Mercurial > repos > deepakjadmin > mayatool3_test2
diff docs/modules/txt/StatisticsUtil.txt @ 0:4816e4a8ae95 draft default tip
Uploaded
author | deepakjadmin |
---|---|
date | Wed, 20 Jan 2016 09:23:18 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/docs/modules/txt/StatisticsUtil.txt Wed Jan 20 09:23:18 2016 -0500 @@ -0,0 +1,250 @@ +NAME + StatisticsUtil + +SYNOPSIS + use StatisticsUtil; + + use Statistics qw(:all); + +DESCRIPTION + StatisticsUtil module provides the following functions: + + Average, AverageDeviation, Correlation, Covariance, Euclidean, + Factorial, FactorialDivison, Frequency, GeometricMean, HarmonicMean, + KLargest, KSmallest, Kurtosis, Maximum, Mean, Median, Minimum, Mode, + PearsonCorrelation, Permutations, Product, RSquare, Range, Skewness, + StandardDeviation, StandardDeviationN, StandardError, StandardScores, + StandardScoresN, Standardize, Sum, SumOfSquares, TrimMean, Variance, + VarianceN + + METHODS + Average + $Value = Average(\@DataArray); + + Computes the mean of an array of numbers: SUM( x[i] ) / n + + AverageDeviation + $Value = AverageDeviation(\@DataArray); + + Computes the average of the absolute deviation of an array of + numbers: SUM( ABS(x[i] - Xmean) ) / n + + Correlation + $Value = Correlation(\@XDataArray, \@YDataArray); + + Computes the Pearson correlation coefficient between two arrays of + numbers: SUM( (x[i] - Xmean)(y[i] - Ymean) ) / SQRT( SUM( (x[i] - + Xmean)^2 )(SUM( (y[i] - Ymean)^2 )) ) + + Euclidean + $Return = Euclidean(\@DataArray); + + Computes the euclidean distance of an array of numbers: SQRT( SUM( + x[i] ** 2) ) + + Covariance + $Value = Covariance(\@XDataArray, \@YDataArray); + + Computes the covariance between two arrays of numbers: SUM( (x[i] - + Xmean) (y[i] - Ymean) ) / n + + Factorial + $Value = Factorial($Num); + + Computes the factorial of a positive integer. + + FactorialDivison + $Value = FactorialDivision($Numerator, $Denominator); + + Compute the factorial divison of two positive integers. + + Frequency + %FrequencyValues = Frequency(\@DataArray, [$NumOfBins]); + %FrequencyValues = Frequency(\@DataArray, [\@BinRange]); + + A hash array is returned with keys and values representing range and + frequency values, respectively. The frequency value for a specific + key corresponds to all the values which are greater than the + previous key and less than or equal to the current key. A key value + representing maximum value is added for generating frequency + distribution for specific number of bins, and whenever the maximum + array value is greater than the maximum specified in bin range, it + is also added to bin range. + + GeometricMean + $Value = GeometricMean(\@DataArray); + + Computes the geometric mean of an array of numbers: NthROOT( + PRODUCT(x[i]) ) + + HarmonicMean + $Value = HarmonicMean(\@DataArray); + + Computes the harmonic mean of an array of numbers: 1 / ( SUM(1/x[i]) + / n ) + + KLargest + $Value = KLargest(\@DataArray, $KthNumber); + + Returns the k-largest value from an array of numbers. + + KSmallest + $Value = KSmallest(\@DataArray, $KthNumber); + + Returns the k-smallest value from an array of numbers. + + Kurtosis + $Value = Kurtosis(\@DataArray); + + Computes the kurtosis of an array of numbers: [ {n(n + 1)/(n - 1)(n + - 2)(n - 3)} SUM{ ((x[i] - Xmean)/STDDEV)^4 } ] - {3((n - 1)^2)}/{(n + - 2)(n-3)} + + Maximum + $Value = Maximum(\@DataArray); + + Returns the largest value from an array of numbers. + + Minimum + $Value = Minimum(\@DataArray); + + Returns the smallest value from an array of numbers. + + Mean + $Value = Mean(\@DataArray); + + Computes the mean of an array of numbers: SUM( x[i] ) / n + + Median + $Value = Median(\@DataArray); + + Computes the median value of an array of numbers. For an even number + array, it's the average of two middle values. + + For even values of n: Xsorted[(n - 1)/2 + 1] For odd values of n: + (Xsorted[n/2] + Xsorted[n/2 + 1])/2 + + Mode + $Value = Mode(\@DataArray); + + Returns the most frequently occuring value in an array of numbers. + + PearsonCorrelation + $Value = Correlation(\@XDataArray, \@YDataArray); + + Computes the Pearson correlation coefficient between two arrays of + numbers: SUM( (x[i] - Xmean)(y[i] - Ymean) ) / SQRT( SUM( (x[i] - + Xmean)^2 )(SUM( (y[i] - Ymean)^2 )) ) + + Permutations + $PermutationsRef = Permutations(@DataToPermute); + + Generate all possible permuations or a specific permutations of + items in an array and return a reference to an array containing + array references to generated permuations. + + This alogrithm is based on the example provided by Mark + Jason-Dominus, and is available at CPAN as mjd_permute standalone + script. + + Product + $Value = Product(\@DataArray); + + Compute the product of an array of numbers. + + Range + ($Smallest, $Largest) = Range(\@DataArray); + + Return the smallest and largest values from an array of numbers. + + RSquare + $Value = RSquare(\@XDataArray, \@YDataArray); + + Computes square of the Pearson correlation coefficient between two + arrays of numbers. + + Skewness + $Value = Skewness(\@DataArray); + + Computes the skewness of an array of numbers: {n/(n - 1)(n - 2)} + SUM{ ((x[i] - Xmean)/STDDEV)^3 } + + StandardDeviation + $Value = StandardDeviation(\@DataArray); + + Computes the standard deviation of an array of numbers. SQRT ( SUM( + (x[i] - mean)^2 ) / (n - 1) ) + + StandardDeviationN + $Value = StandardDeviationN(\@DataArray); + + Computes the standard deviation of an array of numbers representing + entire population: SQRT ( SUM( (x[i] - mean)^2 ) / n ) + + StandardError + $Value = StandardError($StandardDeviation, $Count); + + Computes the standard error using standard deviation and sample + size. + + Standardize + $Value = Standardize($Value, $Mean, $StandardDeviation); + + Standardizes the value using mean and standard deviation. + + StandardScores + @Values = StandardScores(\@DataArray); + + Computes the standard deviation above the mean for an array of + numbers: (x[i] - mean) / (n - 1) + + StandardScoresN + @Values = StandardScoresN(\@DataArray); + + Computes the standard deviation above the mean for an array of + numbers representing entire population: (x[i] - mean) / n + + Sum + $Value = Sum(\@DataArray); + + Compute the sum of an array of numbers. + + SumOfSquares + $Value = SumOfSquares(\@DataArray); + + Computes the sum of an array of numbers. + + TrimMean + $Value = TrimMean(\@DataArray, $FractionToExclude)); + + Computes the mean of an array of numbers by excluding a fraction of + numbers from the top and bottom of the data set. + + Variance + $Value = Variance(\@DataArray); + + Computes the variance of an array of numbers: SUM( (x[i] - Xmean)^2 + / (n - 1) ) + + VarianceN + $Value = Variance(\@DataArray); + + Compute the variance of an array of numbers representing entire + population: SUM( (x[i] - Xmean)^2 / n ) + +AUTHOR + Manish Sud <msud@san.rr.com> + +SEE ALSO + Constants.pm, ConversionsUtil.pm, MathUtil.pm + +COPYRIGHT + Copyright (C) 2015 Manish Sud. All rights reserved. + + This file is part of MayaChemTools. + + MayaChemTools is free software; you can redistribute it and/or modify it + under the terms of the GNU Lesser General Public License as published by + the Free Software Foundation; either version 3 of the License, or (at + your option) any later version. +