diff docs/scripts/txt/SimilaritySearchingFingerprints.txt @ 0:4816e4a8ae95 draft default tip

Uploaded
author deepakjadmin
date Wed, 20 Jan 2016 09:23:18 -0500
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/docs/scripts/txt/SimilaritySearchingFingerprints.txt	Wed Jan 20 09:23:18 2016 -0500
@@ -0,0 +1,1456 @@
+NAME
+    SimilaritySearchingFingerprints.pl - Perform similarity search using
+    fingerprints strings data in SD, FP and CSV/TSV text file(s)
+
+SYNOPSIS
+    SimilaritySearchingFingerprints.pl ReferenceFPFile DatabaseFPFile
+
+    SimilaritySearchingFingerprints.pl [--alpha *number*] [--beta *number*]
+    [-b, --BitVectorComparisonMode *TanimotoSimilarity | TverskySimilarity |
+    ...*] [--DatabaseColMode *ColNum | ColLabel*] [--DatabaseCompoundIDCol
+    *col number | col name*] [--DatabaseCompoundIDPrefix *text*]
+    [--DatabaseCompoundIDField *DataFieldName*] [--DatabaseCompoundIDMode
+    *DataField | MolName | LabelPrefix | MolNameOrLabelPrefix*]
+    [--DatabaseDataCols *"DataColNum1, DataColNum2,... " | DataColLabel1,
+    DataCoLabel2,... "*] [--DatabaseDataColsMode *All | Specify |
+    CompoundID*] [--DatabaseDataFields *"FieldLabel1, FieldLabel2,... "*]
+    [--DatabaseDataFieldsMode *All | Common | Specify | CompoundID*]
+    [--DatabaseFingerprintsCol *col number | col name*]
+    [--DatabaseFingerprintsField *FieldLabel*] []--DistanceCutoff *number*]
+    [-d, --detail *InfoLevel*] [-f, --fast] [--FingerprintsMode *AutoDetect
+    | FingerprintsBitVectorString | FingerprintsVectorString*] [-g,
+    --GroupFusionRule *Max, Mean, Median, Min, Sum, Euclidean*]
+    [--GroupFusionApplyCutoff *Yes | No*] [-h, --help] [--InDelim *comma |
+    semicolon*] [-k, --KNN *all | number*] [-m, --mode *IndividualReference
+    | MultipleReferences*] [-n, --NumOfSimilarMolecules *number*]
+    [--OutDelim *comma | tab | semicolon*] [--output *SD | text | both*]
+    [-o, --overwrite] [-p, --PercentSimilarMolecules *number*] [--precision
+    *number*] [-q, --quote *Yes | No*] [--ReferenceColMode *ColNum |
+    ColLabel*] [--ReferenceCompoundIDCol *col number | col name*]
+    [--ReferenceCompoundIDPrefix *text*] [--ReferenceCompoundIDField
+    *DataFieldName*] [--ReferenceCompoundIDMode *DataField | MolName |
+    LabelPrefix | MolNameOrLabelPrefix*] [--ReferenceFingerprintsCol *col
+    number | col name*] [--ReferenceFingerprintsField *FieldLabel*] [-r,
+    --root *RootName*] [-s, --SearchMode *SimilaritySearch |
+    DissimilaritySearch*] [--SimilarCountMode *NumOfSimilar |
+    PercentSimilar*] [--SimilarityCutoff *number*] [-v,
+    --VectorComparisonMode *TanimotoSimilairy | ... | ManhattanDistance |
+    ...*] [--VectorComparisonFormulism *AlgebraicForm | BinaryForm |
+    SetTheoreticForm*] [-w, --WorkingDir dirname] ReferenceFingerprintsFile
+    DatabaseFingerprintsFile
+
+DESCRIPTION
+    Perform molecular similarity search [ Ref 94-113 ] using fingerprint
+    bit-vector or vector strings data in *SD, FP, or CSV/TSV text* files
+    corresponding to *ReferenceFingerprintsFile* and
+    *DatabaseFingerprintsFile*, and generate SD and CSV/TSV text file(s)
+    containing database molecules which are similar to reference
+    molecule(s). The reference molecules are also referred to as query or
+    seed molecules and database molecules as target molecules in the
+    literature.
+
+    The current release of MayaChemTools supports two types of similarity
+    search modes: *IndividualReference or MultipleReferences*. For default
+    value of *MultipleReferences* for -m, --mode option, reference molecules
+    are considered as a set and -g, --GroupFusionRule is used to calculate
+    similarity of a database molecule against reference molecules set. The
+    group fusion rule is also referred to as data fusion of consensus
+    scoring in the literature. However, for *IndividualReference* value of
+    -m, --mode option, reference molecules are treated as individual
+    molecules and each reference molecule is compared against a database
+    molecule by itself to identify similar molecules.
+
+    The molecular dissimilarity search can also be performed using
+    *DissimilaritySearch* value for -s, --SearchMode option. During
+    dissimilarity search or usage of distance comparison coefficient in
+    similarity similarity search, the meaning of fingerprints comparison
+    value is automatically reversed as shown below:
+
+        SeachMode      ComparisonCoefficient  ResultsSort   ComparisonValues
+
+        Similarity     SimilarityCoefficient  Descending    Higher value imples
+                                                            high similarity
+        Similarity     DistanceCoefficient    Ascending     Lower value implies
+                                                            high similarity
+
+        Dissimilarity  SimilarityCoefficient  Ascending     Lower value implies
+                                                            high dissimilarity
+        Dissimilarity  DistanceCoefficient    Descending    Higher value implies
+                                                            high dissimilarity
+
+    During *IndividualReference* value of -m, --Mode option for similarity
+    search, fingerprints bit-vector or vector string of each reference
+    molecule is compared with database molecules using specified similarity
+    or distance coefficients to identify most similar molecules for each
+    reference molecule. Based on value of --SimilarCountMode, up to --n,
+    --NumOfSimilarMolecules or -p, --PercentSimilarMolecules at specified
+    --SimilarityCutoff or --DistanceCutoff are identified for each reference
+    molecule.
+
+    During *MultipleReferences* value -m, --mode option for similarity
+    search, all reference molecules are considered as a set and -g,
+    --GroupFusionRule is used to calculate similarity of a database molecule
+    against reference molecules set either using all reference molecules or
+    number of k-nearest neighbors (k-NN) to a database molecule specified
+    using -k, --kNN. The fingerprints bit-vector or vector string of each
+    reference molecule in a set is compared with a database molecule using a
+    similarity or distance coefficient specified via -b,
+    --BitVectorComparisonMode or -v, --VectorComparisonMode. The reference
+    molecules whose comparison values with a database molecule fall outside
+    specified --SimilarityCutoff or --DistanceCutoff are ignored during
+    *Yes* value of --GroupFusionApplyCutoff. The specified -g,
+    --GroupFusionRule is applied to -k, --kNN reference molecules to
+    calculate final similarity value between a database molecule and
+    reference molecules set.
+
+    The input fingerprints *SD, FP, or Text (CSV/TSV)* files for
+    *ReferenceFingerprintsFile* and *DatabaseTextFile* must contain valid
+    fingerprint bit-vector or vector strings data corresponding to same type
+    of fingerprints.
+
+    The valid fingerprints *SDFile* extensions are *.sdf* and *.sd*. The
+    valid fingerprints *FPFile* extensions are *.fpf* and *.fp*. The valid
+    fingerprints *TextFile (CSV/TSV)* extensions are *.csv* and *.tsv* for
+    comma/semicolon and tab delimited text files respectively. The --indelim
+    option determines the format of *TextFile*. Any file which doesn't
+    correspond to the format indicated by --indelim option is ignored.
+
+    Example of *FP* file containing fingerprints bit-vector string data:
+
+        #
+        # Package = MayaChemTools 7.4
+        # ReleaseDate = Oct 21, 2010
+        #
+        # TimeStamp =  Mon Mar 7 15:14:01 2011
+        #
+        # FingerprintsStringType = FingerprintsBitVector
+        #
+        # Description = PathLengthBits:AtomicInvariantsAtomTypes:MinLength1:...
+        # Size = 1024
+        # BitStringFormat = HexadecimalString
+        # BitsOrder = Ascending
+        #
+        Cmpd1 9c8460989ec8a49913991a6603130b0a19e8051c89184414953800cc21510...
+        Cmpd2 000000249400840040100042011001001980410c000000001010088001120...
+        ... ...
+        ... ..
+
+    Example of *FP* file containing fingerprints vector string data:
+
+        #
+        # Package = MayaChemTools 7.4
+        # ReleaseDate = Oct 21, 2010
+        #
+        # TimeStamp =  Mon Mar 7 15:14:01 2011
+        #
+        # FingerprintsStringType = FingerprintsVector
+        #
+        # Description = PathLengthBits:AtomicInvariantsAtomTypes:MinLength1:...
+        # VectorStringFormat = IDsAndValuesString
+        # VectorValuesType = NumericalValues
+        #
+        Cmpd1 338;C F N O C:C C:N C=O CC CF CN CO C:C:C C:C:N C:CC C:CF C:CN C:
+        N:C C:NC CC:N CC=O CCC CCN CCO CNC NC=O O=CO C:C:C:C C:C:C:N C:C:CC...;
+        33 1 2 5 21 2 2 12 1 3 3 20 2 10 2 2 1 2 2 2 8 2 5 1 1 1 19 2 8 2 2 2 2
+        6 2 2 2 2 2 2 2 2 3 2 2 1 4 1 5 1 1 18 6 2 2 1 2 10 2 1 2 1 2 2 2 2 ...
+        Cmpd2 103;C N O C=N C=O CC CN CO CC=O CCC CCN CCO CNC N=CN NC=O NCN O=C
+        O C CC=O CCCC CCCN CCCO CCNC CNC=N CNC=O CNCN CCCC=O CCCCC CCCCN CC...;
+        15 4 4 1 2 13 5 2 2 15 5 3 2 2 1 1 1 2 17 7 6 5 1 1 1 2 15 8 5 7 2 2 2 2
+        1 2 1 1 3 15 7 6 8 3 4 4 3 2 2 1 2 3 14 2 4 7 4 4 4 4 1 1 1 2 1 1 1 ...
+        ... ...
+        ... ...
+
+    Example of *SD* file containing fingerprints bit-vector string data:
+
+        ... ...
+        ... ...
+        $$$$
+        ... ...
+        ... ...
+        ... ...
+        41 44  0  0  0  0  0  0  0  0999 V2000
+         -3.3652    1.4499    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
+        ... ...
+        2  3  1  0  0  0  0
+        ... ...
+        M  END
+        >  <CmpdID>
+        Cmpd1
+
+        >  <PathLengthFingerprints>
+        FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes:MinLengt
+        h1:MaxLength8;1024;HexadecimalString;Ascending;9c8460989ec8a49913991a66
+        03130b0a19e8051c89184414953800cc2151082844a201042800130860308e8204d4028
+        00831048940e44281c00060449a5000ac80c894114e006321264401600846c050164462
+        08190410805000304a10205b0100e04c0038ba0fad0209c0ca8b1200012268b61c0026a
+        aa0660a11014a011d46
+
+        $$$$
+        ... ...
+        ... ...
+
+    Example of CSV *TextFile* containing fingerprints bit-vector string
+    data:
+
+        "CompoundID","PathLengthFingerprints"
+        "Cmpd1","FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes
+        :MinLength1:MaxLength8;1024;HexadecimalString;Ascending;9c8460989ec8a4
+        9913991a6603130b0a19e8051c89184414953800cc2151082844a20104280013086030
+        8e8204d402800831048940e44281c00060449a5000ac80c894114e006321264401..."
+        ... ...
+        ... ...
+
+    The current release of MayaChemTools supports the following types of
+    fingerprint bit-vector and vector strings:
+
+        FingerprintsVector;AtomNeighborhoods:AtomicInvariantsAtomTypes:MinRadi
+        us0:MaxRadius2;41;AlphaNumericalValues;ValuesString;NR0-C.X1.BO1.H3-AT
+        C1:NR1-C.X3.BO3.H1-ATC1:NR2-C.X1.BO1.H3-ATC1:NR2-C.X3.BO4-ATC1 NR0-C.X
+        1.BO1.H3-ATC1:NR1-C.X3.BO3.H1-ATC1:NR2-C.X1.BO1.H3-ATC1:NR2-C.X3.BO4-A
+        TC1 NR0-C.X2.BO2.H2-ATC1:NR1-C.X2.BO2.H2-ATC1:NR1-C.X3.BO3.H1-ATC1:NR2
+        -C.X2.BO2.H2-ATC1:NR2-N.X3.BO3-ATC1:NR2-O.X1.BO1.H1-ATC1 NR0-C.X2.B...
+
+        FingerprintsVector;AtomTypesCount:AtomicInvariantsAtomTypes:ArbitraryS
+        ize;10;NumericalValues;IDsAndValuesString;C.X1.BO1.H3 C.X2.BO2.H2 C.X2
+        .BO3.H1 C.X3.BO3.H1 C.X3.BO4 F.X1.BO1 N.X2.BO2.H1 N.X3.BO3 O.X1.BO1.H1
+        O.X1.BO2;2 4 14 3 10 1 1 1 3 2
+
+        FingerprintsVector;AtomTypesCount:SLogPAtomTypes:ArbitrarySize;16;Nume
+        ricalValues;IDsAndValuesString;C1 C10 C11 C14 C18 C20 C21 C22 C5 CS F
+        N11 N4 O10 O2 O9;5 1 1 1 14 4 2 1 2 2 1 1 1 1 3 1
+
+        FingerprintsVector;AtomTypesCount:SLogPAtomTypes:FixedSize;67;OrderedN
+        umericalValues;IDsAndValuesString;C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C
+        12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 CS N1 N
+        2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 NS O1 O2 O3 O4 O5 O6 O7 O8
+        O9 O10 O11 O12 OS F Cl Br I Hal P S1 S2 S3 Me1 Me2;5 0 0 0 2 0 0 0 0 1
+        1 0 0 1 0 0 0 14 0 4 2 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0...
+
+        FingerprintsVector;EStateIndicies:ArbitrarySize;11;NumericalValues;IDs
+        AndValuesString;SaaCH SaasC SaasN SdO SdssC SsCH3 SsF SsOH SssCH2 SssN
+        H SsssCH;24.778 4.387 1.993 25.023 -1.435 3.975 14.006 29.759 -0.073 3
+        .024 -2.270
+
+        FingerprintsVector;EStateIndicies:FixedSize;87;OrderedNumericalValues;
+        ValuesString;0 0 0 0 0 0 0 3.975 0 -0.073 0 0 24.778 -2.270 0 0 -1.435
+        4.387 0 0 0 0 0 0 3.024 0 0 0 0 0 0 0 1.993 0 29.759 25.023 0 0 0 0 1
+        4.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+        0 0 0 0 0 0 0 0 0 0 0 0 0 0
+
+        FingerprintsVector;ExtendedConnectivity:AtomicInvariantsAtomTypes:Radi
+        us2;60;AlphaNumericalValues;ValuesString;73555770 333564680 352413391
+        666191900 1001270906 1371674323 1481469939 1977749791 2006158649 21414
+        08799 49532520 64643108 79385615 96062769 273726379 564565671 85514103
+        5 906706094 988546669 1018231313 1032696425 1197507444 1331250018 1338
+        532734 1455473691 1607485225 1609687129 1631614296 1670251330 17303...
+
+        FingerprintsVector;ExtendedConnectivityCount:AtomicInvariantsAtomTypes
+        :Radius2;60;NumericalValues;IDsAndValuesString;73555770 333564680 3524
+        13391 666191900 1001270906 1371674323 1481469939 1977749791 2006158649
+        2141408799 49532520 64643108 79385615 96062769 273726379 564565671...;
+        3 2 1 1 14 1 2 10 4 3 1 1 1 1 2 1 2 1 1 1 2 3 1 1 2 1 3 3 8 2 2 2 6 2
+        1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1
+
+        FingerprintsBitVector;ExtendedConnectivityBits:AtomicInvariantsAtomTyp
+        es:Radius2;1024;BinaryString;Ascending;0000000000000000000000000000100
+        0000000001010000000110000011000000000000100000000000000000000000100001
+        1000000110000000000000000000000000010011000000000000000000000000010000
+        0000000000000000000000000010000000000000000001000000000000000000000000
+        0000000000010000100001000000000000101000000000000000100000000000000...
+
+        FingerprintsVector;ExtendedConnectivity:FunctionalClassAtomTypes:Radiu
+        s2;57;AlphaNumericalValues;ValuesString;24769214 508787397 850393286 8
+        62102353 981185303 1231636850 1649386610 1941540674 263599683 32920567
+        1 571109041 639579325 683993318 723853089 810600886 885767127 90326012
+        7 958841485 981022393 1126908698 1152248391 1317567065 1421489994 1455
+        632544 1557272891 1826413669 1983319256 2015750777 2029559552 20404...
+
+        FingerprintsVector;ExtendedConnectivity:EStateAtomTypes:Radius2;62;Alp
+        haNumericalValues;ValuesString;25189973 528584866 662581668 671034184
+        926543080 1347067490 1738510057 1759600920 2034425745 2097234755 21450
+        44754 96779665 180364292 341712110 345278822 386540408 387387308 50430
+        1706 617094135 771528807 957666640 997798220 1158349170 1291258082 134
+        1138533 1395329837 1420277211 1479584608 1486476397 1487556246 1566...
+
+        FingerprintsBitVector;MACCSKeyBits;166;BinaryString;Ascending;00000000
+        0000000000000000000000000000000001001000010010000000010010000000011100
+        0100101010111100011011000100110110000011011110100110111111111111011111
+        11111111111110111000
+
+        FingerprintsBitVector;MACCSKeyBits;322;BinaryString;Ascending;11101011
+        1110011111100101111111000111101100110000000000000011100010000000000000
+        0000000000000000000000000000000000000000000000101000000000000000000000
+        0000000000000000000000000000000000000000000000000000000000000000000000
+        0000000000000000000000000000000000000011000000000000000000000000000000
+        0000000000000000000000000000000000000000
+
+        FingerprintsVector;MACCSKeyCount;166;OrderedNumericalValues;ValuesStri
+        ng;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+        0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0
+        0 0 0 0 1 1 8 0 0 0 1 0 0 1 0 1 0 1 0 3 1 3 1 0 0 0 1 2 0 11 1 0 0 0
+        5 0 0 1 2 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 4 0 0 1 1 0 4 6 1 1 1 2 1 1
+        3 5 2 2 0 5 3 5 1 1 2 5 1 2 1 2 4 8 3 5 5 2 2 0 3 5 4 1
+
+        FingerprintsVector;MACCSKeyCount;322;OrderedNumericalValues;ValuesStri
+        ng;14 8 2 0 2 0 4 4 2 1 4 0 0 2 5 10 5 2 1 0 0 2 0 5 13 3 28 5 5 3 0 0
+        0 4 2 1 1 0 1 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 5 3 0 0 0 1 0
+        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 2 0 0 0 0 0 0 0 0 0
+        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
+
+        FingerprintsBitVector;PathLengthBits:AtomicInvariantsAtomTypes:MinLeng
+        th1:MaxLength8;1024;BinaryString;Ascending;001000010011010101011000110
+        0100010101011000101001011100110001000010001001101000001001001001001000
+        0010110100000111001001000001001010100100100000000011000000101001011100
+        0010000001000101010100000100111100110111011011011000000010110111001101
+        0101100011000000010001000011000010100011101100001000001000100000000...
+
+        FingerprintsVector;PathLengthCount:AtomicInvariantsAtomTypes:MinLength
+        1:MaxLength8;432;NumericalValues;IDsAndValuesPairsString;C.X1.BO1.H3 2
+        C.X2.BO2.H2 4 C.X2.BO3.H1 14 C.X3.BO3.H1 3 C.X3.BO4 10 F.X1.BO1 1 N.X
+        2.BO2.H1 1 N.X3.BO3 1 O.X1.BO1.H1 3 O.X1.BO2 2 C.X1.BO1.H3C.X3.BO3.H1
+        2 C.X2.BO2.H2C.X2.BO2.H2 1 C.X2.BO2.H2C.X3.BO3.H1 4 C.X2.BO2.H2C.X3.BO
+        4 1 C.X2.BO2.H2N.X3.BO3 1 C.X2.BO3.H1:C.X2.BO3.H1 10 C.X2.BO3.H1:C....
+
+        FingerprintsVector;PathLengthCount:MMFF94AtomTypes:MinLength1:MaxLengt
+        h8;463;NumericalValues;IDsAndValuesPairsString;C5A 2 C5B 2 C=ON 1 CB 1
+        8 COO 1 CR 9 F 1 N5 1 NC=O 1 O=CN 1 O=CO 1 OC=O 1 OR 2 C5A:C5B 2 C5A:N
+        5 2 C5ACB 1 C5ACR 1 C5B:C5B 1 C5BC=ON 1 C5BCB 1 C=ON=O=CN 1 C=ONNC=O 1
+        CB:CB 18 CBF 1 CBNC=O 1 COO=O=CO 1 COOCR 1 COOOC=O 1 CRCR 7 CRN5 1 CR
+        OR 2 C5A:C5B:C5B 2 C5A:C5BC=ON 1 C5A:C5BCB 1 C5A:N5:C5A 1 C5A:N5CR ...
+
+        FingerprintsVector;TopologicalAtomPairs:AtomicInvariantsAtomTypes:MinD
+        istance1:MaxDistance10;223;NumericalValues;IDsAndValuesString;C.X1.BO1
+        .H3-D1-C.X3.BO3.H1 C.X2.BO2.H2-D1-C.X2.BO2.H2 C.X2.BO2.H2-D1-C.X3.BO3.
+        H1 C.X2.BO2.H2-D1-C.X3.BO4 C.X2.BO2.H2-D1-N.X3.BO3 C.X2.BO3.H1-D1-...;
+        2 1 4 1 1 10 8 1 2 6 1 2 2 1 2 1 2 2 1 2 1 5 1 10 12 2 2 1 2 1 9 1 3 1
+        1 1 2 2 1 3 6 1 6 14 2 2 2 3 1 3 1 8 2 2 1 3 2 6 1 2 2 5 1 3 1 23 1...
+
+        FingerprintsVector;TopologicalAtomPairs:FunctionalClassAtomTypes:MinDi
+        stance1:MaxDistance10;144;NumericalValues;IDsAndValuesString;Ar-D1-Ar
+        Ar-D1-Ar.HBA Ar-D1-HBD Ar-D1-Hal Ar-D1-None Ar.HBA-D1-None HBA-D1-NI H
+        BA-D1-None HBA.HBD-D1-NI HBA.HBD-D1-None HBD-D1-None NI-D1-None No...;
+        23 2 1 1 2 1 1 1 1 2 1 1 7 28 3 1 3 2 8 2 1 1 1 5 1 5 24 3 3 4 2 13 4
+        1 1 4 1 5 22 4 4 3 1 19 1 1 1 1 1 2 2 3 1 1 8 25 4 5 2 3 1 26 1 4 1 ...
+
+        FingerprintsVector;TopologicalAtomTorsions:AtomicInvariantsAtomTypes;3
+        3;NumericalValues;IDsAndValuesString;C.X1.BO1.H3-C.X3.BO3.H1-C.X3.BO4-
+        C.X3.BO4 C.X1.BO1.H3-C.X3.BO3.H1-C.X3.BO4-N.X3.BO3 C.X2.BO2.H2-C.X2.BO
+        2.H2-C.X3.BO3.H1-C.X2.BO2.H2 C.X2.BO2.H2-C.X2.BO2.H2-C.X3.BO3.H1-O...;
+        2 2 1 1 2 2 1 1 3 4 4 8 4 2 2 6 2 2 1 2 1 1 2 1 1 2 6 2 4 2 1 3 1
+
+        FingerprintsVector;TopologicalAtomTorsions:EStateAtomTypes;36;Numerica
+        lValues;IDsAndValuesString;aaCH-aaCH-aaCH-aaCH aaCH-aaCH-aaCH-aasC aaC
+        H-aaCH-aasC-aaCH aaCH-aaCH-aasC-aasC aaCH-aaCH-aasC-sF aaCH-aaCH-aasC-
+        ssNH aaCH-aasC-aasC-aasC aaCH-aasC-aasC-aasN aaCH-aasC-ssNH-dssC a...;
+        4 4 8 4 2 2 6 2 2 2 4 3 2 1 3 3 2 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2
+
+        FingerprintsVector;TopologicalAtomTriplets:AtomicInvariantsAtomTypes:M
+        inDistance1:MaxDistance10;3096;NumericalValues;IDsAndValuesString;C.X1
+        .BO1.H3-D1-C.X1.BO1.H3-D1-C.X3.BO3.H1-D2 C.X1.BO1.H3-D1-C.X2.BO2.H2-D1
+        0-C.X3.BO4-D9 C.X1.BO1.H3-D1-C.X2.BO2.H2-D3-N.X3.BO3-D4 C.X1.BO1.H3-D1
+        -C.X2.BO2.H2-D4-C.X2.BO2.H2-D5 C.X1.BO1.H3-D1-C.X2.BO2.H2-D6-C.X3....;
+        1 2 2 2 2 2 2 2 8 8 4 8 4 4 2 2 2 2 4 2 2 2 4 2 2 2 2 1 2 2 4 4 4 2 2
+        2 4 4 4 8 4 4 2 4 4 4 2 4 4 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 8...
+
+        FingerprintsVector;TopologicalAtomTriplets:SYBYLAtomTypes:MinDistance1
+        :MaxDistance10;2332;NumericalValues;IDsAndValuesString;C.2-D1-C.2-D9-C
+        .3-D10 C.2-D1-C.2-D9-C.ar-D10 C.2-D1-C.3-D1-C.3-D2 C.2-D1-C.3-D10-C.3-
+        D9 C.2-D1-C.3-D2-C.3-D3 C.2-D1-C.3-D2-C.ar-D3 C.2-D1-C.3-D3-C.3-D4 C.2
+        -D1-C.3-D3-N.ar-D4 C.2-D1-C.3-D3-O.3-D2 C.2-D1-C.3-D4-C.3-D5 C.2-D1-C.
+        3-D5-C.3-D6 C.2-D1-C.3-D5-O.3-D4 C.2-D1-C.3-D6-C.3-D7 C.2-D1-C.3-D7...
+
+        FingerprintsVector;TopologicalPharmacophoreAtomPairs:ArbitrarySize:Min
+        Distance1:MaxDistance10;54;NumericalValues;IDsAndValuesString;H-D1-H H
+        -D1-NI HBA-D1-NI HBD-D1-NI H-D2-H H-D2-HBA H-D2-HBD HBA-D2-HBA HBA-D2-
+        HBD H-D3-H H-D3-HBA H-D3-HBD H-D3-NI HBA-D3-NI HBD-D3-NI H-D4-H H-D4-H
+        BA H-D4-HBD HBA-D4-HBA HBA-D4-HBD HBD-D4-HBD H-D5-H H-D5-HBA H-D5-...;
+        18 1 2 1 22 12 8 1 2 18 6 3 1 1 1 22 13 6 5 7 2 28 9 5 1 1 1 36 16 10
+        3 4 1 37 10 8 1 35 10 9 3 3 1 28 7 7 4 18 16 12 5 1 2 1
+
+        FingerprintsVector;TopologicalPharmacophoreAtomPairs:FixedSize:MinDist
+        ance1:MaxDistance10;150;OrderedNumericalValues;ValuesString;18 0 0 1 0
+        0 0 2 0 0 1 0 0 0 0 22 12 8 0 0 1 2 0 0 0 0 0 0 0 0 18 6 3 1 0 0 0 1
+        0 0 1 0 0 0 0 22 13 6 0 0 5 7 0 0 2 0 0 0 0 0 28 9 5 1 0 0 0 1 0 0 1 0
+        0 0 0 36 16 10 0 0 3 4 0 0 1 0 0 0 0 0 37 10 8 0 0 0 0 1 0 0 0 0 0 0
+        0 35 10 9 0 0 3 3 0 0 1 0 0 0 0 0 28 7 7 4 0 0 0 0 0 0 0 0 0 0 0 18...
+
+        FingerprintsVector;TopologicalPharmacophoreAtomTriplets:ArbitrarySize:
+        MinDistance1:MaxDistance10;696;NumericalValues;IDsAndValuesString;Ar1-
+        Ar1-Ar1 Ar1-Ar1-H1 Ar1-Ar1-HBA1 Ar1-Ar1-HBD1 Ar1-H1-H1 Ar1-H1-HBA1 Ar1
+        -H1-HBD1 Ar1-HBA1-HBD1 H1-H1-H1 H1-H1-HBA1 H1-H1-HBD1 H1-HBA1-HBA1 H1-
+        HBA1-HBD1 H1-HBA1-NI1 H1-HBD1-NI1 HBA1-HBA1-NI1 HBA1-HBD1-NI1 Ar1-...;
+        46 106 8 3 83 11 4 1 21 5 3 1 2 2 1 1 1 100 101 18 11 145 132 26 14 23
+        28 3 3 5 4 61 45 10 4 16 20 7 5 1 3 4 5 3 1 1 1 1 5 4 2 1 2 2 2 1 1 1
+        119 123 24 15 185 202 41 25 22 17 3 5 85 95 18 11 23 17 3 1 1 6 4 ...
+
+        FingerprintsVector;TopologicalPharmacophoreAtomTriplets:FixedSize:MinD
+        istance1:MaxDistance10;2692;OrderedNumericalValues;ValuesString;46 106
+        8 3 0 0 83 11 4 0 0 0 1 0 0 0 0 0 0 0 0 21 5 3 0 0 1 2 2 0 0 1 0 0 0
+        0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 101 18 11 0 0 145 132 26
+        14 0 0 23 28 3 3 0 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 45 10 4 0
+        0 16 20 7 5 1 0 3 4 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 5 ...
+
+OPTIONS
+    --alpha *number*
+        Value of alpha parameter for calculating *Tversky* similarity
+        coefficient specified for -b, --BitVectorComparisonMode option. It
+        corresponds to weights assigned for bits set to "1" in a pair of
+        fingerprint bit-vectors during the calculation of similarity
+        coefficient. Possible values: *0 to 1*. Default value: <0.5>.
+
+    --beta *number*
+        Value of beta parameter for calculating *WeightedTanimoto* and
+        *WeightedTversky* similarity coefficients specified for -b,
+        --BitVectorComparisonMode option. It is used to weight the
+        contributions of bits set to "0" during the calculation of
+        similarity coefficients. Possible values: *0 to 1*. Default value of
+        <1> makes *WeightedTanimoto* and *WeightedTversky* equivalent to
+        *Tanimoto* and *Tversky*.
+
+    -b, --BitVectorComparisonMode *TanimotoSimilarity | TverskySimilarity |
+    ...*
+        Specify what similarity coefficient to use for calculating
+        similarity between fingerprints bit-vector string data values in
+        *ReferenceFingerprintsFile* and *DatabaseFingerprintsFile* during
+        similarity search. Possible values: *TanimotoSimilarity |
+        TverskySimilarity | ...*. Default: *TanimotoSimilarity*
+
+        The current release supports the following similarity coefficients:
+        *BaroniUrbaniSimilarity, BuserSimilarity, CosineSimilarity,
+        DiceSimilarity, DennisSimilarity, ForbesSimilarity,
+        FossumSimilarity, HamannSimilarity, JacardSimilarity,
+        Kulczynski1Similarity, Kulczynski2Similarity, MatchingSimilarity,
+        McConnaugheySimilarity, OchiaiSimilarity, PearsonSimilarity,
+        RogersTanimotoSimilarity, RussellRaoSimilarity, SimpsonSimilarity,
+        SkoalSneath1Similarity, SkoalSneath2Similarity,
+        SkoalSneath3Similarity, TanimotoSimilarity, TverskySimilarity,
+        YuleSimilarity, WeightedTanimotoSimilarity,
+        WeightedTverskySimilarity*. These similarity coefficients are
+        described below.
+
+        For two fingerprint bit-vectors A and B of same size, let:
+
+            Na = Number of bits set to "1" in A
+            Nb = Number of bits set to "1" in B
+            Nc = Number of bits set to "1" in both A and B
+            Nd = Number of bits set to "0" in both A and B
+
+            Nt = Number of bits set to "1" or "0" in A or B (Size of A or B)
+            Nt = Na + Nb - Nc + Nd
+
+            Na - Nc = Number of bits set to "1" in A but not in B
+            Nb - Nc = Number of bits set to "1" in B but not in A
+
+        Then, various similarity coefficients [ Ref. 40 - 42 ] for a pair of
+        bit-vectors A and B are defined as follows:
+
+        *BaroniUrbaniSimilarity*: ( SQRT( Nc * Nd ) + Nc ) / ( SQRT ( Nc *
+        Nd ) + Nc + ( Na - Nc ) + ( Nb - Nc ) ) ( same as Buser )
+
+        *BuserSimilarity*: ( SQRT ( Nc * Nd ) + Nc ) / ( SQRT ( Nc * Nd ) +
+        Nc + ( Na - Nc ) + ( Nb - Nc ) ) ( same as BaroniUrbani )
+
+        *CosineSimilarity*: Nc / SQRT ( Na * Nb ) (same as Ochiai)
+
+        *DiceSimilarity*: (2 * Nc) / ( Na + Nb )
+
+        *DennisSimilarity*: ( Nc * Nd - ( ( Na - Nc ) * ( Nb - Nc ) ) ) /
+        SQRT ( Nt * Na * Nb)
+
+        *ForbesSimilarity*: ( Nt * Nc ) / ( Na * Nb )
+
+        *FossumSimilarity*: ( Nt * ( ( Nc - 1/2 ) ** 2 ) / ( Na * Nb )
+
+        *HamannSimilarity*: ( ( Nc + Nd ) - ( Na - Nc ) - ( Nb - Nc ) ) / Nt
+
+        *JaccardSimilarity*: Nc / ( ( Na - Nc) + ( Nb - Nc ) + Nc ) = Nc / (
+        Na + Nb - Nc ) (same as Tanimoto)
+
+        *Kulczynski1Similarity*: Nc / ( ( Na - Nc ) + ( Nb - Nc) ) = Nc / (
+        Na + Nb - 2Nc )
+
+        *Kulczynski2Similarity*: ( ( Nc / 2 ) * ( 2 * Nc + ( Na - Nc ) + (
+        Nb - Nc) ) ) / ( ( Nc + ( Na - Nc ) ) * ( Nc + ( Nb - Nc ) ) ) = 0.5
+        * ( Nc / Na + Nc / Nb )
+
+        *MatchingSimilarity*: ( Nc + Nd ) / Nt
+
+        *McConnaugheySimilarity*: ( Nc ** 2 - ( Na - Nc ) * ( Nb - Nc) ) / (
+        Na * Nb )
+
+        *OchiaiSimilarity*: Nc / SQRT ( Na * Nb ) (same as Cosine)
+
+        *PearsonSimilarity*: ( ( Nc * Nd ) - ( ( Na - Nc ) * ( Nb - Nc ) ) /
+        SQRT ( Na * Nb * ( Na - Nc + Nd ) * ( Nb - Nc + Nd ) )
+
+        *RogersTanimotoSimilarity*: ( Nc + Nd ) / ( ( Na - Nc) + ( Nb - Nc)
+        + Nt) = ( Nc + Nd ) / ( Na + Nb - 2Nc + Nt)
+
+        *RussellRaoSimilarity*: Nc / Nt
+
+        *SimpsonSimilarity*: Nc / MIN ( Na, Nb)
+
+        *SkoalSneath1Similarity*: Nc / ( Nc + 2 * ( Na - Nc) + 2 * ( Nb -
+        Nc) ) = Nc / ( 2 * Na + 2 * Nb - 3 * Nc )
+
+        *SkoalSneath2Similarity*: ( 2 * Nc + 2 * Nd ) / ( Nc + Nd + Nt )
+
+        *SkoalSneath3Similarity*: ( Nc + Nd ) / ( ( Na - Nc ) + ( Nb - Nc )
+        ) = ( Nc + Nd ) / ( Na + Nb - 2 * Nc )
+
+        *TanimotoSimilarity*: Nc / ( ( Na - Nc) + ( Nb - Nc ) + Nc ) = Nc /
+        ( Na + Nb - Nc ) (same as Jaccard)
+
+        *TverskySimilarity*: Nc / ( alpha * ( Na - Nc ) + ( 1 - alpha) * (
+        Nb - Nc) + Nc ) = Nc / ( alpha * ( Na - Nb ) + Nb)
+
+        *YuleSimilarity*: ( ( Nc * Nd ) - ( ( Na - Nc ) * ( Nb - Nc ) ) ) /
+        ( ( Nc * Nd ) + ( ( Na - Nc ) * ( Nb - Nc ) ) )
+
+        Values of Tanimoto/Jaccard and Tversky coefficients are dependent on
+        only those bit which are set to "1" in both A and B. In order to
+        take into account all bit positions, modified versions of Tanimoto [
+        Ref. 42 ] and Tversky [ Ref. 43 ] have been developed.
+
+        Let:
+
+            Na' = Number of bits set to "0" in A
+            Nb' = Number of bits set to "0" in B
+            Nc' = Number of bits set to "0" in both A and B
+
+        Tanimoto': Nc' / ( ( Na' - Nc') + ( Nb' - Nc' ) + Nc' ) = Nc' / (
+        Na' + Nb' - Nc' )
+
+        Tversky': Nc' / ( alpha * ( Na' - Nc' ) + ( 1 - alpha) * ( Nb' - Nc'
+        ) + Nc' ) = Nc' / ( alpha * ( Na' - Nb' ) + Nb')
+
+        Then:
+
+        *WeightedTanimotoSimilarity* = beta * Tanimoto + (1 - beta) *
+        Tanimoto'
+
+        *WeightedTverskySimilarity* = beta * Tversky + (1 - beta) * Tversky'
+
+    --DatabaseColMode *ColNum | ColLabel*
+        Specify how columns are identified in database fingerprints
+        *TextFile*: using column number or column label. Possible values:
+        *ColNum or ColLabel*. Default value: *ColNum*.
+
+    --DatabaseCompoundIDCol *col number | col name*
+        This value is --DatabaseColMode mode specific. It specifies column
+        to use for retrieving compound ID from database fingerprints
+        *TextFile* during similarity and dissimilarity search for output SD
+        and CSV/TSV text files. Possible values: *col number or col label*.
+        Default value: *first column containing the word compoundID in its
+        column label or sequentially generated IDs*.
+
+        This is only used for *CompoundID* value of --DatabaseDataColsMode
+        option.
+
+    --DatabaseCompoundIDPrefix *text*
+        Specify compound ID prefix to use during sequential generation of
+        compound IDs for database fingerprints *SDFile* and *TextFile*.
+        Default value: *Cmpd*. The default value generates compound IDs
+        which look like Cmpd<Number>.
+
+        For database fingerprints *SDFile*, this value is only used during
+        *LabelPrefix | MolNameOrLabelPrefix* values of
+        --DatabaseCompoundIDMode option; otherwise, it's ignored.
+
+        Examples for *LabelPrefix* or *MolNameOrLabelPrefix* value of
+        --DatabaseCompoundIDMode:
+
+            Compound
+
+        The values specified above generates compound IDs which correspond
+        to Compound<Number> instead of default value of Cmpd<Number>.
+
+    --DatabaseCompoundIDField *DataFieldName*
+        Specify database fingerprints *SDFile* datafield label for
+        generating compound IDs. This value is only used during *DataField*
+        value of --DatabaseCompoundIDMode option.
+
+        Examples for *DataField* value of --DatabaseCompoundIDMode:
+
+            MolID
+            ExtReg
+
+    --DatabaseCompoundIDMode *DataField | MolName | LabelPrefix |
+    MolNameOrLabelPrefix*
+        Specify how to generate compound IDs from database fingerprints
+        *SDFile* during similarity and dissimilarity search for output SD
+        and CSV/TSV text files: use a *SDFile* datafield value; use molname
+        line from *SDFile*; generate a sequential ID with specific prefix;
+        use combination of both MolName and LabelPrefix with usage of
+        LabelPrefix values for empty molname lines.
+
+        Possible values: *DataField | MolName | LabelPrefix |
+        MolNameOrLabelPrefix*. Default: *LabelPrefix*.
+
+        For *MolNameAndLabelPrefix* value of --DatabaseCompoundIDMode,
+        molname line in *SDFile* takes precedence over sequential compound
+        IDs generated using *LabelPrefix* and only empty molname values are
+        replaced with sequential compound IDs.
+
+        This is only used for *CompoundID* value of --DatabaseDataFieldsMode
+        option.
+
+    --DatabaseDataCols *"DataColNum1,DataColNum2,... " |
+    DataColLabel1,DataCoLabel2,... "*
+        This value is --DatabaseColMode mode specific. It is a comma
+        delimited list of database fingerprints *TextFile* data column
+        numbers or labels to extract and write to SD and CSV/TSV text files
+        along with other information for *SD | text | both* values of
+        --output option.
+
+        This is only used for *Specify* value of --DatabaseDataColsMode
+        option.
+
+        Examples:
+
+            1,2,3
+            CompoundName,MolWt
+
+    --DatabaseDataColsMode *All | Specify | CompoundID*
+        Specify how data columns from database fingerprints *TextFile* are
+        transferred to output SD and CSV/TSV text files along with other
+        information for *SD | text | both* values of --output option:
+        transfer all data columns; extract specified data columns; generate
+        a compound ID database compound prefix. Possible values: *All |
+        Specify | CompoundID*. Default value: *CompoundID*.
+
+    --DatabaseDataFields *"FieldLabel1,FieldLabel2,... "*
+        Comma delimited list of database fingerprints *SDFile* data fields
+        to extract and write to SD and CSV/TSV text files along with other
+        information for *SD | text | both* values of --output option.
+
+        This is only used for *Specify* value of --DatabaseDataFieldsMode
+        option.
+
+        Examples:
+
+            Extreg
+            MolID,CompoundName
+
+    --DatabaseDataFieldsMode *All | Common | Specify | CompoundID*
+        Specify how data fields from database fingerprints *SDFile* are
+        transferred to output SD and CSV/TSV text files along with other
+        information for *SD | text | both* values of --output option:
+        transfer all SD data field; transfer SD data files common to all
+        compounds; extract specified data fields; generate a compound ID
+        using molname line, a compound prefix, or a combination of both.
+        Possible values: *All | Common | specify | CompoundID*. Default
+        value: *CompoundID*.
+
+    --DatabaseFingerprintsCol *col number | col name*
+        This value is --DatabaseColMode specific. It specifies fingerprints
+        column to use during similarity and dissimilarity search for
+        database fingerprints *TextFile*. Possible values: *col number or
+        col label*. Default value: *first column containing the word
+        Fingerprints in its column label*.
+
+    --DatabaseFingerprintsField *FieldLabel*
+        Fingerprints field label to use during similarity and dissimilarity
+        search for database fingerprints *SDFile*. Default value: *first
+        data field label containing the word Fingerprints in its label*
+
+    --DistanceCutoff *number*
+        Distance cutoff value to use during comparison of distance value
+        between a pair of database and reference molecule calculated by
+        distance comparison methods for fingerprints vector string data
+        values. Possible values: *Any valid number*. Default value: *10*.
+
+        The comparison value between a pair of database and reference
+        molecule must meet the cutoff criterion as shown below:
+
+            SeachMode      CutoffCriterion  ComparisonValues
+
+            Similarity     <=               Lower value implies high similarity
+            Dissimilarity  >=               Higher value implies high dissimilarity
+
+        This option is only used during distance coefficients values of -v,
+        --VectorComparisonMode option.
+
+        This option is ignored during *No* value of --GroupFusionApplyCutoff
+        for *MultipleReferences* -m, --mode.
+
+    -d, --detail *InfoLevel*
+        Level of information to print about lines being ignored. Default:
+        *1*. Possible values: *1, 2 or 3*.
+
+    -f, --fast
+        In this mode, fingerprints columns specified using --FingerprintsCol
+        for reference and database fingerprints *TextFile(s)*, and
+        --FingerprintsField for reference and database fingerprints
+        *SDFile(s)* are assumed to contain valid fingerprints data and no
+        checking is performed before performing similarity and dissimilarity
+        search. By default, fingerprints data is validated before computing
+        pairwise similarity and distance coefficients.
+
+    --FingerprintsMode *AutoDetect | FingerprintsBitVectorString |
+    FingerprintsVectorString*
+        Format of fingerprint strings data in reference and database
+        fingerprints *SD, FP, or Text (CSV/TSV)* files: automatically detect
+        format of fingerprints string created by MayaChemTools fingerprints
+        generation scripts or explicitly specify its format. Possible
+        values: *AutoDetect | FingerprintsBitVectorString |
+        FingerprintsVectorString*. Default value: *AutoDetect*.
+
+    -g, --GroupFusionRule *Max, Min, Mean, Median, Sum, Euclidean*
+        Specify what group fusion [ Ref 94-97, Ref 100, Ref 105 ] rule to
+        use for calculating similarity of a database molecule against a set
+        of reference molecules during *MultipleReferences* value of
+        similarity search -m, --mode. Possible values: *Max, Min, Mean,
+        Median, Sum, Euclidean*. Default value: *Max*. *Mean* value
+        corresponds to average or arithmetic mean. The group fusion rule is
+        also referred to as data fusion of consensus scoring in the
+        literature.
+
+        For a reference molecules set and a database molecule, let:
+
+            N = Number of reference molecules in a set
+
+            i = ith reference reference molecule in a set
+            n = Nth reference reference molecule in a set
+
+            d = dth database molecule
+
+            Crd = Fingerprints comparison value between rth reference and dth database
+                  molecule - similarity/dissimilarity comparison using similarity or
+                  distance coefficient
+
+        Then, various group fusion rules to calculate fused similarity
+        between a database molecule and reference molecules set are defined
+        as follows:
+
+        Max: MAX ( C1d, C2d, ..., Cid, ..., Cnd )
+
+        Min: MIN ( C1d, C2d, ..., Cid, ..., Cnd )
+
+        Mean: SUM ( C1d, C2d, ..., Cid, ..., Cnd ) / N
+
+        Median: MEDIAN ( C1d, C2d, ..., Cid, ..., Cnd )
+
+        Sum: SUM ( C1d, C2d, ..., Cid, ..., Cnd )
+
+        Euclidean: SQRT( SUM( C1d ** 2, C2d ** 2, ..., Cid ** 2, ..., Cnd
+        *** 2) )
+
+        The fingerprints bit-vector or vector string of each reference
+        molecule in a set is compared with a database molecule using a
+        similarity or distance coefficient specified via -b,
+        --BitVectorComparisonMode or -v, --VectorComparisonMode. The
+        reference molecules whose comparison values with a database molecule
+        fall outside specified --SimilarityCutoff or --DistanceCutoff are
+        ignored during *Yes* value of --GroupFusionApplyCutoff. The
+        specified -g, --GroupFusionRule is applied to -k, --kNN reference
+        molecules to calculate final fused similarity value between a
+        database molecule and reference molecules set.
+
+        During dissimilarity search or usage of distance comparison
+        coefficient in similarity search, the meaning of fingerprints
+        comaprison value is automatically reversed as shown below:
+
+            SeachMode      ComparisonCoefficient  ComparisonValues
+
+            Similarity     SimilarityCoefficient  Higher value imples high similarity
+            Similarity     DistanceCoefficient    Lower value implies high similarity
+
+            Dissimilarity  SimilarityCoefficient  Lower value implies high
+                                                  dissimilarity
+            Dissimilarity  DistanceCoefficient    Higher value implies high
+                                                  dissimilarity
+
+        Consequently, *Max* implies highest and lowest comparison value for
+        usage of similarity and distance coefficient respectively during
+        similarity search. And it corresponds to lowest and highest
+        comparison value for usage of similarity and distance coefficient
+        respectively during dissimilarity search. During *Min* fusion rule,
+        the highest and lowest comparison values are appropriately reversed.
+
+    --GroupFusionApplyCutoff *Yes | No*
+        Specify whether to apply --SimilarityCutoff or --DistanceCutoff
+        values during application of -g, --GroupFusionRule to reference
+        molecules set. Possible values: *Yes or No*. Default value: *Yes*.
+
+        During *Yes* value of --GroupFusionApplyCutoff, the reference
+        molecules whose comparison values with a database molecule fall
+        outside specified --SimilarityCutoff or --DistanceCutoff are not
+        used to calculate final fused similarity value between a database
+        molecule and reference molecules set.
+
+    -h, --help
+        Print this help message.
+
+    --InDelim *comma | semicolon*
+        Input delimiter for reference and database fingerprints CSV
+        *TextFile(s)*. Possible values: *comma or semicolon*. Default value:
+        *comma*. For TSV files, this option is ignored and *tab* is used as
+        a delimiter.
+
+    -k, --kNN *all | number*
+        Number of k-nearest neighbors (k-NN) reference molecules to use
+        during -g, --GroupFusionRule for calculating similarity of a
+        database molecule against a set of reference molecules. Possible
+        values: *all | positive integers*. Default: *all*.
+
+        After ranking similarity values between a database molecule and
+        reference molecules during *MultipleReferences* value of similarity
+        search -m, --mode option, a top -k, --KNN reference molecule are
+        selected and used during -g, --GroupFusionRule.
+
+        This option is -s, --SearchMode dependent: It corresponds to
+        dissimilar molecules during *DissimilaritySearch* value of -s,
+        --SearchMode option.
+
+    -m, --mode *IndividualReference | MultipleReferences*
+        Specify how to treat reference molecules in
+        *ReferenceFingerprintsFile* during similarity search: Treat each
+        reference molecule individually during similarity search or perform
+        similarity search by treating multiple reference molecules as a set.
+        Possible values: *IndividualReference | MultipleReferences*. Default
+        value: *MultipleReferences*.
+
+        During *IndividualReference* value of -m, --Mode for similarity
+        search, fingerprints bit-vector or vector string of each reference
+        molecule is compared with database molecules using specified
+        similarity or distance coefficients to identify most similar
+        molecules for each reference molecule. Based on value of
+        --SimilarCountMode, upto --n, NumOfSimilarMolecules or -p,
+        --PercentSimilarMolecules at specified <--SimilarityCutoff> or
+        --DistanceCutoff are identified for each reference molecule.
+
+        During *MultipleReferences* value -m, --mode for similarity search,
+        all reference molecules are considered as a set and -g,
+        --GroupFusionRule is used to calculate similarity of a database
+        molecule against reference molecules set either using all reference
+        molecules or number of k-nearest neighbors (k-NN) to a database
+        molecule specified using -k, --kNN. The fingerprints bit-vector or
+        vector string of each reference molecule in a set is compared with a
+        database molecule using a similarity or distance coefficient
+        specified via -b, --BitVectorComparisonMode or -v,
+        --VectorComparisonMode. The reference molecules whose comparison
+        values with a database molecule fall outside specified
+        --SimilarityCutoff or --DistanceCutoff are ignored. The specified
+        -g, --GroupFusionRule is applied to rest of -k, --kNN reference
+        molecules to calculate final similarity value between a database
+        molecule and reference molecules set.
+
+        The meaning of similarity and distance is automatically reversed
+        during *DissimilaritySearch* value of -s, --SearchMode along with
+        appropriate handling of --SimilarityCutoff or --DistanceCutoff
+        values.
+
+    -n, --NumOfSimilarMolecules *number*
+        Maximum number of most similar database molecules to find for each
+        reference molecule or set of reference molecules based on
+        *IndividualReference* or *MultipleReferences* value of similarity
+        search -m, --mode option. Default: *10*. Valid values: positive
+        integers.
+
+        This option is ignored during *PercentSimilar* value of
+        --SimilarCountMode option.
+
+        This option is -s, --SearchMode dependent: It corresponds to
+        dissimilar molecules during *DissimilaritySearch* value of -s,
+        --SearchMode option.
+
+    --OutDelim *comma | tab | semicolon*
+        Delimiter for output CSV/TSV text file. Possible values: *comma,
+        tab, or semicolon* Default value: *comma*.
+
+    --output *SD | text | both*
+        Type of output files to generate. Possible values: *SD, text, or
+        both*. Default value: *text*.
+
+    -o, --overwrite
+        Overwrite existing files
+
+    -p, --PercentSimilarMolecules *number*
+        Maximum percent of mosy similar database molecules to find for each
+        reference molecule or set of reference molecules based on
+        *IndividualReference* or *MultipleReferences* value of similarity
+        search -m, --mode option. Default: *1* percent of database
+        molecules. Valid values: non-zero values in between *0 to 100*.
+
+        This option is ignored during *NumOfSimilar* value of
+        --SimilarCountMode option.
+
+        During *PercentSimilar* value of --SimilarCountMode option, the
+        number of molecules in *DatabaseFingerprintsFile* is counted and
+        number of similar molecules correspond to --PercentSimilarMolecules
+        of the total number of database molecules.
+
+        This option is -s, --SearchMode dependent: It corresponds to
+        dissimilar molecules during *DissimilaritySearch* value of -s,
+        --SearchMode option.
+
+    --precision *number*
+        Precision of calculated similarity values for comparison and
+        generating output files. Default: up to *2* decimal places. Valid
+        values: positive integers.
+
+    -q, --quote *Yes | No*
+        Put quote around column values in output CSV/TSV text file. Possible
+        values: *Yes or No*. Default value: *Yes*.
+
+    --ReferenceColMode *ColNum | ColLabel*
+        Specify how columns are identified in reference fingerprints
+        *TextFile*: using column number or column label. Possible values:
+        *ColNum or ColLabel*. Default value: *ColNum*.
+
+    --ReferenceCompoundIDCol *col number | col name*
+        This value is --ReferenceColMode mode specific. It specifies column
+        to use for retrieving compound ID from reference fingerprints
+        *TextFile* during similarity and dissimilarity search for output SD
+        and CSV/TSV text files. Possible values: *col number or col label*.
+        Default value: *first column containing the word compoundID in its
+        column label or sequentially generated IDs*.
+
+    --ReferenceCompoundIDPrefix *text*
+        Specify compound ID prefix to use during sequential generation of
+        compound IDs for reference fingerprints *SDFile* and *TextFile*.
+        Default value: *Cmpd*. The default value generates compound IDs
+        which looks like Cmpd<Number>.
+
+        For reference fingerprints *SDFile*, this value is only used during
+        *LabelPrefix | MolNameOrLabelPrefix* values of
+        --ReferenceCompoundIDMode option; otherwise, it's ignored.
+
+        Examples for *LabelPrefix* or *MolNameOrLabelPrefix* value of
+        --DatabaseCompoundIDMode:
+
+            Compound
+
+        The values specified above generates compound IDs which correspond
+        to Compound<Number> instead of default value of Cmpd<Number>.
+
+    --ReferenceCompoundIDField *DataFieldName*
+        Specify reference fingerprints *SDFile* datafield label for
+        generating compound IDs. This value is only used during *DataField*
+        value of --ReferenceCompoundIDMode option.
+
+        Examples for *DataField* value of --ReferenceCompoundIDMode:
+
+            MolID
+            ExtReg
+
+    --ReferenceCompoundIDMode *DataField | MolName | LabelPrefix |
+    MolNameOrLabelPrefix*
+        Specify how to generate compound IDs from reference fingerprints
+        *SDFile* during similarity and dissimilarity search for output SD
+        and CSV/TSV text files: use a *SDFile* datafield value; use molname
+        line from *SDFile*; generate a sequential ID with specific prefix;
+        use combination of both MolName and LabelPrefix with usage of
+        LabelPrefix values for empty molname lines.
+
+        Possible values: *DataField | MolName | LabelPrefix |
+        MolNameOrLabelPrefix*. Default: *LabelPrefix*.
+
+        For *MolNameAndLabelPrefix* value of --ReferenceCompoundIDMode,
+        molname line in *SDFiles* takes precedence over sequential compound
+        IDs generated using *LabelPrefix* and only empty molname values are
+        replaced with sequential compound IDs.
+
+    --ReferenceFingerprintsCol *col number | col name*
+        This value is --ReferenceColMode specific. It specifies fingerprints
+        column to use during similarity and dissimilarity search for
+        reference fingerprints *TextFile*. Possible values: *col number or
+        col label*. Default value: *first column containing the word
+        Fingerprints in its column label*.
+
+    --ReferenceFingerprintsField *FieldLabel*
+        Fingerprints field label to use during similarity and dissimilarity
+        search for reference fingerprints *SDFile*. Default value: *first
+        data field label containing the word Fingerprints in its label*
+
+    -r, --root *RootName*
+        New file name is generated using the root: <Root>.<Ext>. Default for
+        new file name: <ReferenceFileName>SimilaritySearching.<Ext>. The
+        output file type determines <Ext> value. The sdf, csv, and tsv <Ext>
+        values are used for SD, comma/semicolon, and tab delimited text
+        files respectively.
+
+    -s, --SearchMode *SimilaritySearch | DissimilaritySearch*
+        Specify how to find molecules from database molecules for individual
+        reference molecules or set of reference molecules: Find similar
+        molecules or dissimilar molecules from database molecules. Possible
+        values: *SimilaritySearch | DissimilaritySearch*. Default value:
+        *SimilaritySearch*.
+
+        During *DissimilaritySearch* value of -s, --SearchMode option, the
+        meaning of the following options is switched and they correspond to
+        dissimilar molecules instead of similar molecules:
+        --SimilarCountMode, -n, --NumOfSimilarMolecules,
+        --PercentSimilarMolecules, -k, --kNN.
+
+    --SimilarCountMode *NumOfSimilar | PercentSimilar*
+        Specify method used to count similar molecules found from database
+        molecules for individual reference molecules or set of reference
+        molecules: Find number of similar molecules or percent of similar
+        molecules from database molecules. Possible values: *NumOfSimilar |
+        PercentSimilar*. Default value: *NumOfSimilar*.
+
+        The values for number of similar molecules and percent similar
+        molecules are specified using options -n, NumOfSimilarMolecule and
+        --PercentSimilarMolecules.
+
+        This option is -s, --SearchMode dependent: It corresponds to
+        dissimilar molecules during *DissimilaritySearch* value of -s,
+        --SearchMode option.
+
+    --SimilarityCutoff *number*
+        Similarity cutoff value to use during comparison of similarity value
+        between a pair of database and reference molecules calculated by
+        similarity comparison methods for fingerprints bit-vector vector
+        strings data values. Possible values: *Any valid number*. Default
+        value: *0.75*.
+
+        The comparison value between a pair of database and reference
+        molecule must meet the cutoff criterion as shown below:
+
+            SeachMode      CutoffCriterion  ComparisonValues
+
+            Similarity     >=               Higher value implies high similarity
+            Dissimilarity  <=               Lower value implies high dissimilarity
+
+        This option is ignored during *No* value of --GroupFusionApplyCutoff
+        for *MultipleReferences* -m, --mode.
+
+        This option is -s, --SearchMode dependent: It corresponds to
+        dissimilar molecules during *DissimilaritySearch* value of -s,
+        --SearchMode option.
+
+    -v, --VectorComparisonMode *SupportedSimilarityName |
+    SupportedDistanceName*
+        Specify what similarity or distance coefficient to use for
+        calculating similarity between fingerprint vector strings data
+        values in *ReferenceFingerprintsFile* and *DatabaseFingerprintsFile*
+        during similarity search. Possible values: *TanimotoSimilairy | ...
+        | ManhattanDistance | ...*. Default value: *TanimotoSimilarity*.
+
+        The value of -v, --VectorComparisonMode, in conjunction with
+        --VectorComparisonFormulism, decides which type of similarity and
+        distance coefficient formulism gets used.
+
+        The current releases supports the following similarity and distance
+        coefficients: *CosineSimilarity, CzekanowskiSimilarity,
+        DiceSimilarity, OchiaiSimilarity, JaccardSimilarity,
+        SorensonSimilarity, TanimotoSimilarity, CityBlockDistance,
+        EuclideanDistance, HammingDistance, ManhattanDistance,
+        SoergelDistance*. These similarity and distance coefficients are
+        described below.
+
+        FingerprintsVector.pm module, used to calculate similarity and
+        distance coefficients, provides support to perform comparison
+        between vectors containing three different types of values:
+
+        Type I: OrderedNumericalValues
+
+            . Size of two vectors are same
+            . Vectors contain real values in a specific order. For example: MACCS keys
+              count, Topological pharmnacophore atom pairs and so on.
+
+        Type II: UnorderedNumericalValues
+
+            . Size of two vectors might not be same
+            . Vectors contain unordered real value identified by value IDs. For example:
+              Toplogical atom pairs, Topological atom torsions and so on
+
+        Type III: AlphaNumericalValues
+
+            . Size of two vectors might not be same
+            . Vectors contain unordered alphanumerical values. For example: Extended
+              connectivity fingerprints, atom neighborhood fingerprints.
+
+        Before performing similarity or distance calculations between
+        vectors containing UnorderedNumericalValues or AlphaNumericalValues,
+        the vectors are transformed into vectors containing unique
+        OrderedNumericalValues using value IDs for UnorderedNumericalValues
+        and values itself for AlphaNumericalValues.
+
+        Three forms of similarity and distance calculation between two
+        vectors, specified using --VectorComparisonFormulism option, are
+        supported: *AlgebraicForm, BinaryForm or SetTheoreticForm*.
+
+        For *BinaryForm*, the ordered list of processed final vector values
+        containing the value or count of each unique value type is simply
+        converted into a binary vector containing 1s and 0s corresponding to
+        presence or absence of values before calculating similarity or
+        distance between two vectors.
+
+        For two fingerprint vectors A and B of same size containing
+        OrderedNumericalValues, let:
+
+            N = Number values in A or B
+
+            Xa = Values of vector A
+            Xb = Values of vector B
+
+            Xai = Value of ith element in A
+            Xbi = Value of ith element in B
+
+           SUM = Sum of i over N values
+
+        For SetTheoreticForm of calculation between two vectors, let:
+
+            SetIntersectionXaXb = SUM ( MIN ( Xai, Xbi ) )
+            SetDifferenceXaXb = SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN ( Xai, Xbi ) )
+
+        For BinaryForm of calculation between two vectors, let:
+
+            Na = Number of bits set to "1" in A = SUM ( Xai )
+            Nb = Number of bits set to "1" in B = SUM ( Xbi )
+            Nc = Number of bits set to "1" in both A and B = SUM ( Xai * Xbi )
+            Nd = Number of bits set to "0" in both A and B
+               = SUM ( 1 - Xai - Xbi + Xai * Xbi)
+
+            N = Number of bits set to "1" or "0" in A or B = Size of A or B = Na + Nb - Nc + Nd
+
+        Additionally, for BinaryForm various values also correspond to:
+
+            Na = | Xa |
+            Nb = | Xb |
+            Nc = | SetIntersectionXaXb |
+            Nd = N - | SetDifferenceXaXb |
+
+            | SetDifferenceXaXb | = N - Nd = Na + Nb - Nc + Nd - Nd = Na + Nb - Nc
+                                  =  | Xa | + | Xb | - | SetIntersectionXaXb |
+
+        Various similarity and distance coefficients [ Ref 40, Ref 62, Ref
+        64 ] for a pair of vectors A and B in *AlgebraicForm, BinaryForm and
+        SetTheoreticForm* are defined as follows:
+
+        CityBlockDistance: ( same as HammingDistance and ManhattanDistance)
+
+        *AlgebraicForm*: SUM ( ABS ( Xai - Xbi ) )
+
+        *BinaryForm*: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc
+
+        *SetTheoreticForm*: | SetDifferenceXaXb | - | SetIntersectionXaXb |
+        = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )
+
+        CosineSimilarity: ( same as OchiaiSimilarityCoefficient)
+
+        *AlgebraicForm*: SUM ( Xai * Xbi ) / SQRT ( SUM ( Xai ** 2) * SUM (
+        Xbi ** 2) )
+
+        *BinaryForm*: Nc / SQRT ( Na * Nb)
+
+        *SetTheoreticForm*: | SetIntersectionXaXb | / SQRT ( |Xa| * |Xb| ) =
+        SUM ( MIN ( Xai, Xbi ) ) / SQRT ( SUM ( Xai ) * SUM ( Xbi ) )
+
+        CzekanowskiSimilarity: ( same as DiceSimilarity and
+        SorensonSimilarity)
+
+        *AlgebraicForm*: ( 2 * ( SUM ( Xai * Xbi ) ) ) / ( SUM ( Xai ** 2) +
+        SUM ( Xbi **2 ) )
+
+        *BinaryForm*: 2 * Nc / ( Na + Nb )
+
+        *SetTheoreticForm*: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) =
+        2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )
+
+        DiceSimilarity: ( same as CzekanowskiSimilarity and
+        SorensonSimilarity)
+
+        *AlgebraicForm*: ( 2 * ( SUM ( Xai * Xbi ) ) ) / ( SUM ( Xai ** 2) +
+        SUM ( Xbi **2 ) )
+
+        *BinaryForm*: 2 * Nc / ( Na + Nb )
+
+        *SetTheoreticForm*: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) =
+        2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )
+
+        EuclideanDistance:
+
+        *AlgebraicForm*: SQRT ( SUM ( ( ( Xai - Xbi ) ** 2 ) ) )
+
+        *BinaryForm*: SQRT ( ( Na - Nc ) + ( Nb - Nc ) ) = SQRT ( Na + Nb -
+        2 * Nc )
+
+        *SetTheoreticForm*: SQRT ( | SetDifferenceXaXb | - |
+        SetIntersectionXaXb | ) = SQRT ( SUM ( Xai ) + SUM ( Xbi ) - 2 * (
+        SUM ( MIN ( Xai, Xbi ) ) ) )
+
+        HammingDistance: ( same as CityBlockDistance and ManhattanDistance)
+
+        *AlgebraicForm*: SUM ( ABS ( Xai - Xbi ) )
+
+        *BinaryForm*: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc
+
+        *SetTheoreticForm*: | SetDifferenceXaXb | - | SetIntersectionXaXb |
+        = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )
+
+        JaccardSimilarity: ( same as TanimotoSimilarity)
+
+        *AlgebraicForm*: SUM ( Xai * Xbi ) / ( SUM ( Xai ** 2 ) + SUM ( Xbi
+        ** 2 ) - SUM ( Xai * Xbi ) )
+
+        *BinaryForm*: Nc / ( ( Na - Nc ) + ( Nb - Nc ) + Nc ) = Nc / ( Na +
+        Nb - Nc )
+
+        *SetTheoreticForm*: | SetIntersectionXaXb | / | SetDifferenceXaXb |
+        = SUM ( MIN ( Xai, Xbi ) ) / ( SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN
+        ( Xai, Xbi ) ) )
+
+        ManhattanDistance: ( same as CityBlockDistance and HammingDistance)
+
+        *AlgebraicForm*: SUM ( ABS ( Xai - Xbi ) )
+
+        *BinaryForm*: ( Na - Nc ) + ( Nb - Nc ) = Na + Nb - 2 * Nc
+
+        *SetTheoreticForm*: | SetDifferenceXaXb | - | SetIntersectionXaXb |
+        = SUM ( Xai ) + SUM ( Xbi ) - 2 * ( SUM ( MIN ( Xai, Xbi ) ) )
+
+        OchiaiSimilarity: ( same as CosineSimilarity)
+
+        *AlgebraicForm*: SUM ( Xai * Xbi ) / SQRT ( SUM ( Xai ** 2) * SUM (
+        Xbi ** 2) )
+
+        *BinaryForm*: Nc / SQRT ( Na * Nb)
+
+        *SetTheoreticForm*: | SetIntersectionXaXb | / SQRT ( |Xa| * |Xb| ) =
+        SUM ( MIN ( Xai, Xbi ) ) / SQRT ( SUM ( Xai ) * SUM ( Xbi ) )
+
+        SorensonSimilarity: ( same as CzekanowskiSimilarity and
+        DiceSimilarity)
+
+        *AlgebraicForm*: ( 2 * ( SUM ( Xai * Xbi ) ) ) / ( SUM ( Xai ** 2) +
+        SUM ( Xbi **2 ) )
+
+        *BinaryForm*: 2 * Nc / ( Na + Nb )
+
+        *SetTheoreticForm*: 2 * | SetIntersectionXaXb | / ( |Xa| + |Xb| ) =
+        2 * ( SUM ( MIN ( Xai, Xbi ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) )
+
+        SoergelDistance:
+
+        *AlgebraicForm*: SUM ( ABS ( Xai - Xbi ) ) / SUM ( MAX ( Xai, Xbi )
+        )
+
+        *BinaryForm*: 1 - Nc / ( Na + Nb - Nc ) = ( Na + Nb - 2 * Nc ) / (
+        Na + Nb - Nc )
+
+        *SetTheoreticForm*: ( | SetDifferenceXaXb | - | SetIntersectionXaXb
+        | ) / | SetDifferenceXaXb | = ( SUM ( Xai ) + SUM ( Xbi ) - 2 * (
+        SUM ( MIN ( Xai, Xbi ) ) ) ) / ( SUM ( Xai ) + SUM ( Xbi ) - SUM (
+        MIN ( Xai, Xbi ) ) )
+
+        TanimotoSimilarity: ( same as JaccardSimilarity)
+
+        *AlgebraicForm*: SUM ( Xai * Xbi ) / ( SUM ( Xai ** 2 ) + SUM ( Xbi
+        ** 2 ) - SUM ( Xai * Xbi ) )
+
+        *BinaryForm*: Nc / ( ( Na - Nc ) + ( Nb - Nc ) + Nc ) = Nc / ( Na +
+        Nb - Nc )
+
+        *SetTheoreticForm*: | SetIntersectionXaXb | / | SetDifferenceXaXb |
+        = SUM ( MIN ( Xai, Xbi ) ) / ( SUM ( Xai ) + SUM ( Xbi ) - SUM ( MIN
+        ( Xai, Xbi ) ) )
+
+    --VectorComparisonFormulism *AlgebraicForm | BinaryForm |
+    SetTheoreticForm*
+        Specify fingerprints vector comparison formulism to use for
+        calculation similarity and distance coefficients during -v,
+        --VectorComparisonMode. Possible values: *AlgebraicForm | BinaryForm
+        | SetTheoreticForm*. Default value: *AlgebraicForm*.
+
+        For fingerprint vector strings containing AlphaNumericalValues data
+        values - ExtendedConnectivityFingerprints,
+        AtomNeighborhoodsFingerprints and so on - all three formulism result
+        in same value during similarity and distance calculations.
+
+    -w, --WorkingDir *DirName*
+        Location of working directory. Default: current directory.
+
+EXAMPLES
+    To perform similarity search using Tanimoto coefficient by treating all
+    reference molecules as a set to find 10 most similar database molecules
+    with application of Max group fusion rule and similarity cutoff to
+    supported fingerprints strings data in SD fingerprints files present in
+    a data fields with Fingerprint substring in their labels, and create a
+    ReferenceFPHexSimilaritySearching.csv file containing sequentially
+    generated database compound IDs with Cmpd prefix, type:
+
+        % SimilaritySearchingFingerprints.pl -o ReferenceSampleFPHex.sdf
+          DatabaseSampleFPHex.sdf
+
+    To perform similarity search using Tanimoto coefficient by treating all
+    reference molecules as a set to find 10 most similar database molecules
+    with application of Max group fusion rule and similarity cutoff to
+    supported fingerprints strings data in FP fingerprints files, and create
+    a SimilaritySearchResults.csv file containing database compound IDs
+    retireved from FP file, type:
+
+        % SimilaritySearchingFingerprints.pl -r SimilaritySearchResults -o
+          ReferenceSampleFPBin.fpf DatabaseSampleFPBin.fpf
+
+    To perform similarity search using Tanimoto coefficient by treating all
+    reference molecules as a set to find 10 most similar database database
+    molecules with application of Max group fusion rule and similarity
+    cutoff to supported fingerprints strings data in text fingerprints files
+    present in a column names containing Fingerprint substring in their
+    names, and create a ReferenceFPHexSimilaritySearching.csv file
+    containing database compound IDs retireved column name containing
+    CompoundID substring or sequentially generated compound IDs, type:
+
+        % SimilaritySearchingFingerprints.pl -o ReferenceSampleFPCount.csv
+          DatabaseSampleFPCount.csv
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find 10 most similar
+    database molecules for each reference molecule with application of
+    similarity cutoff to supported fingerprints strings data in SD
+    fingerprints files present in a data fields with Fingerprint substring
+    in their labels, and create a ReferenceFPHexSimilaritySearching.csv file
+    containing sequentially generated reference and database compound IDs
+    with Cmpd prefix, type:
+
+        % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
+          ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find 10 most similar
+    database molecules for each reference molecule with application of
+    similarity cutoff to supported fingerprints strings data in FP
+    fingerprints files, and create a ReferenceFPHexSimilaritySearching.csv
+    file containing references and database compound IDs retireved from FP
+    file, type:
+
+        % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
+          ReferenceSampleFPHex.fpf DatabaseSampleFPHex.fpf
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find 10 most similar
+    database molecules for each reference molecule with application of
+    similarity cutoff to supported fingerprints strings data in text
+    fingerprints files present in a column names containing Fingerprint
+    substring in their names, and create a
+    ReferenceFPHexSimilaritySearching.csv file containing reference and
+    database compound IDs retrieved column name containing CompoundID
+    substring or sequentially generated compound IDs, type:
+
+        % SimilaritySearchingFingerprints.pl -mode IndividualReference -o
+          ReferenceSampleFPHex.csv DatabaseSampleFPHex.csv
+
+    To perform dissimilarity search using Tanimoto coefficient by treating
+    all reference molecules as a set to find 10 most dissimilar database
+    molecules with application of Max group fusion rule and similarity
+    cutoff to supported fingerprints strings data in SD fingerprints files
+    present in a data fields with Fingerprint substring in their labels, and
+    create a ReferenceFPHexSimilaritySearching.csv file containing
+    sequentially generated database compound IDs with Cmpd prefix, type:
+
+        % SimilaritySearchingFingerprints.pl --mode MultipleReferences --SearchMode
+          DissimilaritySearch -o ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf
+
+    To perform similarity search using CityBlock distance by treating
+    reference molecules as individual molecules to find 10 most similar
+    database molecules for each reference molecule with application of
+    distance cutoff to supported vector fingerprints strings data in SD
+    fingerprints files present in a data fields with Fingerprint substring
+    in their labels, and create a ReferenceFPHexSimilaritySearching.csv file
+    containing sequentially generated reference and database compound IDs
+    with Cmpd prefix, type:
+
+        % SimilaritySearchingFingerprints.pl -mode IndividualReference
+          --VectorComparisonMode CityBlockDistance --VectorComparisonFormulism
+          AlgebraicForm --DistanceCutoff 10 -o
+          ReferenceSampleFPCount.sdf DatabaseSampleFPCount.sdf
+
+    To perform similarity search using Tanimoto coefficient by treating all
+    reference molecules as a set to find 100 most similar database molecules
+    with application of Mean group fusion rule to to top 10 reference
+    molecules with in similarity cutoff of 0.75 to supported fingerprints
+    strings data in FP fingerprints files, and create a
+    ReferenceFPHexSimilaritySearching.csv file containing database compound
+    IDs retrieved from FP file, type:
+
+        % SimilaritySearchingFingerprints.pl --mode MultipleReferences --SearchMode
+          SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
+          --GroupFusionRule Mean --GroupFusionApplyCutoff Yes --kNN 10
+          --SimilarityCutoff 0.75 --SimilarCountMode NumOfSimilar
+          --NumOfSimilarMolecules 100 -o
+          ReferenceSampleFPHex.fpf DatabaseSampleFPHex.fpf
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find 2 percent of most
+    similar database molecules for each reference molecule with application
+    of similarity cutoff of 0.85 to supported fingerprints strings data in
+    text fingerprints files present in specific columns and create a
+    ReferenceFPHexSimilaritySearching.csv file containing reference and
+    database compoundIDs retrieved from specific columns, type:
+
+        % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
+          SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
+          --ReferenceColMode ColLabel --ReferenceFingerprintsCol Fingerprints
+          --ReferenceCompoundIDCol CompoundID --DatabaseColMode Collabel
+          --DatabaseCompoundIDCol CompoundID --DatabaseFingerprintsCol
+          Fingerprints --SimilarityCutoff 0.85 --SimilarCountMode PercentSimilar
+          --PercentSimilarMolecules 2 -o
+          ReferenceSampleFPHex.csv DatabaseSampleFPHex.csv
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find top 50 most similar
+    database molecules for each reference molecule with application of
+    similarity cutoff of 0.85 to supported fingerprints strings data in SD
+    fingerprints files present in specific data fields and create both
+    ReferenceFPHexSimilaritySearching.csv and
+    ReferenceFPHexSimilaritySearching.sdf files containing reference and
+    database compoundIDs retrieved from specific data fields, type:
+
+        % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
+          SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
+          --ReferenceFingerprintsField Fingerprints
+          --DatabaseFingerprintsField Fingerprints
+          --ReferenceCompoundIDMode DataField --ReferenceCompoundIDField CmpdID
+          --DatabaseCompoundIDMode DataField --DatabaseCompoundIDField CmpdID
+          --SimilarityCutoff 0.85 --SimilarCountMode NumOfSimilar
+          --NumOfSimilarMolecules 50 --output both -o
+          ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf
+
+    To perform similarity search using Tanimoto coefficient by treating
+    reference molecules as individual molecules to find 1 percent of most
+    similar database molecules for each reference molecule with application
+    of similarity cutoff to supported fingerprints strings data in SD
+    fingerprints files present in specific data field labels, and create
+    both ReferenceFPHexSimilaritySearching.csv
+    ReferenceFPHexSimilaritySearching.sdf files containing reference and
+    database compound IDs retrieved from specific data field labels along
+    with other specific data for database molecules, type:
+
+        % SimilaritySearchingFingerprints.pl --mode IndividualReference --SearchMode
+          SimilaritySearch --BitVectorComparisonMode TanimotoSimilarity
+          --ReferenceFingerprintsField Fingerprints
+          --DatabaseFingerprintsField Fingerprints
+          --ReferenceCompoundIDMode DataField --ReferenceCompoundIDField CmpdID
+          --DatabaseCompoundIDMode DataField --DatabaseCompoundIDField CmpdID
+          --DatabaseDataFieldsMode Specify --DatabaseDataFields "TPSA,SLogP"
+          --SimilarityCutoff 0.75 --SimilarCountMode PercentSimilar
+          --PercentSimilarMolecules 1 --output both --OutDelim comma --quote Yes
+          --precision 3 -o ReferenceSampleFPHex.sdf DatabaseSampleFPHex.sdf
+
+AUTHOR
+    Manish Sud <msud@san.rr.com>
+
+SEE ALSO
+    InfoFingerprintsFiles.pl, SimilarityMatricesFingerprints.pl,
+    AtomNeighborhoodsFingerprints.pl, ExtendedConnectivityFingerprints.pl,
+    MACCSKeysFingerprints.pl, PathLengthFingerprints.pl,
+    TopologicalAtomPairsFingerprints.pl,
+    TopologicalAtomTorsionsFingerprints.pl,
+    TopologicalPharmacophoreAtomPairsFingerprints.pl,
+    TopologicalPharmacophoreAtomTripletsFingerprints.pl
+
+COPYRIGHT
+    Copyright (C) 2015 Manish Sud. All rights reserved.
+
+    This file is part of MayaChemTools.
+
+    MayaChemTools is free software; you can redistribute it and/or modify it
+    under the terms of the GNU Lesser General Public License as published by
+    the Free Software Foundation; either version 3 of the License, or (at
+    your option) any later version.
+