comparison Preold_advance.R @ 3:cccab5660509 draft

Uploaded
author deepakjadmin
date Wed, 09 Nov 2016 07:33:49 -0500
parents
children
comparison
equal deleted inserted replaced
2:e6d9c3fac3c4 3:cccab5660509
1 ##########
2 args <- commandArgs(T)
3 arg1 <- args[1]
4 arg2 <- args[2]
5 arg3 <- args[3]
6 #source("~/galaxy-dist/tools/mpdstoolsV2/tool3/Preold.R")
7 #pre(arg1,arg2,arg3)
8 set.seed(1234)
9
10 pre <- function(args1,args2,args3){
11 #args <- commandArgs(TRUE)
12 nTrain <- read.csv(args1,row.names= 1, header = T) # example nTrain.csv file of unknown activity
13 #save(nTrain,file = "nTrain.RData")
14 #load("nTrain.RData")
15 load(args2) # model generated from previous programn
16 newdata <- nTrain
17 modelFit <- Fit
18 ###########
19 # input csv file must contaion the exact same column as used in model building #
20 # Also do pre-proccessing by means of centering and scaling
21 ## problem in s4 object so first check that the given model has s4 object in
22 ## >isS4(Fit$finalmodel) if it is s4 than add in with elseif loop
23 ## eg . isS4(plsFit$finalModel) == TRUE
24 f=function(x){
25 x<-as.numeric(as.character(x)) #first convert each column into numeric if it is from factor
26 x[is.na(x) | is.nan(x) | is.infinite(x)] =median(x, na.rm=TRUE) #convert the item with NA to median value from the column
27 x #display the column
28 }
29
30 f2=function(x){
31 all(is.na(x))
32 }
33
34
35 fop <- apply(newdata,2,f2)
36 allcolumnmissing <- which(fop)
37 if (length(allcolumnmissing) > 0){
38 newdata[,allcolumnmissing] <- 0
39 newdata[,allcolumnmissing] <- newdata[,allcolumnmissing] + runif(3,0,0.00001) ### add noise}
40 }
41
42 library(caret)
43 if(exists('ppInfo')){
44 #if(as.character(!isS4(Fit$finalModel == "TRUE")))
45 if((Fit$method != "svmRadial") && (Fit$method != "svmLinear"))
46 {
47 reqcol <- Fit$finalModel$xNames
48 newdata <- newdata[,reqcol]
49 newdata <- apply(newdata,2,f)
50 newdata <- newdata + runif(3,0,0.0001) ### add noise to overcome from NZV error
51 #newdata1 <- preProcess(newdata, method = c("center", "scale"))
52 #newdata1 <- preProcess(newdata, ppInfo)
53 newdata11 <- predict(ppInfo,newdata)
54 ###########
55 library(stats)
56 testpredict <- predict(modelFit,newdata11)
57 Label <- levels(testpredict)
58 a1 <- Label[1]
59 a2 <- Label[2]
60 probpredict <- predict(modelFit,newdata11,type="prob")
61 names <- as.data.frame(rownames(nTrain))
62 colnames(names) <- "COMPOUND"
63 activity <- as.data.frame(testpredict)
64 colnames(activity) <- "PREDICTED ACTIVITY"
65 colnames(probpredict) <- c(eval(a1),eval(a2))
66 Prob <- as.data.frame(probpredict)
67 dw <- format(cbind(names,Prob,activity),justify="centre")
68 write.table(dw,file=args3,row.names=FALSE,sep="\t")
69
70
71
72 } else if((Fit$method == "svmRadial") | (Fit$method == "svmLinear")){
73 library(stats)
74 reqcol <- colnames(Fit$trainingData)
75 reqcol <- reqcol[1:length(reqcol)-1]
76 newdata <- newdata[,reqcol]
77
78 newdata <- apply(newdata,2,f)
79 newdata <- newdata + runif(3,0,0.0001) ### add little noise to overcome from NZV problem
80 #newdata1 <- preProcess(newdata, method = c("center", "scale"))
81 #newdata1 <- preProcess(newdata,ppInfo)
82 newdata11 <- predict(ppInfo,newdata)
83 testpredict <- predict(modelFit,newdata11)
84 Label <- levels(testpredict)
85 a1 <- Label[1]
86 a2 <- Label[2]
87 probpredict <- predict(modelFit,newdata11,type="prob")
88 names <- as.data.frame(rownames(nTrain))
89 colnames(names) <- "COMPOUND"
90 activity <- as.data.frame(testpredict)
91 colnames(activity) <- "PREDICTED ACTIVITY"
92 colnames(probpredict) <- c(eval(a1),eval(a2))
93 Prob <- as.data.frame(probpredict)
94 dw <- format(cbind(names,Prob,activity),justify="centre")
95 write.table(dw,file=args3,row.names=FALSE,sep="\t")
96 }else {
97 dw <- "There is something wrong in data or model"
98 write.csv(dw,file=args3,row.names=FALSE)
99 }
100 } else{
101
102 #if(as.character(!isS4(Fit$finalModel == "TRUE")))
103 if((Fit$method != "svmRadial") && (Fit$method != "svmLinear"))
104 {
105 reqcol <- Fit$finalModel$xNames
106 newdata <- newdata[,reqcol]
107 newdata <- apply(newdata,2,f)
108 newdata <- newdata + runif(3,0,0.0001) ### add noise to overcome from NZV error
109
110 ###########
111 library(stats)
112 testpredict <- predict(modelFit,newdata)
113 Label <- levels(testpredict)
114 a1 <- Label[1]
115 a2 <- Label[2]
116 probpredict <- predict(modelFit,newdata,type="prob")
117 names <- as.data.frame(rownames(nTrain))
118 colnames(names) <- "COMPOUND"
119 activity <- as.data.frame(testpredict)
120 colnames(activity) <- "PREDICTED ACTIVITY"
121 colnames(probpredict) <- c(eval(a1),eval(a2))
122 Prob <- as.data.frame(probpredict)
123 dw <- format(cbind(names,Prob,activity),justify="centre")
124 write.table(dw,file=args3,row.names=FALSE,sep="\t")
125
126
127
128 } else if((Fit$method == "svmRadial") | (Fit$method == "svmLinear")){
129 library(stats)
130 reqcol <- colnames(Fit$trainingData)
131 reqcol <- reqcol[1:length(reqcol)-1]
132 newdata <- newdata[,reqcol]
133
134 newdata <- apply(newdata,2,f)
135 newdata <- newdata + runif(3,0,0.0001) ### add little noise to overcome from NZV problem
136
137 testpredict <- predict(modelFit,newdata)
138 Label <- levels(testpredict)
139 a1 <- Label[1]
140 a2 <- Label[2]
141 probpredict <- predict(modelFit,newdata,type="prob")
142 names <- as.data.frame(rownames(nTrain))
143 colnames(names) <- "COMPOUND"
144 activity <- as.data.frame(testpredict)
145 colnames(activity) <- "PREDICTED ACTIVITY"
146 colnames(probpredict) <- c(eval(a1),eval(a2))
147 Prob <- as.data.frame(probpredict)
148 dw <- format(cbind(names,Prob,activity),justify="centre")
149 write.table(dw,file=args3,row.names=FALSE,sep="\t")
150 }else {
151 dw <- "There is something wrong in data or model"
152 write.csv(dw,file=args3,row.names=FALSE)
153 }
154 }
155 }
156 pre(arg1,arg2,arg3)