0
|
1 .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.22)
|
|
2 .\"
|
|
3 .\" Standard preamble:
|
|
4 .\" ========================================================================
|
|
5 .de Sp \" Vertical space (when we can't use .PP)
|
|
6 .if t .sp .5v
|
|
7 .if n .sp
|
|
8 ..
|
|
9 .de Vb \" Begin verbatim text
|
|
10 .ft CW
|
|
11 .nf
|
|
12 .ne \\$1
|
|
13 ..
|
|
14 .de Ve \" End verbatim text
|
|
15 .ft R
|
|
16 .fi
|
|
17 ..
|
|
18 .\" Set up some character translations and predefined strings. \*(-- will
|
|
19 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
20 .\" double quote, and \*(R" will give a right double quote. \*(C+ will
|
|
21 .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
|
|
22 .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
|
|
23 .\" nothing in troff, for use with C<>.
|
|
24 .tr \(*W-
|
|
25 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
26 .ie n \{\
|
|
27 . ds -- \(*W-
|
|
28 . ds PI pi
|
|
29 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
30 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
31 . ds L" ""
|
|
32 . ds R" ""
|
|
33 . ds C` ""
|
|
34 . ds C' ""
|
|
35 'br\}
|
|
36 .el\{\
|
|
37 . ds -- \|\(em\|
|
|
38 . ds PI \(*p
|
|
39 . ds L" ``
|
|
40 . ds R" ''
|
|
41 'br\}
|
|
42 .\"
|
|
43 .\" Escape single quotes in literal strings from groff's Unicode transform.
|
|
44 .ie \n(.g .ds Aq \(aq
|
|
45 .el .ds Aq '
|
|
46 .\"
|
|
47 .\" If the F register is turned on, we'll generate index entries on stderr for
|
|
48 .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
|
|
49 .\" entries marked with X<> in POD. Of course, you'll have to process the
|
|
50 .\" output yourself in some meaningful fashion.
|
|
51 .ie \nF \{\
|
|
52 . de IX
|
|
53 . tm Index:\\$1\t\\n%\t"\\$2"
|
|
54 ..
|
|
55 . nr % 0
|
|
56 . rr F
|
|
57 .\}
|
|
58 .el \{\
|
|
59 . de IX
|
|
60 ..
|
|
61 .\}
|
|
62 .\"
|
|
63 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
64 .\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
65 . \" fudge factors for nroff and troff
|
|
66 .if n \{\
|
|
67 . ds #H 0
|
|
68 . ds #V .8m
|
|
69 . ds #F .3m
|
|
70 . ds #[ \f1
|
|
71 . ds #] \fP
|
|
72 .\}
|
|
73 .if t \{\
|
|
74 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
75 . ds #V .6m
|
|
76 . ds #F 0
|
|
77 . ds #[ \&
|
|
78 . ds #] \&
|
|
79 .\}
|
|
80 . \" simple accents for nroff and troff
|
|
81 .if n \{\
|
|
82 . ds ' \&
|
|
83 . ds ` \&
|
|
84 . ds ^ \&
|
|
85 . ds , \&
|
|
86 . ds ~ ~
|
|
87 . ds /
|
|
88 .\}
|
|
89 .if t \{\
|
|
90 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
91 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
92 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
93 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
94 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
95 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
96 .\}
|
|
97 . \" troff and (daisy-wheel) nroff accents
|
|
98 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
99 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
100 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
101 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
102 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
103 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
104 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
105 .ds ae a\h'-(\w'a'u*4/10)'e
|
|
106 .ds Ae A\h'-(\w'A'u*4/10)'E
|
|
107 . \" corrections for vroff
|
|
108 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
109 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
110 . \" for low resolution devices (crt and lpr)
|
|
111 .if \n(.H>23 .if \n(.V>19 \
|
|
112 \{\
|
|
113 . ds : e
|
|
114 . ds 8 ss
|
|
115 . ds o a
|
|
116 . ds d- d\h'-1'\(ga
|
|
117 . ds D- D\h'-1'\(hy
|
|
118 . ds th \o'bp'
|
|
119 . ds Th \o'LP'
|
|
120 . ds ae ae
|
|
121 . ds Ae AE
|
|
122 .\}
|
|
123 .rm #[ #] #H #V #F C
|
|
124 .\" ========================================================================
|
|
125 .\"
|
|
126 .IX Title "GRAPHMATRIX 1"
|
|
127 .TH GRAPHMATRIX 1 "2015-03-29" "perl v5.14.2" "MayaChemTools"
|
|
128 .\" For nroff, turn off justification. Always turn off hyphenation; it makes
|
|
129 .\" way too many mistakes in technical documents.
|
|
130 .if n .ad l
|
|
131 .nh
|
|
132 .SH "NAME"
|
|
133 GraphMatrix
|
|
134 .SH "SYNOPSIS"
|
|
135 .IX Header "SYNOPSIS"
|
|
136 use Graph::GraphMatrix;
|
|
137 .PP
|
|
138 use Graph::GraphMatrix qw(:all);
|
|
139 .SH "DESCRIPTION"
|
|
140 .IX Header "DESCRIPTION"
|
|
141 \&\fBGraphMatrix\fR class provides the following methods:
|
|
142 .PP
|
|
143 new, GenerateAdjacencyMatrix, GenerateAdmittanceMatrix, GenerateDegreeMatrix,
|
|
144 GenerateDistanceMatrix, GenerateIncidenceMatrix, GenerateKirchhoffMatrix,
|
|
145 GenerateLaplacianMatrix, GenerateNormalizedLaplacianMatrix,
|
|
146 GenerateSiedelAdjacencyMatrix, GetColumnIDs, GetMatrix, GetMatrixType, GetRowIDs,
|
|
147 StringifyGraphMatrix
|
|
148 .SS "\s-1METHODS\s0"
|
|
149 .IX Subsection "METHODS"
|
|
150 .IP "\fBnew\fR" 4
|
|
151 .IX Item "new"
|
|
152 .Vb 1
|
|
153 \& $NewGraphMatrix = new Graph::GraphMatrix($Graph);
|
|
154 .Ve
|
|
155 .Sp
|
|
156 Using specified \fIGraph\fR, \fBnew\fR method creates a new \fBGraphMatrix\fR and returns
|
|
157 newly created \fBGraphMatrix\fR.
|
|
158 .IP "\fBGenerateAdjacencyMatrix\fR" 4
|
|
159 .IX Item "GenerateAdjacencyMatrix"
|
|
160 .Vb 1
|
|
161 \& $AdjacencyGraphMatrix = $GraphMatrix\->GenerateAdjacencyMatrix();
|
|
162 .Ve
|
|
163 .Sp
|
|
164 Generates a new \fIAdjacencyGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
165 \&\fIAdjacencyGraphMatrix\fR.
|
|
166 .Sp
|
|
167 For a simple graph G with n vertices, the adjacency matrix for G is a n x n square matrix and
|
|
168 its elements Mij are:
|
|
169 .Sp
|
|
170 .Vb 3
|
|
171 \& . 0 if i == j
|
|
172 \& . 1 if i != j and vertex Vi is adjacent to vertex Vj
|
|
173 \& . 0 if i != j and vertex Vi is not adjacent to vertex Vj
|
|
174 .Ve
|
|
175 .IP "\fBGenerateAdmittanceMatrix\fR" 4
|
|
176 .IX Item "GenerateAdmittanceMatrix"
|
|
177 .Vb 1
|
|
178 \& $AdmittanceGraphMatrix = $GraphMatrix\->GenerateAdmittanceMatrix();
|
|
179 .Ve
|
|
180 .Sp
|
|
181 Generates a new \fIAdmittanceGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
182 \&\fIAdmittanceGraphMatrix\fR.
|
|
183 .Sp
|
|
184 \&\fBAdmittanceMatrix\fR is another name for \fBLaplacianMatrix\fR.
|
|
185 .IP "\fBGenerateDegreeMatrix\fR" 4
|
|
186 .IX Item "GenerateDegreeMatrix"
|
|
187 .Vb 1
|
|
188 \& $DegreeGraphMatrix = $GraphMatrix\->GenerateDegreeMatrix();
|
|
189 .Ve
|
|
190 .Sp
|
|
191 Generates a new \fIDegreeGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
192 \&\fIDegreeGraphMatrix\fR.
|
|
193 .Sp
|
|
194 For a simple graph G with n vertices, the degree matrix for G is a n x n square matrix and
|
|
195 its elements Mij are:
|
|
196 .Sp
|
|
197 .Vb 2
|
|
198 \& . deg(Vi) if i == j and deg(Vi) is the degree of vertex Vi
|
|
199 \& . 0 otherwise
|
|
200 .Ve
|
|
201 .IP "\fBGenerateDistanceMatrix\fR" 4
|
|
202 .IX Item "GenerateDistanceMatrix"
|
|
203 .Vb 1
|
|
204 \& $DistanceGraphMatrix = $GraphMatrix\->GenerateDistanceMatrix();
|
|
205 .Ve
|
|
206 .Sp
|
|
207 Generates a new \fIDistanceGraphMatrix\fR for specified \fBGraph\fR using Floyd-Marshall
|
|
208 algorithm [Ref 67] and returns \fIDistanceGraphMatrix\fR.
|
|
209 .Sp
|
|
210 For a simple graph G with n vertices, the distance matrix for G is a n x n square matrix and
|
|
211 its elements Mij are:
|
|
212 .Sp
|
|
213 .Vb 2
|
|
214 \& . 0 if i == j
|
|
215 \& . d if i != j and d is the shortest distance between vertex Vi and vertex Vj
|
|
216 .Ve
|
|
217 .Sp
|
|
218 In the final matrix, value of constant \fBBigNumber\fR defined in \fBConstants.pm\fR module
|
|
219 corresponds to vertices with no edges.
|
|
220 .IP "\fBGenerateIncidenceMatrix\fR" 4
|
|
221 .IX Item "GenerateIncidenceMatrix"
|
|
222 .Vb 1
|
|
223 \& $IncidenceGraphMatrix = $GraphMatrix\->GenerateIncidenceMatrix();
|
|
224 .Ve
|
|
225 .Sp
|
|
226 Generates a new \fIIncidenceGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
227 \&\fIIncidenceGraphMatrix\fR.
|
|
228 .Sp
|
|
229 For a simple graph G with n vertices and e edges, the incidence matrix for G is a n x e matrix
|
|
230 its elements Mij are:
|
|
231 .Sp
|
|
232 .Vb 2
|
|
233 \& . 1 if vertex Vi and the edge Ej are incident; in other words, Vi and Ej are related
|
|
234 \& . 0 otherwise
|
|
235 .Ve
|
|
236 .IP "\fBGenerateKirchhoffMatrix\fR" 4
|
|
237 .IX Item "GenerateKirchhoffMatrix"
|
|
238 .Vb 1
|
|
239 \& $KirchhoffGraphMatrix = $GraphMatrix\->GenerateKirchhoffMatrix();
|
|
240 .Ve
|
|
241 .Sp
|
|
242 Generates a new \fIKirchhoffGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
243 \&\fIKirchhoffGraphMatrix\fR.
|
|
244 .Sp
|
|
245 \&\fBKirchhoffMatrix\fR is another name for \fBLaplacianMatrix\fR.
|
|
246 .IP "\fBGenerateLaplacianMatrix\fR" 4
|
|
247 .IX Item "GenerateLaplacianMatrix"
|
|
248 .Vb 1
|
|
249 \& $LaplacianGraphMatrix = $GraphMatrix\->GenerateLaplacianMatrix();
|
|
250 .Ve
|
|
251 .Sp
|
|
252 Generates a new \fILaplacianGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
253 \&\fILaplacianGraphMatrix\fR.
|
|
254 .Sp
|
|
255 For a simple graph G with n vertices, the Laplacian matrix for G is a n x n square matrix and
|
|
256 its elements Mij are:
|
|
257 .Sp
|
|
258 .Vb 3
|
|
259 \& . deg(Vi) if i == j and deg(Vi) is the degree of vertex Vi
|
|
260 \& . \-1 if i != j and vertex Vi is adjacent to vertex Vj
|
|
261 \& . 0 otherwise
|
|
262 .Ve
|
|
263 .Sp
|
|
264 The Laplacian matrix is the difference between the degree matrix and adjacency matrix.
|
|
265 .IP "\fBGenerateNormalizedLaplacianMatrix\fR" 4
|
|
266 .IX Item "GenerateNormalizedLaplacianMatrix"
|
|
267 .Vb 1
|
|
268 \& $NormalizedLaplacianGraphMatrix = $GraphMatrix\->GenerateNormalizedLaplacianMatrix();
|
|
269 .Ve
|
|
270 .Sp
|
|
271 Generates a new \fINormalizedLaplacianGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
272 \&\fINormalizedLaplacianGraphMatrix\fR.
|
|
273 .Sp
|
|
274 For a simple graph G with n vertices, the normalized Laplacian matrix L for G is a n x n square
|
|
275 matrix and its elements Lij are:
|
|
276 .Sp
|
|
277 .Vb 3
|
|
278 \& . 1 if i == j and deg(Vi) != 0
|
|
279 \& . \-1/SQRT(deg(Vi) * deg(Vj)) if i != j and vertex Vi is adjacent to vertex Vj
|
|
280 \& . 0 otherwise
|
|
281 .Ve
|
|
282 .IP "\fBGenerateSiedelAdjacencyMatrix\fR" 4
|
|
283 .IX Item "GenerateSiedelAdjacencyMatrix"
|
|
284 .Vb 1
|
|
285 \& $SiedelAdjacencyGraphMatrix = $GraphMatrix\->GenerateSiedelAdjacencyMatrix();
|
|
286 .Ve
|
|
287 .Sp
|
|
288 Generates a new \fISiedelAdjacencyGraphMatrix\fR for specified \fBGraph\fR and returns
|
|
289 \&\fISiedelAdjacencyGraphMatrix\fR.
|
|
290 .Sp
|
|
291 For a simple graph G with n vertices, the Siedal adjacency matrix for G is a n x n square matrix and
|
|
292 its elements Mij are:
|
|
293 .Sp
|
|
294 .Vb 3
|
|
295 \& . 0 if i == j
|
|
296 \& . \-1 if i != j and vertex Vi is adjacent to vertex Vj
|
|
297 \& . 1 if i != j and vertex Vi is not adjacent to vertex Vj
|
|
298 .Ve
|
|
299 .IP "\fBGetColumnIDs\fR" 4
|
|
300 .IX Item "GetColumnIDs"
|
|
301 .Vb 1
|
|
302 \& @ColumnIDs = $GraphMatrix\->GetColumnIDs();
|
|
303 .Ve
|
|
304 .Sp
|
|
305 Returns an array containing any specified column IDs for \fIGraphMatrix\fR.
|
|
306 .IP "\fBGetMatrix\fR" 4
|
|
307 .IX Item "GetMatrix"
|
|
308 .Vb 1
|
|
309 \& $Matrix = $GraphMatrix\->GetMatrix();
|
|
310 .Ve
|
|
311 .Sp
|
|
312 Returns \fIMatrix\fR object corresponding to \fIGraphMatrix\fR object.
|
|
313 .IP "\fBGetMatrixType\fR" 4
|
|
314 .IX Item "GetMatrixType"
|
|
315 .Vb 1
|
|
316 \& $MatrixType = $GraphMatrix\->GetMatrixType();
|
|
317 .Ve
|
|
318 .Sp
|
|
319 Returns \fBMatrixType\fR of \fIGraphMatrix\fR.
|
|
320 .IP "\fBGetRowIDs\fR" 4
|
|
321 .IX Item "GetRowIDs"
|
|
322 .Vb 1
|
|
323 \& @RowIDs = $GraphMatrix\->GetRowIDs();
|
|
324 .Ve
|
|
325 .Sp
|
|
326 Returns an array containing any specified rowIDs IDs for \fIGraphMatrix\fR.
|
|
327 .IP "\fBStringifyGraphMatrix\fR" 4
|
|
328 .IX Item "StringifyGraphMatrix"
|
|
329 .Vb 1
|
|
330 \& $String = $GraphMatrix\->StringifyGraphMatrix();
|
|
331 .Ve
|
|
332 .Sp
|
|
333 Returns a string containing information about \fIGraphMatrix\fR object.
|
|
334 .SH "AUTHOR"
|
|
335 .IX Header "AUTHOR"
|
|
336 Manish Sud <msud@san.rr.com>
|
|
337 .SH "SEE ALSO"
|
|
338 .IX Header "SEE ALSO"
|
|
339 Constants.pm, Graph.pm, Matrix.pm
|
|
340 .SH "COPYRIGHT"
|
|
341 .IX Header "COPYRIGHT"
|
|
342 Copyright (C) 2015 Manish Sud. All rights reserved.
|
|
343 .PP
|
|
344 This file is part of MayaChemTools.
|
|
345 .PP
|
|
346 MayaChemTools is free software; you can redistribute it and/or modify it under
|
|
347 the terms of the \s-1GNU\s0 Lesser General Public License as published by the Free
|
|
348 Software Foundation; either version 3 of the License, or (at your option)
|
|
349 any later version.
|