comparison lib/data/References.txt @ 0:4816e4a8ae95 draft default tip

Uploaded
author deepakjadmin
date Wed, 20 Jan 2016 09:23:18 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:4816e4a8ae95
1 REFERENCES
2
3 1. Wall, L.; Christiansen, T.; Schwartz, R.L. Programming Perl, 2nd edition. O'Reilly Media Inc., September 1996.
4
5 2. CPAN: Comprehensive Perl archive network. [ URL: www.cpan.org ]
6
7 3. FSF: Free software foundation. [ URL: www.fsf.org ]
8
9 4. Knuth, D.E. The art of computer programming. Vol. 1-3. 2nd edition. Addison-Wesley, September 1998.
10
11 5. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipies in C: the art of scientific computing. 2nd edition. Cambridge University Press, 1992.
12
13 6. Orwant, J.; MacDonald, J.; Hietaniemi, J. Mastering algorithms with Perl. O'Reilly Media Inc., August 1999.
14
15 7. Data for elements in the periodic table. [ URL: www.webelements.com ]
16
17 8. Isotope data for elements in the periodic table. [ URL: http://physics.nist.gov/PhysRefData/Compositions/index.html ]
18
19 9. Main data source for amino acids. [ URL: www.expasy.ch ]
20
21 10. PerlMol - Perl modules for molecular chemistry. [ URL: www.perlmol.org ]
22
23 11. OpenBabel: The open source chemistry toolbox. [ URL: http://openbabel.sourceforge.net/wiki/Main_Page ]
24
25 12. CDK: The chemistry development kit. [ URL: http://cdk.sourceforge.net ]
26
27 13. JOELIB. [ URL: http://sourceforge.net/projects/joelib/ ]
28
29 14. CTFile Formats. [ URL: http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php ]
30
31 15. Conway, D. Object oriented Perl. 1st edition. O'Reilly Media Inc., January 2000.
32
33 16. Friedl, J.E.F. Mastering regular expressions. 3rd edition. O'Reilly Media Inc., August 2006.
34
35 17. Schulz, G.E.; Schirmer, R.H. Principles of protein structure. Springer-Verlag, January 1997.
36
37 18. Saenger, W. Principles of nucleic acid structure. Springer-Verlag, 1983.
38
39 19. Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequence. Nucleic Acids Res. 1985, 13, 3021-3030.
40
41 20. Clapham, C. A concise Oxford dictionary of mathematics. Oxford University Press, 1990.
42
43 21. Cook, J.L. Conversion factors. Oxford University Press, 1993.
44
45 22. Pauling, L. The nature of chemical bond. 3rd edition. Cornell University Press, June 1960.
46
47 23. Daylight theory manual. [ URL: www.daylight.com/dayhtml/doc/theory/index.html ]
48
49 24. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Am. Chem. Soc. 1988, 28, 31-36.
50
51 25. Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Am. Chem. Soc. 1989, 29, 97-101.
52
53 26. Weininger, D. SMILES. 3. Depit. Graphical depiction of chemical structures. J. Am. Chem. Soc. 1990, 30, 237-243.
54
55 27. OEChem TK manual. [ URL: http://eyesopen.com/docs/toolkits/current/pdf/OEChem_TK-c++.pdf ]
56
57 28. Parkin, G. Valence, oxidation number, and formal charge: Three related but fundamentally different concepts. J. Chem. Educ. 2006, 83, 791-799.
58
59 29. Gateiger, J.; Jochum, C. An algorithm for the perception of synthetically important rigngs. J. Chem. Inf. Comput. Sci. 1979, 19, 43-47.
60
61 30. Balducci, R.; Pearlman, R.S. Efficient exact solution of the ring perception problem. J. Chem. Inf. Comput. Sci. 1994, 34, 822-831.
62
63 31. Hanser, T.; Jauffret, P.; Kaufmann, G. A new algorithm for exhaustive ring perception in a molecular graph. J. Chem. Inf. Comput. Sci. 1996, 36, 1146-1152.
64
65 32. Cahn, R.S.; Ingold, C.; Prelog, V. Specification of molecular chirality. Angew. Chem. Internat. Edit. 1966, 5, 385-415.
66
67 33. Prelog, V.; Helmchen, G. Basic principles of the CIP-system and proposals for revision. Angew. Chem. Internat. Edit. 1982, 21, 567-583.
68
69 34. Mata, P.; Lobo, A.M.; Marshall, C.; Johnson, P.A. The CIP seqeunce rules: Analysis and proposal for a revision. Tetrahedron. 1993, 4, 657-668.
70
71 35. Nourse, J.G.; Carhart, R.E.; Smith, D.H.; Djerassi, C. Exhaustive generation of stereoisomers for structure elucidation. J. Am. Chem. Soc. 1979, 101, 1216-1223.
72
73 36. Nourse, J.G.; Smith, D.H.; Carhart, R.E.; Djerassi, C. Computer-assisted elucidation of molecular structue with stereochemistry. J. Am. Chem. Soc. 1980, 102, 6289-6295.
74
75 37. Fused ring systems. [ URL: www.chem.qmul.ac.uk/iupac/fusedring/ ]
76
77 38. A hash function for hash table lookup. [ URL: www.burtleburtle.net/bob/hash/doobs.html ]
78
79 39. Ralaivola, L.; Swamidass, S.J.; Saigo, H.; Baldi, P. Graph kernals for chemical informatics. Neural Networks. 2005, 18, 1093-1110.
80
81 40. Willett. P.; Barnard, J.M.; Downs, G.M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996.
82
83 41. Holliday, J.D.; Hu, C-Y.; Willett, P. Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings, Combinatorial Chemistry & High Throughput Screening. 2002, Vol. 5, No. 2, 155-166.
84
85 42. Flinger, M.; Verducci, J.; Blower, P. A modification of the Jacard-Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics. 2002, 44, 110-119.
86
87 43. Wang, Y.; Bajorath, J. Balancing the influence of molecular complexity in fingerprint similarity searching. J. Chem. Inf. Comput. Sci. 2008, 48, 75-84.
88
89 44. Flower, D.R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379-386.
90
91 45. The Enkfil.dat and Eksfil.dat files: The keys to understanding MDL keyset technology. [ URL: http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf ]
92
93 46. Durant, J.L.; Leland, B.A.; Henry, D.H.; Nourse, J.G. Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280.
94
95 47. Description of public MACCS keys. [ URL: https://list.indiana.edu/sympa/arc/chminf-l/2007-11/msg00058.html ]
96
97 48. Morgan, H.L. The generation of a unique machine description for chemical structures - A technique developed at chemical abstracts service. J. Chem. Doc. 1965, 5, 107-112.
98
99 49. Penny, R.H. A connectivity code for use in describing chemical structures. J. Chem. Doc. 1965, 5, 113-117. J. Chem. Doc. 1973, 3, 153-157.
100
101 50. Adamson, G.W.; Cowell, J.; Lynch, M.F.; McLure, A.H.; Town, W.G. Yapp, M. Strategic considerations in design of a screening system for substructure searches of chemical structure files.
102
103 51. Wipke, W.T.; Krishnan, S.; Ouchi, G.I. Hash functions for rapid storage and retrieval of chemical structures. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280. 1978, 18, 31- .
104
105 52. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Mod. 2010, 50, 742-754.
106
107 53. Faulon, J.-L.; Visco, D.P., Jr.; Pophale, R.S. The Signature Molecular Descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 2003, 43, 707-720.
108
109 54. Faulon, J.-L.; Collins, M.J.; Carr, R.D. The signature molecular descriptor. 4. Canonizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 2004, 44, 427-436.
110
111 55. Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive bayesian classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170-178.
112
113 56. Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of performance. J. Chem. Inf. Comput. Sci. 2004, 44, 1708-1718.
114
115 57. Carhart, R.E.; Smith, D.H.; Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: Definition and application. J. Chem. Inf. Comput. Sci. 1985, 25, 64-73.
116
117 58. Nilakantan, R.; Bauman, N.; Dixon, J.S.; Venkataraghavan, R. Topological torsion: A new molecular descriptor for SAR applications. Comparison with other descriptors. J. Chem. Inf. Comput. Sci. 1987, 27, 82-85.
118
119 59. Langham, J.L.; Jain, A.N. Accurate and interpretable computational modeling of chemical mutagenicity. J. Chem. Inf. Comput. Sci. 2008, 48, 1833-1839.
120
121 60. Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angew. Chem. Int. Ed. 1999, 38, 2894-2896.
122
123 61. Fechner, U.; Franke, L.; Renner, S.; Schneider, P. Schneider, G. Comparison of correlation vector methods for ligand-based similarity searching. J. Comput. Aided Mol. Des. 2003, 17, 687-698.
124
125 62. Fechner, U.; Schneider, G. Evaluation of distance metrics for ligand-based similarity searching. ChemBioChem. 2004, 5, 538-540.
126
127 63. Downs, G.M.; Willett, P.; Fisanick, W. Similarity searching and clustering of chemical-structure databases using molecular property data. J. Chem. Inf. Comput. Sci., 1994, 34, 1094-1102.
128
129 64. Chen, X.; Reynolds, C.H.; Performance of similarity measures in 2D fragment-based similarity searching: Comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 2002, 42, 1407-1414.
130
131 65. Steffen, R.; Fechner, U.; Schneider, G. Alignment-free pharmacophore patterns: A correlation-vector approach. Pharmacophores and pharmacophore searches. 2006. Volume 32. Wiley-VCH. 49-80.
132
133 66. McGregor, M.J.; Muskal, S. M. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci. 1999, 39, 569-574.
134
135 67. Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM. 1962, 5, 345.
136
137 68. Horvath, D. Topological pharmacophores. Cheminformatics approaches to virtual screening. 2008. RSC Publishing. 44-75.
138
139 69. Ewing, T.; Baber, C.; Feher, M. Novel 2D fingerprints in ligand-based virtual screening. J. Chem. Inf. Model. 2006, 46, 2423-2431.
140
141 70. Watson, P. Naive Bayes classification using 2D pharmacophore feature triplet vectors. J. Chem. Inf. Model. 2008, 48, 166-178
142
143 71. Bonachera, F.; Parent, B.; Barbosa, F.; Froloff, N.; Horvath, D. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes. J. Chem. Inf. Model., 2006, 46, 2457-2477.
144
145 72. Kearsley, S.K.; Sallamack, S.; Fluder, E.M.; Andose, J.D.; Mosley, R.T.; Sheridan, R.P. Chemical Similarity Using Physiochemical Property Descriptors.J. Chem. Inf. Comput. Sci., 1996, 36, 118-127.
146
147 73. Filimonov, D.; Poroikov, V.; Borodina, Y.; Gloriozova, T. Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other Descriptors. J. Chem. Inf. Comput. Sci., 1999, 39, 666-670.
148
149 74. RDKit - Cheminformatics and Machine Learning Software. [ URL: www.rdkit.org ]
150
151 75. Kier, L.B.; Hall, L.H. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039-1045.
152
153 76. Kier, L.B.; Hall, L.H. Molecular structure description - The electrotopological state. Academic Press, 1999.
154
155 77. Molconn-Z - Program for generation of Molecular Connectivity, Shape, and Information Indices. [ URL: www.edusoft-lc.com/molconn/ ]
156
157 78. Kier, L.B.; Hall, L.H. The E-State as the basis for molecular structure space definition and structure similarity. J. Chem. Inf. Comput. Sci. 2000, 40, 784-791.
158
159 79. SYBYL atom types. [ URL: http://www.tripos.com/tripos_resources/fileroot/pdfs/mol2_format2.pdf ]
160
161 80. Clark, M.; Cramer III, R.D.; Opdenbosch, N.V. Validation of the general purpose Tripos 5.2 forcefield. J. Comput. Chem. 1989, 10, 982-1012.
162
163 81. Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard III, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.
164
165 82. Rappe, A. K. Personal communication. 2009.
166
167 83. Halgren, T.A.; Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. 1996, J. Comput. Chem., 17, 490-519.
168 84. Halgren, T.A.; Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Compt. Chem. 1996, 17, 520-552.
169
170 85. Halgren, T.A.; Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Compt. Chem. 1996, 17, 553-586.
171
172 86. Halgren, T.A.; Nachbar, R. B.; Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Compt. Chem. 1996, 17, 587-615.
173
174 87. Halgren, T.A.; Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Compt. Chem. 1996, 17, 616-641.
175
176 88. Mayo, S.L.; Olafson, B.A.; Goddard III, W.A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94, 8897-8909.
177
178 89. Wildman, S.A.; Crippen, G.M.; Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868-873.
179
180 90. Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport Properties. J. Med. Chem. 2000, 43, 3714-3717.
181
182 91. Ertl, P. Personal communication. 2010.
183
184 92. Veber, D.F.; Johnson, S. R.; Chend, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2165-2623.
185
186 91. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Del. Rev. 1997, 23, 3-25.
187
188 92. Congreve M.; Carr R., Murray C., Jhoti H.A. 'rule of three' for fragment-based lead discovery? Drug. Discov. Today. 2003, 8, 876-877.
189
190 93. Zhao, Y.H.; Abraham, M.H.; Zissimos, A.M. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 2003, 68, 7368-7373.
191
192 94. Chen, J.; Holliday, J.; Bradshaw, J.A machine learning approach to weighting schemes in the data fusion of similarity coefficients. J. Chem. Inf. Model. 2009, 49, 185-194.
193
194 95. Williams, C. Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Molecular Diversity. 2006, 10, 311-332.
195
196 96. Whittle, M.; Gillet, V.J.; Willett, P.; Loesel, J. Analysis of data fusion methods in virtual screening: Similarity and group Fusion. J. Chem. Inf. Model. 2006, 46, 2206-2219.
197
198 97. Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 2006, 46, 462-470.
199
200 98. Chu, C-W.; Holliday, J.D.; Willett, P. Effect of data standardization on chemical clustering and similarity searching. J. Chem. Inf. Model., 2009, 49, 155-161.
201
202 99. Arif, S.M.; Holliday, J.D.; Willett, P. Inverse frequency weighting of fragments for similarity-based virtual screening. J. Chem. Inf. Model., 2010, 50, 1340-1349.
203
204 100. Chen, B.; Mueller, C.; Willett, P. Combinations rules for group fusion in similarity-based virtual screening. Mol. Inf. 2010, 29, 533-541.
205
206 101. Willett, P.; Similarity searching using 2D structural fingerprints. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 133-58.
207
208 102. Berglund, A.E.; Head, R.D. PZIM: A method for similarity searching using atom environments and 2d alignment. J. Chem. Inf. Model. 2010, 50, 1790-1795.
209
210 103. Baldi, P.; Nasr, R. When is chemical similarity significant? The statistical distribution of chemical similarity scores and its extreme values. J. Chem. Inf. Model. 2010, 50, 1205-1222.
211
212 104. Godden, J.W.; Stahura, F.L,; Bajorath, J. Anatomy of fingerprint search calculations on structurally diverse sets of active compounds. J. Chem. Inf. Model. 2005, 45, 1812-1819.
213
214 105. Geppert, H.; Horvath, T.; Gartner, T.; Wrobel, S.; Bajorath, J. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds. J. Chem. Inf. Model. 2008, 48, 742-746.
215
216 106. Wang, Y.; Geppert, H.; Bajorath, J. Shannon entropy-based fingerprint similarity search strategy. J. Chem. Inf. Model., 2009, 49, 1687-1691.
217
218 107. Nisius, B.; Bajorath, J. Molecular fingerprint recombination: Generating hybrid fingerprints for similarity searching from different fingerprint types. ChemMedChem. 2009, 4, 1859-1863.
219
220 108. Vogt, M.; Bajorath, J. Predicting the Performance of Fingerprint Similarity Searching. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 159-173.
221
222 109. Muchmore, S.W.; Debe, D.A.; Metz, J.T.; Brown, S.P.; Martin, Y. .; Hajduk, P. H. Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J. Chem. Inf. Model. 2008, 48, 941-948.
223
224 110. Bender, A.; Jenkins, J.L.; Scheiber, J.; Sukuru, S.C.K.; Glick, M.; Davies, J. W. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J. Chem. Inf. Model. 2009, 49, 108-119.
225
226 111. Sastry, M.; Lowrie, J.F.; Dixon, S.L.; Sherman, W. Large-scale sstematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 2010, 50, 771-784.
227
228 112. Tiikkainen, P.; Markt, P.; Wolber, G.; Kirchmair, J.; Distinto, S.; Poso, A.; Kallioniemi. O. Critical comparison of virtual screening methods against the MUV data set. J. Chem. Inf. Model., 2009, 49, 2168-2178.
229
230 113. Venkatraman, V.; Prez-Nueno, V. I.; Mavridis L.; Ritchie, D.W. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J. Chem. Inf. Model., 2010, 50, 2079-2093.
231
232 114. Chemfp - Cheminformatics fingerprints file formats and tools. [ URL: http://code.google.com/p/chem-fingerprints/ ]
233
234 115. Yan, A.; Gasteiger, J.; Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Comb Sci. 2003, 22, 821-829.
235
236 116. Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752-6756.
237
238 117. Hann, M.M.; Leach, A.R.; Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856-864.
239
240 118. Schuffenhauer, S.; Brown, N.; Selzer, P.; Ertl, P.; Jacoby, E. Relationships between molecular complexity, biological activity, and structural diversity. J. Chem. Inf. Model., 2006, 46, 525-535.
241
242 119. Walters, W.P.; Green, J.; Weiss, J.R.; Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 2011, 54, 6405-6416.
243
244 120. Park, S.K.; Miller, K.W. Random number generators: Good ones are hard to find. Communications of the ACM. 1998, 10, 1192- 1200.
245
246 121. Huang R.; Southall N.; Wang Y.; Yasgar A.; Shinn P.; Jadhav A.; Nguyen D. T.; Austin C. P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med. 2011, 80ps16.
247
248 122. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research. 2000, 28, 235-242.
249
250 123. Jmol: An open-source Java viewer for chemical structures in 3D. [ URL: http://www.jmol.org/ ]
251
252 124. Lloyd, D. What is aromaticity? J. Chem. Inf. Comput. Sci. 1996, 36, 442-447.
253
254 125. Sayle, R. Cheminformatics toolkits: A personal perspective. [ URL: http://www.rdkit.org/UGM/2012/Sayle_RDKitPerspective.pdf ]
255
256 126. Dominus, M. J. Higher-order Perl. [ URL: http://hop.perl.plover.com/ ]
257
258 127. OpenSMILES. [ URL: http://www.opensmiles.org/opensmiles.pdf ]
259
260 128. Tim Vandermeersch. OpenSMARTS. [ URL: http://www.moldb.net/opensmarts/ ]
261