartVertexID with length Length with no sharing of edges in paths traversed and returns
PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

PerformPathsSearchWithLengthUpto

$PathsTraversal->PerformPathsSearchWithLengthUpto($StartVertexID, $Length,
[$AllowCycles]);

Searches paths starting from StartVertexID with length upto Length with no sharing of edges in paths traversed and returns
PathsTraversal.

By default, cycles are included in paths. A path containing a cycle is terminated at a vertex completing the cycle.

StringifyPaths
$String = $PathsTraversal->StringifyPaths();

Returns a string containing information about traversed paths in PathsTraversal object

StringifyPathsTraversal
$String = $PathsTraversal->StringifyPathsTraversal();

Returns a string containing information about PathsTraversal object.

StringifyVerticesDepth
$String = $PathsTraversal->StringifyVerticesDepth();

Returns a string containing information about depth of vertices found during search by PathsTraversal object.

www.MayaChemTools.org Page 3

Graph::PathsTraversal.pm

StringifyVerticesNeighborhoods
$String = $PathsTraversal->StringifyVerticesNeighborhoods();

Returns a string containing information about neighborhoods of vertices found during search by PathsTraversal object.

StringifyVerticesNeighborhoodsWithSuccessors
$String = $PathsTraversal->StringifyVerticesNeighborhoodsWithSuccessors();

Returns a string containing information about neighborhoods of vertices along with their successors found during search by
PathsTraversal object.

StringifyVerticesPredecessors

$String = $PathsTraversal->StringifyVerticesPredecessors();

Returns a string containing information about predecessors of vertices found during search by PathsTraversal object.
StringifyVerticesRoots
$String = $PathsTraversal->StringifyVerticesRoots();
Returns a string containing information about roots of vertices found during search by PathsTraversal object.

StringifyVerticesSuccessors

$String = $PathsTraversal->StringifyVerticesSuccessors();

Returns a string containing information about successors of vertices found during search by PathsTraversal object.

AUTHOR

Manish Sud <msud@san.rr.com>

SEE ALSO
Graph.pm, Path.pm

COPYRIGHT
Copyright (C) 2015 Manish Sud. All rights reserved.

This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

www.MayaChemTools.org Page 4

