Mercurial > repos > deepakjadmin > mayatool3_test2
comparison lib/MathUtil.pm @ 0:4816e4a8ae95 draft default tip
Uploaded
author | deepakjadmin |
---|---|
date | Wed, 20 Jan 2016 09:23:18 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:4816e4a8ae95 |
---|---|
1 package MathUtil; | |
2 # | |
3 # $RCSfile: MathUtil.pm,v $ | |
4 # $Date: 2015/02/28 20:47:17 $ | |
5 # $Revision: 1.28 $ | |
6 # | |
7 # Author: Manish Sud <msud@san.rr.com> | |
8 # | |
9 # Copyright (C) 2015 Manish Sud. All rights reserved. | |
10 # | |
11 # This file is part of MayaChemTools. | |
12 # | |
13 # MayaChemTools is free software; you can redistribute it and/or modify it under | |
14 # the terms of the GNU Lesser General Public License as published by the Free | |
15 # Software Foundation; either version 3 of the License, or (at your option) any | |
16 # later version. | |
17 # | |
18 # MayaChemTools is distributed in the hope that it will be useful, but without | |
19 # any warranty; without even the implied warranty of merchantability of fitness | |
20 # for a particular purpose. See the GNU Lesser General Public License for more | |
21 # details. | |
22 # | |
23 # You should have received a copy of the GNU Lesser General Public License | |
24 # along with MayaChemTools; if not, see <http://www.gnu.org/licenses/> or | |
25 # write to the Free Software Foundation Inc., 59 Temple Place, Suite 330, | |
26 # Boston, MA, 02111-1307, USA. | |
27 # | |
28 | |
29 use strict; | |
30 use Exporter; | |
31 use Constants; | |
32 use Math::Trig (); | |
33 use POSIX (); | |
34 | |
35 use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS); | |
36 | |
37 @ISA = qw(Exporter); | |
38 @EXPORT = qw(acos asin atan tan ceil floor log10 min max srandom random round GeneratePrimeNumbersUpToLimit GeneratePrimeNumbersUpToCount); | |
39 @EXPORT_OK = qw(); | |
40 | |
41 %EXPORT_TAGS = (all => [@EXPORT, @EXPORT_OK] | |
42 ); | |
43 | |
44 | |
45 # Return next largest integer... | |
46 sub ceil ($) { | |
47 my($Value) = @_; | |
48 | |
49 return POSIX::ceil($Value); | |
50 } | |
51 | |
52 # Return previous smallest integer... | |
53 sub floor ($) { | |
54 my($Value) = @_; | |
55 | |
56 return POSIX::floor($Value); | |
57 } | |
58 | |
59 # Calculate log value using base 10... | |
60 sub log10 ($) { | |
61 my($Value) = @_; | |
62 | |
63 return CORE::log($Value)/CORE::log(10); | |
64 } | |
65 | |
66 # Return the smaller of two numbers... | |
67 sub min ($$) { | |
68 my($Value1, $Value2) = @_; | |
69 | |
70 return ($Value1 <= $Value2) ? $Value1 : $Value2; | |
71 } | |
72 | |
73 # Return the larger of two numbers... | |
74 sub max ($$) { | |
75 my($Value1, $Value2) = @_; | |
76 | |
77 return ($Value1 >= $Value2) ? $Value1 : $Value2; | |
78 } | |
79 | |
80 # The random number generator implemented in MayaChemTools is a variant of linear | |
81 # congruential generator (LCG) as described by Miller et al. [ Ref 120 ]. It is | |
82 # also referred to as Lehmer random number generator or Park-Miller random number | |
83 # generator. | |
84 # | |
85 # Unlike Perl's core random number generator function rand, the random number | |
86 # generator implemented in MayaChemTools generates consistent random values | |
87 # across different platforms - Windows, CygWin, Linux, Unix - for a specific random | |
88 # seed. | |
89 # | |
90 | |
91 # $RandomModulus = 2**31 - 1; | |
92 # $RandomMultiplier = 16807; | |
93 # $RandomQuotient = $RandomModulus / $RandomMultiplier; | |
94 # $RandomRemainder = $RandomModulus % $RandomMultiplier | |
95 # | |
96 # $MaxRandomSeed = 2*31 -2 | |
97 # | |
98 my($MaxRandomSeed, $RandomSeed, $RandomModulus, $RandomMultiplier, $RandomQuotient, $RandomRemainder); | |
99 | |
100 $MaxRandomSeed = 2147483646; | |
101 $RandomSeed = 123456789; | |
102 | |
103 $RandomModulus = 2147483647; | |
104 $RandomMultiplier = 16807; | |
105 $RandomQuotient = 127773; | |
106 $RandomRemainder = 2836; | |
107 | |
108 # Set random number seed... | |
109 # | |
110 # The intial value of random number seed is recommeded to be an integer between 1 | |
111 # and 2**31 - 2 [Ref 120] which translates to be 1 and 2147483646 | |
112 # | |
113 sub srandom ($) { | |
114 my($Seed) = @_; | |
115 | |
116 if ($Seed <= 0 ) { | |
117 die "Error: srandom: Specified seed value must be greater than 0..."; | |
118 } | |
119 | |
120 $RandomSeed = ($Seed > $MaxRandomSeed) ? ($Seed % $MaxRandomSeed) : $Seed; | |
121 | |
122 return $RandomSeed; | |
123 } | |
124 | |
125 # Retrun a random number between 0 and less than 1 or specified size... | |
126 # | |
127 sub random (;$) { | |
128 my($Size) = @_; | |
129 my($Value, $LowValue, $HighValue); | |
130 | |
131 $Size = defined $Size ? $Size : 1.0; | |
132 | |
133 $HighValue = $RandomSeed / $RandomQuotient; | |
134 $LowValue = $RandomSeed % $RandomQuotient; | |
135 | |
136 $Value = $RandomMultiplier * $LowValue - $RandomRemainder * $HighValue; | |
137 | |
138 $RandomSeed = ($Value > 0) ? $Value : ($Value + $RandomModulus); | |
139 | |
140 return ($RandomSeed / $RandomModulus) * $Size; | |
141 } | |
142 | |
143 # Round a integer/real number to: | |
144 # . A nearest integer | |
145 # . Specified number of decimal places | |
146 # | |
147 sub round ($;$) { | |
148 my($Value, $DecimalPlaces) = @_; | |
149 my($RoundedValue); | |
150 | |
151 if (defined($DecimalPlaces) && $DecimalPlaces > 0) { | |
152 $RoundedValue = sprintf "%.${DecimalPlaces}f", $Value; | |
153 } | |
154 else { | |
155 if ($Value < 0) { | |
156 $RoundedValue = int($Value - 0.5); | |
157 } | |
158 else { | |
159 $RoundedValue = int($Value + 0.5); | |
160 } | |
161 } | |
162 return $RoundedValue; | |
163 } | |
164 | |
165 # Return tangent of an angle expressed in radians. | |
166 sub tan { | |
167 my($Value) = @_; | |
168 | |
169 return (CORE::sin($Value)/CORE::cos($Value)); | |
170 } | |
171 | |
172 # Return inverse sine of an angle expressed in radians. | |
173 # | |
174 # For a right angle triangle defined by sides X and Y in a unit circle, Pythagorean theorem implies | |
175 # X**2 + Y**2 = 1 and sin value corresponds to Y. So asin is equivalent to atan2(Y, sqrt(1-Y**2)). | |
176 # However, taking sqrt of negative numbers is problematic; Math::Trig::asin handles it using complex | |
177 # numbers. | |
178 # | |
179 sub asin ($) { | |
180 my($Value) = @_; | |
181 | |
182 return Math::Trig::asin($Value); | |
183 } | |
184 | |
185 # Return inverse cosine of an angle expressed in radians. | |
186 # | |
187 # For a right angle triangle defined by sides X and Y in a unit circle, Pythagorean theorem implies | |
188 # X**2 + Y**2 = 1 and cos value corresponds to X. So asin is equivalent to atan2(sqrt(1-X**2), X) | |
189 # However, taking sqrt of negative numbers is problematic; Math::Trig::acos handles it using complex | |
190 # numbers. | |
191 # | |
192 sub acos ($) { | |
193 my($Value) = @_; | |
194 | |
195 return Math::Trig::acos($Value); | |
196 } | |
197 | |
198 # Generate prime numbers up to a specified limit and return a reference to an | |
199 # array containing the prime numbers. | |
200 # | |
201 # By default, the first 1000 prime numbers are generated. The 1000th prime | |
202 # number is 7919 and that's why default limit is set to 7920. | |
203 # | |
204 sub GeneratePrimeNumbersUpToLimit (;$) { | |
205 my($Limit) = @_; | |
206 | |
207 $Limit = defined $Limit ? $Limit : 7920; | |
208 | |
209 return _GeneratePrimeNumbers('ByLimit', $Limit) | |
210 } | |
211 | |
212 # Generate prime numbers up to specified count of prime numbers and return a | |
213 # reference to an array containing the prime numbers. | |
214 # | |
215 # By default, the first 1000 prime numbers are generated. The 1000th prime | |
216 # number is 7919. | |
217 # | |
218 sub GeneratePrimeNumbersUpToCount (;$) { | |
219 my($Count) = @_; | |
220 | |
221 $Count = defined $Count ? $Count : 1000; | |
222 | |
223 return _GeneratePrimeNumbers('ByCount', $Count) | |
224 } | |
225 | |
226 # Generate prime numbers up to specified limit or count and return a reference | |
227 # to an array containing the prime numbers. | |
228 # | |
229 # The algorithm to generate prime numbers is a modification of Sieve of Erastothenes | |
230 # prime number generator. | |
231 # | |
232 sub _GeneratePrimeNumbers { | |
233 my($Mode, $Value) = @_; | |
234 my($ByLimit, $PrimeNumber, $Number, $SqrtOfNumber, $NumberIsPrime, @PrimeNumbers); | |
235 | |
236 $ByLimit = ($Mode =~ /^ByLimit$/i) ? 1 : 0; | |
237 | |
238 @PrimeNumbers = (2, 3); | |
239 $Number = 3; | |
240 | |
241 # while ($Number <= $Limit) { | |
242 while ($ByLimit ? ($Number < $Value) : (@PrimeNumbers < $Value)) { | |
243 $Number += 2; | |
244 $SqrtOfNumber = sqrt $Number; | |
245 | |
246 $NumberIsPrime = 1; | |
247 PRIMENUMBER: for $PrimeNumber (@PrimeNumbers) { | |
248 if ($PrimeNumber > $SqrtOfNumber) { | |
249 last PRIMENUMBER; | |
250 } | |
251 if (!($Number % $PrimeNumber)) { | |
252 $NumberIsPrime = 0; | |
253 last PRIMENUMBER; | |
254 } | |
255 } | |
256 if ($NumberIsPrime) { | |
257 push @PrimeNumbers, $Number; | |
258 } | |
259 } | |
260 return \@PrimeNumbers; | |
261 } | |
262 | |
263 1; | |
264 | |
265 __END__ | |
266 | |
267 =head1 NAME | |
268 | |
269 MathUtil | |
270 | |
271 =head1 SYNOPSIS | |
272 | |
273 use MathUtil; | |
274 | |
275 use MathUtil qw(:all); | |
276 | |
277 =head1 DESCRIPTION | |
278 | |
279 B<MathUtil> module provides a variety of common math functions not available in core | |
280 Perl package or some other useful math utilities. In order to be consistent with other | |
281 Perl functions, name of all the functions in this package are in lowercase which differs | |
282 from MayaChemTools naming convention for function names. | |
283 | |
284 B<MathUtil> module provides the following functions: | |
285 | |
286 GeneratePrimeNumbersUpToCount, GeneratePrimeNumbersUpToLimit, acos, asin, ceil, | |
287 floor, log10, max, min, random, round, srandom, tan | |
288 | |
289 =head2 FUNCTIONS | |
290 | |
291 =over 4 | |
292 | |
293 =item B<GeneratePrimeNumbersUpToCount> | |
294 | |
295 $PrimesRef = GeneratePrimeNumbersUpToCount(); | |
296 $PrimesRef = GeneratePrimeNumbersUpToCount($Count); | |
297 | |
298 Generate prime numbers up to specified I<Count> of prime numbers and return a | |
299 reference to an array containing the prime numbers. | |
300 | |
301 By default, the first 1000 prime numbers are generated. The 1000th prime | |
302 number is 7919. | |
303 | |
304 The algorithm to generate prime numbers is a modification of Sieve of Erastothenes | |
305 prime number generator. | |
306 | |
307 =item B<GeneratePrimeNumbersUpToLimit> | |
308 | |
309 $PrimesRef = GeneratePrimeNumbersUpToLimit(); | |
310 $PrimesRef = GeneratePrimeNumbersUpToLimit($Limit); | |
311 | |
312 Generate prime numbers up to a specified I<Limit> and return a reference to an | |
313 array containing the prime numbers. | |
314 | |
315 By default, the first 1000 prime numbers are generated. The 1000th prime | |
316 number is 7919 and that's why default limit is set to 7920. | |
317 | |
318 The algorithm to generate prime numbers is a modification of Sieve of Erastothenes | |
319 prime number generator. | |
320 | |
321 =item B<acos> | |
322 | |
323 $Value = acos($AngleInRadians); | |
324 | |
325 Returns the nverse cosine of an angle expressed in I<Radians> using Math::Trig::acos | |
326 function. | |
327 | |
328 =item B<asin> | |
329 | |
330 $Value = asin($AngleInRadians); | |
331 | |
332 Returns the inverse sine of an angle expressed in I<Radians> using Math::Trig::asin | |
333 function. | |
334 | |
335 =item B<ceil> | |
336 | |
337 $IntegerValue = ceil($Value); | |
338 | |
339 Returns the next largest integer for I<Value> using POSIX::ceil function. | |
340 | |
341 =item B<floor> | |
342 | |
343 $IntegerValue = floor($Value); | |
344 | |
345 Returns the previous smallest integer for I<Value> using POSIX::floor function. | |
346 | |
347 =item B<log10> | |
348 | |
349 $Log10Value = log10($Value); | |
350 | |
351 Returns the log of I<Value> using base 10. | |
352 | |
353 =item B<max> | |
354 | |
355 $Number = max($Number1, $Number2); | |
356 | |
357 Returns a B<Number> corresponding to the maximum of I<Number1> and I<Number2>. | |
358 | |
359 =item B<min> | |
360 | |
361 $Number = min($Number1, $Number2); | |
362 | |
363 Returns a B<Number> corresponding to the minimum of I<Number1> and I<Number2>. | |
364 | |
365 =item B<round> | |
366 | |
367 $RoundedValue = round($Number); | |
368 $RoundedValue = round($Number, $DecimalPlaces); | |
369 | |
370 Returns a value corresponding to a nearst ingeter for I<Number> or formatted to I<DecimalPlaces>. | |
371 | |
372 =item B<random> | |
373 | |
374 $RandomNumber = random(); | |
375 $RandomNumber = random($Size); | |
376 | |
377 Returns a random number between 0 and less than 1 or specified size. | |
378 | |
379 The random number generator implemented in MayaChemTools is a variant of linear | |
380 congruential generator (LCG) as described by Miller et al. [ Ref 120 ]. It is | |
381 also referred to as Lehmer random number generator or Park-Miller random number | |
382 generator. | |
383 | |
384 Unlike Perl's core random number generator function rand, the random number | |
385 generator implemented in MayaChemTools generates consistent random values | |
386 across different platforms - Windows, CygWin, Linux, Unix - for a specific random | |
387 seed. | |
388 | |
389 =item B<srandom> | |
390 | |
391 $Seed = srandom($Seed); | |
392 | |
393 Sets random number seed to be used by <random> function and returns seed value. | |
394 | |
395 The random number seed is recommeded to be an integer between 1 and 2**31 - 2 | |
396 [Ref 120] which translates to be 1 and 2147483646. | |
397 | |
398 The default seed is set to 123456789. | |
399 | |
400 =item B<tan> | |
401 | |
402 $Value = tan($AngleInRadians); | |
403 | |
404 Returns the tangent of an angle expressed in I<Radians>. | |
405 | |
406 =back | |
407 | |
408 =head1 AUTHOR | |
409 | |
410 Manish Sud <msud@san.rr.com> | |
411 | |
412 =head1 SEE ALSO | |
413 | |
414 Constants.pm, ConversionsUtil.pm | |
415 | |
416 =head1 COPYRIGHT | |
417 | |
418 Copyright (C) 2015 Manish Sud. All rights reserved. | |
419 | |
420 This file is part of MayaChemTools. | |
421 | |
422 MayaChemTools is free software; you can redistribute it and/or modify it under | |
423 the terms of the GNU Lesser General Public License as published by the Free | |
424 Software Foundation; either version 3 of the License, or (at your option) | |
425 any later version. | |
426 | |
427 =cut |