Mercurial > repos > deepakjadmin > mayatool3_test2
comparison lib/data/References.txt @ 0:4816e4a8ae95 draft default tip
Uploaded
author | deepakjadmin |
---|---|
date | Wed, 20 Jan 2016 09:23:18 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:4816e4a8ae95 |
---|---|
1 REFERENCES | |
2 | |
3 1. Wall, L.; Christiansen, T.; Schwartz, R.L. Programming Perl, 2nd edition. O'Reilly Media Inc., September 1996. | |
4 | |
5 2. CPAN: Comprehensive Perl archive network. [ URL: www.cpan.org ] | |
6 | |
7 3. FSF: Free software foundation. [ URL: www.fsf.org ] | |
8 | |
9 4. Knuth, D.E. The art of computer programming. Vol. 1-3. 2nd edition. Addison-Wesley, September 1998. | |
10 | |
11 5. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipies in C: the art of scientific computing. 2nd edition. Cambridge University Press, 1992. | |
12 | |
13 6. Orwant, J.; MacDonald, J.; Hietaniemi, J. Mastering algorithms with Perl. O'Reilly Media Inc., August 1999. | |
14 | |
15 7. Data for elements in the periodic table. [ URL: www.webelements.com ] | |
16 | |
17 8. Isotope data for elements in the periodic table. [ URL: http://physics.nist.gov/PhysRefData/Compositions/index.html ] | |
18 | |
19 9. Main data source for amino acids. [ URL: www.expasy.ch ] | |
20 | |
21 10. PerlMol - Perl modules for molecular chemistry. [ URL: www.perlmol.org ] | |
22 | |
23 11. OpenBabel: The open source chemistry toolbox. [ URL: http://openbabel.sourceforge.net/wiki/Main_Page ] | |
24 | |
25 12. CDK: The chemistry development kit. [ URL: http://cdk.sourceforge.net ] | |
26 | |
27 13. JOELIB. [ URL: http://sourceforge.net/projects/joelib/ ] | |
28 | |
29 14. CTFile Formats. [ URL: http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php ] | |
30 | |
31 15. Conway, D. Object oriented Perl. 1st edition. O'Reilly Media Inc., January 2000. | |
32 | |
33 16. Friedl, J.E.F. Mastering regular expressions. 3rd edition. O'Reilly Media Inc., August 2006. | |
34 | |
35 17. Schulz, G.E.; Schirmer, R.H. Principles of protein structure. Springer-Verlag, January 1997. | |
36 | |
37 18. Saenger, W. Principles of nucleic acid structure. Springer-Verlag, 1983. | |
38 | |
39 19. Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequence. Nucleic Acids Res. 1985, 13, 3021-3030. | |
40 | |
41 20. Clapham, C. A concise Oxford dictionary of mathematics. Oxford University Press, 1990. | |
42 | |
43 21. Cook, J.L. Conversion factors. Oxford University Press, 1993. | |
44 | |
45 22. Pauling, L. The nature of chemical bond. 3rd edition. Cornell University Press, June 1960. | |
46 | |
47 23. Daylight theory manual. [ URL: www.daylight.com/dayhtml/doc/theory/index.html ] | |
48 | |
49 24. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Am. Chem. Soc. 1988, 28, 31-36. | |
50 | |
51 25. Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Am. Chem. Soc. 1989, 29, 97-101. | |
52 | |
53 26. Weininger, D. SMILES. 3. Depit. Graphical depiction of chemical structures. J. Am. Chem. Soc. 1990, 30, 237-243. | |
54 | |
55 27. OEChem TK manual. [ URL: http://eyesopen.com/docs/toolkits/current/pdf/OEChem_TK-c++.pdf ] | |
56 | |
57 28. Parkin, G. Valence, oxidation number, and formal charge: Three related but fundamentally different concepts. J. Chem. Educ. 2006, 83, 791-799. | |
58 | |
59 29. Gateiger, J.; Jochum, C. An algorithm for the perception of synthetically important rigngs. J. Chem. Inf. Comput. Sci. 1979, 19, 43-47. | |
60 | |
61 30. Balducci, R.; Pearlman, R.S. Efficient exact solution of the ring perception problem. J. Chem. Inf. Comput. Sci. 1994, 34, 822-831. | |
62 | |
63 31. Hanser, T.; Jauffret, P.; Kaufmann, G. A new algorithm for exhaustive ring perception in a molecular graph. J. Chem. Inf. Comput. Sci. 1996, 36, 1146-1152. | |
64 | |
65 32. Cahn, R.S.; Ingold, C.; Prelog, V. Specification of molecular chirality. Angew. Chem. Internat. Edit. 1966, 5, 385-415. | |
66 | |
67 33. Prelog, V.; Helmchen, G. Basic principles of the CIP-system and proposals for revision. Angew. Chem. Internat. Edit. 1982, 21, 567-583. | |
68 | |
69 34. Mata, P.; Lobo, A.M.; Marshall, C.; Johnson, P.A. The CIP seqeunce rules: Analysis and proposal for a revision. Tetrahedron. 1993, 4, 657-668. | |
70 | |
71 35. Nourse, J.G.; Carhart, R.E.; Smith, D.H.; Djerassi, C. Exhaustive generation of stereoisomers for structure elucidation. J. Am. Chem. Soc. 1979, 101, 1216-1223. | |
72 | |
73 36. Nourse, J.G.; Smith, D.H.; Carhart, R.E.; Djerassi, C. Computer-assisted elucidation of molecular structue with stereochemistry. J. Am. Chem. Soc. 1980, 102, 6289-6295. | |
74 | |
75 37. Fused ring systems. [ URL: www.chem.qmul.ac.uk/iupac/fusedring/ ] | |
76 | |
77 38. A hash function for hash table lookup. [ URL: www.burtleburtle.net/bob/hash/doobs.html ] | |
78 | |
79 39. Ralaivola, L.; Swamidass, S.J.; Saigo, H.; Baldi, P. Graph kernals for chemical informatics. Neural Networks. 2005, 18, 1093-1110. | |
80 | |
81 40. Willett. P.; Barnard, J.M.; Downs, G.M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996. | |
82 | |
83 41. Holliday, J.D.; Hu, C-Y.; Willett, P. Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings, Combinatorial Chemistry & High Throughput Screening. 2002, Vol. 5, No. 2, 155-166. | |
84 | |
85 42. Flinger, M.; Verducci, J.; Blower, P. A modification of the Jacard-Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics. 2002, 44, 110-119. | |
86 | |
87 43. Wang, Y.; Bajorath, J. Balancing the influence of molecular complexity in fingerprint similarity searching. J. Chem. Inf. Comput. Sci. 2008, 48, 75-84. | |
88 | |
89 44. Flower, D.R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379-386. | |
90 | |
91 45. The Enkfil.dat and Eksfil.dat files: The keys to understanding MDL keyset technology. [ URL: http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf ] | |
92 | |
93 46. Durant, J.L.; Leland, B.A.; Henry, D.H.; Nourse, J.G. Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280. | |
94 | |
95 47. Description of public MACCS keys. [ URL: https://list.indiana.edu/sympa/arc/chminf-l/2007-11/msg00058.html ] | |
96 | |
97 48. Morgan, H.L. The generation of a unique machine description for chemical structures - A technique developed at chemical abstracts service. J. Chem. Doc. 1965, 5, 107-112. | |
98 | |
99 49. Penny, R.H. A connectivity code for use in describing chemical structures. J. Chem. Doc. 1965, 5, 113-117. J. Chem. Doc. 1973, 3, 153-157. | |
100 | |
101 50. Adamson, G.W.; Cowell, J.; Lynch, M.F.; McLure, A.H.; Town, W.G. Yapp, M. Strategic considerations in design of a screening system for substructure searches of chemical structure files. | |
102 | |
103 51. Wipke, W.T.; Krishnan, S.; Ouchi, G.I. Hash functions for rapid storage and retrieval of chemical structures. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280. 1978, 18, 31- . | |
104 | |
105 52. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Mod. 2010, 50, 742-754. | |
106 | |
107 53. Faulon, J.-L.; Visco, D.P., Jr.; Pophale, R.S. The Signature Molecular Descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 2003, 43, 707-720. | |
108 | |
109 54. Faulon, J.-L.; Collins, M.J.; Carr, R.D. The signature molecular descriptor. 4. Canonizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 2004, 44, 427-436. | |
110 | |
111 55. Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive bayesian classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170-178. | |
112 | |
113 56. Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of performance. J. Chem. Inf. Comput. Sci. 2004, 44, 1708-1718. | |
114 | |
115 57. Carhart, R.E.; Smith, D.H.; Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: Definition and application. J. Chem. Inf. Comput. Sci. 1985, 25, 64-73. | |
116 | |
117 58. Nilakantan, R.; Bauman, N.; Dixon, J.S.; Venkataraghavan, R. Topological torsion: A new molecular descriptor for SAR applications. Comparison with other descriptors. J. Chem. Inf. Comput. Sci. 1987, 27, 82-85. | |
118 | |
119 59. Langham, J.L.; Jain, A.N. Accurate and interpretable computational modeling of chemical mutagenicity. J. Chem. Inf. Comput. Sci. 2008, 48, 1833-1839. | |
120 | |
121 60. Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angew. Chem. Int. Ed. 1999, 38, 2894-2896. | |
122 | |
123 61. Fechner, U.; Franke, L.; Renner, S.; Schneider, P. Schneider, G. Comparison of correlation vector methods for ligand-based similarity searching. J. Comput. Aided Mol. Des. 2003, 17, 687-698. | |
124 | |
125 62. Fechner, U.; Schneider, G. Evaluation of distance metrics for ligand-based similarity searching. ChemBioChem. 2004, 5, 538-540. | |
126 | |
127 63. Downs, G.M.; Willett, P.; Fisanick, W. Similarity searching and clustering of chemical-structure databases using molecular property data. J. Chem. Inf. Comput. Sci., 1994, 34, 1094-1102. | |
128 | |
129 64. Chen, X.; Reynolds, C.H.; Performance of similarity measures in 2D fragment-based similarity searching: Comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 2002, 42, 1407-1414. | |
130 | |
131 65. Steffen, R.; Fechner, U.; Schneider, G. Alignment-free pharmacophore patterns: A correlation-vector approach. Pharmacophores and pharmacophore searches. 2006. Volume 32. Wiley-VCH. 49-80. | |
132 | |
133 66. McGregor, M.J.; Muskal, S. M. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci. 1999, 39, 569-574. | |
134 | |
135 67. Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM. 1962, 5, 345. | |
136 | |
137 68. Horvath, D. Topological pharmacophores. Cheminformatics approaches to virtual screening. 2008. RSC Publishing. 44-75. | |
138 | |
139 69. Ewing, T.; Baber, C.; Feher, M. Novel 2D fingerprints in ligand-based virtual screening. J. Chem. Inf. Model. 2006, 46, 2423-2431. | |
140 | |
141 70. Watson, P. Naive Bayes classification using 2D pharmacophore feature triplet vectors. J. Chem. Inf. Model. 2008, 48, 166-178 | |
142 | |
143 71. Bonachera, F.; Parent, B.; Barbosa, F.; Froloff, N.; Horvath, D. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes. J. Chem. Inf. Model., 2006, 46, 2457-2477. | |
144 | |
145 72. Kearsley, S.K.; Sallamack, S.; Fluder, E.M.; Andose, J.D.; Mosley, R.T.; Sheridan, R.P. Chemical Similarity Using Physiochemical Property Descriptors.J. Chem. Inf. Comput. Sci., 1996, 36, 118-127. | |
146 | |
147 73. Filimonov, D.; Poroikov, V.; Borodina, Y.; Gloriozova, T. Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other Descriptors. J. Chem. Inf. Comput. Sci., 1999, 39, 666-670. | |
148 | |
149 74. RDKit - Cheminformatics and Machine Learning Software. [ URL: www.rdkit.org ] | |
150 | |
151 75. Kier, L.B.; Hall, L.H. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039-1045. | |
152 | |
153 76. Kier, L.B.; Hall, L.H. Molecular structure description - The electrotopological state. Academic Press, 1999. | |
154 | |
155 77. Molconn-Z - Program for generation of Molecular Connectivity, Shape, and Information Indices. [ URL: www.edusoft-lc.com/molconn/ ] | |
156 | |
157 78. Kier, L.B.; Hall, L.H. The E-State as the basis for molecular structure space definition and structure similarity. J. Chem. Inf. Comput. Sci. 2000, 40, 784-791. | |
158 | |
159 79. SYBYL atom types. [ URL: http://www.tripos.com/tripos_resources/fileroot/pdfs/mol2_format2.pdf ] | |
160 | |
161 80. Clark, M.; Cramer III, R.D.; Opdenbosch, N.V. Validation of the general purpose Tripos 5.2 forcefield. J. Comput. Chem. 1989, 10, 982-1012. | |
162 | |
163 81. Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard III, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035. | |
164 | |
165 82. Rappe, A. K. Personal communication. 2009. | |
166 | |
167 83. Halgren, T.A.; Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. 1996, J. Comput. Chem., 17, 490-519. | |
168 84. Halgren, T.A.; Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Compt. Chem. 1996, 17, 520-552. | |
169 | |
170 85. Halgren, T.A.; Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Compt. Chem. 1996, 17, 553-586. | |
171 | |
172 86. Halgren, T.A.; Nachbar, R. B.; Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Compt. Chem. 1996, 17, 587-615. | |
173 | |
174 87. Halgren, T.A.; Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Compt. Chem. 1996, 17, 616-641. | |
175 | |
176 88. Mayo, S.L.; Olafson, B.A.; Goddard III, W.A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94, 8897-8909. | |
177 | |
178 89. Wildman, S.A.; Crippen, G.M.; Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868-873. | |
179 | |
180 90. Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport Properties. J. Med. Chem. 2000, 43, 3714-3717. | |
181 | |
182 91. Ertl, P. Personal communication. 2010. | |
183 | |
184 92. Veber, D.F.; Johnson, S. R.; Chend, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2165-2623. | |
185 | |
186 91. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Del. Rev. 1997, 23, 3-25. | |
187 | |
188 92. Congreve M.; Carr R., Murray C., Jhoti H.A. 'rule of three' for fragment-based lead discovery? Drug. Discov. Today. 2003, 8, 876-877. | |
189 | |
190 93. Zhao, Y.H.; Abraham, M.H.; Zissimos, A.M. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 2003, 68, 7368-7373. | |
191 | |
192 94. Chen, J.; Holliday, J.; Bradshaw, J.A machine learning approach to weighting schemes in the data fusion of similarity coefficients. J. Chem. Inf. Model. 2009, 49, 185-194. | |
193 | |
194 95. Williams, C. Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Molecular Diversity. 2006, 10, 311-332. | |
195 | |
196 96. Whittle, M.; Gillet, V.J.; Willett, P.; Loesel, J. Analysis of data fusion methods in virtual screening: Similarity and group Fusion. J. Chem. Inf. Model. 2006, 46, 2206-2219. | |
197 | |
198 97. Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 2006, 46, 462-470. | |
199 | |
200 98. Chu, C-W.; Holliday, J.D.; Willett, P. Effect of data standardization on chemical clustering and similarity searching. J. Chem. Inf. Model., 2009, 49, 155-161. | |
201 | |
202 99. Arif, S.M.; Holliday, J.D.; Willett, P. Inverse frequency weighting of fragments for similarity-based virtual screening. J. Chem. Inf. Model., 2010, 50, 1340-1349. | |
203 | |
204 100. Chen, B.; Mueller, C.; Willett, P. Combinations rules for group fusion in similarity-based virtual screening. Mol. Inf. 2010, 29, 533-541. | |
205 | |
206 101. Willett, P.; Similarity searching using 2D structural fingerprints. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 133-58. | |
207 | |
208 102. Berglund, A.E.; Head, R.D. PZIM: A method for similarity searching using atom environments and 2d alignment. J. Chem. Inf. Model. 2010, 50, 1790-1795. | |
209 | |
210 103. Baldi, P.; Nasr, R. When is chemical similarity significant? The statistical distribution of chemical similarity scores and its extreme values. J. Chem. Inf. Model. 2010, 50, 1205-1222. | |
211 | |
212 104. Godden, J.W.; Stahura, F.L,; Bajorath, J. Anatomy of fingerprint search calculations on structurally diverse sets of active compounds. J. Chem. Inf. Model. 2005, 45, 1812-1819. | |
213 | |
214 105. Geppert, H.; Horvath, T.; Gartner, T.; Wrobel, S.; Bajorath, J. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds. J. Chem. Inf. Model. 2008, 48, 742-746. | |
215 | |
216 106. Wang, Y.; Geppert, H.; Bajorath, J. Shannon entropy-based fingerprint similarity search strategy. J. Chem. Inf. Model., 2009, 49, 1687-1691. | |
217 | |
218 107. Nisius, B.; Bajorath, J. Molecular fingerprint recombination: Generating hybrid fingerprints for similarity searching from different fingerprint types. ChemMedChem. 2009, 4, 1859-1863. | |
219 | |
220 108. Vogt, M.; Bajorath, J. Predicting the Performance of Fingerprint Similarity Searching. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 159-173. | |
221 | |
222 109. Muchmore, S.W.; Debe, D.A.; Metz, J.T.; Brown, S.P.; Martin, Y. .; Hajduk, P. H. Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J. Chem. Inf. Model. 2008, 48, 941-948. | |
223 | |
224 110. Bender, A.; Jenkins, J.L.; Scheiber, J.; Sukuru, S.C.K.; Glick, M.; Davies, J. W. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J. Chem. Inf. Model. 2009, 49, 108-119. | |
225 | |
226 111. Sastry, M.; Lowrie, J.F.; Dixon, S.L.; Sherman, W. Large-scale sstematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 2010, 50, 771-784. | |
227 | |
228 112. Tiikkainen, P.; Markt, P.; Wolber, G.; Kirchmair, J.; Distinto, S.; Poso, A.; Kallioniemi. O. Critical comparison of virtual screening methods against the MUV data set. J. Chem. Inf. Model., 2009, 49, 2168-2178. | |
229 | |
230 113. Venkatraman, V.; Prez-Nueno, V. I.; Mavridis L.; Ritchie, D.W. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J. Chem. Inf. Model., 2010, 50, 2079-2093. | |
231 | |
232 114. Chemfp - Cheminformatics fingerprints file formats and tools. [ URL: http://code.google.com/p/chem-fingerprints/ ] | |
233 | |
234 115. Yan, A.; Gasteiger, J.; Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Comb Sci. 2003, 22, 821-829. | |
235 | |
236 116. Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752-6756. | |
237 | |
238 117. Hann, M.M.; Leach, A.R.; Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856-864. | |
239 | |
240 118. Schuffenhauer, S.; Brown, N.; Selzer, P.; Ertl, P.; Jacoby, E. Relationships between molecular complexity, biological activity, and structural diversity. J. Chem. Inf. Model., 2006, 46, 525-535. | |
241 | |
242 119. Walters, W.P.; Green, J.; Weiss, J.R.; Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 2011, 54, 6405-6416. | |
243 | |
244 120. Park, S.K.; Miller, K.W. Random number generators: Good ones are hard to find. Communications of the ACM. 1998, 10, 1192- 1200. | |
245 | |
246 121. Huang R.; Southall N.; Wang Y.; Yasgar A.; Shinn P.; Jadhav A.; Nguyen D. T.; Austin C. P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med. 2011, 80ps16. | |
247 | |
248 122. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research. 2000, 28, 235-242. | |
249 | |
250 123. Jmol: An open-source Java viewer for chemical structures in 3D. [ URL: http://www.jmol.org/ ] | |
251 | |
252 124. Lloyd, D. What is aromaticity? J. Chem. Inf. Comput. Sci. 1996, 36, 442-447. | |
253 | |
254 125. Sayle, R. Cheminformatics toolkits: A personal perspective. [ URL: http://www.rdkit.org/UGM/2012/Sayle_RDKitPerspective.pdf ] | |
255 | |
256 126. Dominus, M. J. Higher-order Perl. [ URL: http://hop.perl.plover.com/ ] | |
257 | |
258 127. OpenSMILES. [ URL: http://www.opensmiles.org/opensmiles.pdf ] | |
259 | |
260 128. Tim Vandermeersch. OpenSMARTS. [ URL: http://www.moldb.net/opensmarts/ ] | |
261 |