Graph::Path.pm

NAME
Path - Path class

SYNOPSIS
use Graph::Path;

use Graph::Path qw(:all);

DESCRIPTION
Path class provides the following methods:
new, AddVertex, AddVertices, Copy, GetCommonVertices, GetEdges, GetEndVertex, GetLength, GetStartVertex,

GetTerminalVertices, GetVertex, GetVertices, IsCycle, IsindependentCyclicPath, IsindependentPath, IsPath, Join, JoinAtVertex,
PopVertex, PushVertex, PushVertices, Reverse, ShiftVertex, StringifyPath, UnshiftVertex, UnshiftVertices

Path is a sequential list of vertices with an edge between two successive vertices. The path becomes a cycle when start vertex and
end vertex are the same.

The following operators are overloaded:

== eq

METHODS
new

$NewPath = new Path(Q);
$NewPath = new Path(@VertexIDs);

Using specified VertexIDs, new method creates a new Path object and returns newly created Path object.

AddVertex
$Path->AddVertex($VertexID);

Adds VertexID to Path and returns Path.
AddVertices
$Path->AddVertices(@VertexIDs);

Adds vertices using VertexIDs to Path and returns Graph.

Copy
$Return = $Path->Copy();

Copies Path and its associated data using Storable::dclone and returns a new Path object.

GetCommonVertices

@CommonVertices = $Path->GetCommonVertices($0therPath);
$NumOfCommonVertices = $Path->GetCommonVertices($0therPath);

Returns an array containing common vertex IDs between two paths. In scalar context, number of common vertices is
returned.

GetEdges

@EdgesVertexIDs = $Path->GetEdges();
$NumOfEdges = $Path->GetEdges();

Returns an array containg successive paris of vertex IDs corresponding to all edges in Path. In scalar context, the number of
edges is returned.

GetEndVertex
$VertexID = $Path->GetEndVertex();

Returns VertexID of end vertex in Path.
GetLength
$Length = $Path->GetLength();
Returns Length of Path corresponding to number of vertices in Path.

GetStartVertex
$VertexID = $Path->GetStartVertex();

www.MayaChemTools.org Page 1

Graph::Path.pm

Returns VertexID of start vertex in Path.

GetTerminalVertices
($StartVertexID, $EndVertexID) = $Path->GetTerminalVertices();

Returns vertex IDs of start and end vertices in Path.
GetVertex
$VertexID = $Path->GetVertex($iIndex);
Returns specific vertex ID from Path corresponding to Index with indicies starting from O.

GetVertices

@Vertices = $Path->GetVertices();
$NumOfVertices = $Path->GetVertices();

Returns an array containing all vertex IDs in Path. In scalar context, number of vertices is returned.
IsCycle
$Status = $Path->IsCycle();
Returns 1 or O based on whether Path is a CyclicPath which has the same start and end vertex IDs.
IsIndependentCyclicPath

$Status = $Path->IslIndependentCyclicPath();

Returns 1 or O based on whether Path is an independent CyclicPath. For a Path to be an independent cyclic path, it must be
a cyclic path and have unique vertices.

IsIndependentPath

$Status = $Path->IslIndependentPath();

Returns 1 or O based on whether Path is an independent Path. For a Path to be an independent path, it must have unique
vertices.

IsPath
$Status = Graph::Path::IsPath();

Returns 1 or O based on whether Object is a Path object

Join

$NewPath = $Path->Join($O0therPath);
$NewPath = $Path->Join(@VertexlIDs);
Joins existing Path with a new path specified as a OtherPath object or an array of VertexIDs and returns NewPath.

In order to successfully join two paths, terminal vertices must have a common vertex. Based on the common terminal
vertex found, additional path vertices are added to the current Path in one of the following four ways:

. EndVertex = NewStartVertex: New path at end of current path with
same vertices order

. EndVertex = NewEndVertex: New path at end of current path with
reversed vertices order

. StartVertex = NewEndVertex: New path at front of current path
with same vertices order

. StartVertex = NewStartVertex: New path at front of current path
with reversed vertices order

JoinAtVertex
$NewPath = $Path->JoinAtVertex($0therPath, $CenterVertexID);

Joins existing Path with OtherPath at a specified CeterVertexID and returns a NewPath.

PopVertex
$Path->PopVertex();

Removes end vertex from Path and returns Path.

www.MayaChemTools.org Page 2

Graph::Path.pm

PushVertex
$Path->PushVertex($VertexID);

Adds VertexID to Path after end vertex and returns Path.
PushVertices
$Path->PushVertices(@VertexIDs);
Adds VertexIDs to Path after end vertex and returns Path.
Reverse
$Path->Reverse();
Reverses order of vertices in Path and returns Path.
ShiftVertex
$Path->ShiftVertex();
Removes start vertex from Path and returns Path.
StringifyPath
$String = $Path->StringifyPath(Q);
Returns a string containing information about Path object.
UnshiftVertex
$Path->UnshiftVertex($VertexID);
Adds VertexID to Path before start vertex and returns Path.
UnshiftVertices

$Path->UnshiftVertices(@VertexIDs);

Adds VertexIDs to Path before start vertex and returns Path.

AUTHOR

Manish Sud <msud@san.rr.com>

SEE ALSO
PathGraph.pm, PathsTraversal.pm

COPYRIGHT
Copyright (C) 2015 Manish Sud. All rights reserved.

This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License

as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

www.MayaChemTools.org

Page 3

