Mercurial > repos > deepakjadmin > caret_reg_tool2
view templateLibrary.py @ 4:3221ecaeb967 draft default tip
Uploaded
author | deepakjadmin |
---|---|
date | Thu, 08 Jun 2017 18:33:53 -0400 |
parents | 31ec202700b0 |
children |
line wrap: on
line source
def __template4Rnw(): template4Rnw = r'''%% Regression Modeling Script %% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com) %% Version: 1.00 %% Created on: 2010/10/02 %% %% Lynn Group %% Version: 2.00 %% Created on: 2014/11/15 %% This is an Sweave template for building and describing %% classification models. It mixes R and LaTeX code. The document can %% be processing using R's Sweave function to produce a tex file. %% %% The inputs are: %% - the initial data set in a data frame called 'rawData' %% - a numeric column in the data set called 'outcome'. this should be the %% outcome variable %% - all other columns in rawData should be predictor variables %% - the type of model should be in a variable called 'modName'. %% %% The script attempts to make some intelligent choices based on the %% model being used. For example, if modName is "pls", the script will %% automatically center and scale the predictor data. There are %% situations where these choices can (and should be) changed. %% %% There are other options that may make sense to change. For example, %% the user may want to adjust the type of resampling. To find these %% parts of the script, search on the string 'OPTION'. These parts of %% the code will document the options. \documentclass[12pt]{report} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{ctable} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage{lastpage} \usepackage{longtable} \usepackage{algorithm2e} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} \SweaveOpts{keep.source = TRUE} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} \setcounter{LTchunksize}{50} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} %% OPTION Report header name \chead{Regression Model Script} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage\ of \pageref{LastPage}} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% OPTION Report title and modeler name \title{Regression Model Script using $METHOD } \author{"M. Kuhn and Lynn Group, SCIS, JNU, New Delhi"} \begin{document} \maketitle \thispagestyle{empty} <<startup, eval= TRUE, results = hide, echo = FALSE>>= library(Hmisc) library(caret) versionTest <- compareVersion(packageDescription("caret")$Version, "4.65") if(versionTest < 0) stop("caret version 4.65 or later is required") library(RColorBrewer) listString <- function (x, period = FALSE, verbose = FALSE) { if (verbose) cat("\n entering listString\n") flush.console() if (!is.character(x)) x <- as.character(x) numElements <- length(x) out <- if (length(x) > 0) { switch(min(numElements, 3), x, paste(x, collapse = " and "), { x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "") paste(x, collapse = " ") }) } else "" if (period) out <- paste(out, ".", sep = "") if (verbose) cat(" leaving listString\n\n") flush.console() out } resampleStats <- function(x, digits = 3) { bestPerf <- x$bestTune colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf)) out <- merge(x$results, bestPerf) out <- out[, colnames(out) %in% x$perfNames] names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = TRUE) names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE) names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE) names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = TRUE) names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE) names(out) <- gsub("RMSE", "root mean squared error", names(out), fixed = TRUE) names(out) <- gsub("Rsquared", "$R^2$", names(out), fixed = TRUE) out <- format(out, digits = digits) listString(paste(names(out), "was", out)) } latticeBubble <- function(x, y, z, offset = .5, splits = 10, pal = colorRampPalette(brewer.pal(9,"YlOrRd")[-(1:2)]), ...) { cexValues <- rank(z)/length(z) + offset splits <- unique(quantile(z, probs = seq(0, 1, length = splits))) splitup <- cut(z, breaks = splits, include.lowest = TRUE) cols <- pal(length(levels(splitup))) colValues <- cols[as.numeric(splitup)] if(is.data.frame(x)) { out <- splom(~x, col = colValues, cex = cexValues, ...) } else out <- xyplot(y~x, col = colValues, cex = cexValues, ...) out } ##OPTION: model name: see ?train for more values/models modName <- "$METHOD" load("$RDATA") rawData <- dataX rawData$$outcome <- dataY @ \section*{Data Sets}\label{S:data} %% OPTION: provide some background on the problem, the experimental %% data, how the compounds were selected etc <<getDataInfo, eval = $GETDATAINFOEVAL, echo = $GETDATAINFOECHO, results = $GETDATAINFORESULT>>= if(!any(names(rawData) == "outcome")) stop("a variable called outcome should be in the data set") if(!is.numeric(rawData$outcome)) stop("the outcome should be a numeric vector") numSamples <- nrow(rawData) numPredictors <- ncol(rawData) - 1 predictorNames <- names(rawData)[names(rawData) != "outcome"] isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric) if(any(!isNum)) stop("all predictors in rawData should be numeric") @ <<missingFilter, eval = $MISSINGFILTEREVAL, echo = $MISSINGFILTERECHO, results = $MISSINGFILTERRESULT>>= colRate <- apply(rawData[, predictorNames, drop = FALSE], 2, function(x) mean(is.na(x))) ##OPTION thresholds can be changed colExclude <- colRate > $MISSINGFILTERTHRESHC missingText <- "" if(any(colExclude)) { missingText <- paste(missingText, ifelse(sum(colExclude) > 1, " There were ", " There was "), sum(colExclude), ifelse(sum(colExclude) > 1, " predictors ", " predictor "), "with an excessive number of ", "missing data. ", ifelse(sum(colExclude) > 1, " These were excluded. ", " This was excluded. ")) predictorNames <- predictorNames[!colExclude] rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), drop = FALSE] } rowRate <- apply(rawData[, predictorNames, drop = FALSE], 1, function(x) mean(is.na(x))) rowExclude <- rowRate > $MISSINGFILTERTHRESHR if(any(rowExclude)) { missingText <- paste(missingText, ifelse(sum(rowExclude) > 1, " There were ", " There was "), sum(colExclude), ifelse(sum(rowExclude) > 1, " samples ", " sample "), "with an excessive number of ", "missing data. ", ifelse(sum(rowExclude) > 1, " These were excluded. ", " This was excluded. "), "After filtering, ", sum(!rowExclude), " samples remained.") rawData <- rawData[!rowExclude, ] hasMissing <- apply(rawData[, predictorNames, drop = FALSE], 1, function(x) mean(is.na(x))) } else { hasMissing <- apply(rawData[, predictorNames, drop = FALSE], 1, function(x) any(is.na(x))) missingText <- paste(missingText, ifelse(missingText == "", "There ", "Subsequently, there "), ifelse(sum(hasMissing) == 1, "was ", "were "), ifelse(sum(hasMissing) > 0, sum(hasMissing), "no"), ifelse(sum(hasMissing) == 1, "sample ", "samples "), "with missing values.") rawData <- rawData[complete.cases(rawData),] } dataDist <- summary(rawData$outcome) dataSD <- sd(rawData$outcome, na.rm = TRUE) dataText <- paste("The average outcome value was ", dataDist["Mean"], " and a standard deviation of ", dataSD, ". The minimum and maximum values were ", dataDist["Min."], " and ", dataDist["Max."], ", respectively. Figure \\\\ref{F:dens} shows a ", " density plot (i.e. a smooth histogram) of the response.", sep = "") rawData1 <- rawData[,1:length(rawData)-1] rawData2 <- rawData[,length(rawData)] set.seed(222) nzv1 <- nearZeroVar(rawData1) if(length(nzv1) > 0) { nzvVars1 <- names(rawData1)[nzv1] rawData <- rawData1[,-nzv1] rawData$outcome <- rawData2 nzvText1 <- paste("There were ", length(nzv1), " predictors that were removed from original data due to", " severely unbalanced distributions that", " could negatively affect the model fit", ifelse(length(nzv1) > 10, ".", paste(": ", listString(nzvVars1), ".", sep = "")), sep = "") } else { rawData <- rawData1 rawData$outcome <- rawData2 nzvText1 <- "" } remove("rawData1") remove("rawData2") @ The initial data set consisted of \Sexpr{numSamples} samples and \Sexpr{numPredictors} predictor variables. \Sexpr{dataText} \Sexpr{missingText} \Sexpr{nzvText1} \setkeys{Gin}{width = 0.8\textwidth} \begin{figure}[b] \begin{center} <<densityplot, echo = FALSE, results = hide, fig = TRUE, width = 8, height = 4.5>>= trellis.par.set(caretTheme(), warn = TRUE) print(densityplot(~rawData$outcome, pch = "|", adjust = 1.25, xlab = "")) @ \caption[Data Density]{A density plot of the response. The marks along the $x$--axis show the locations of the data points.} \label{F:dens} \end{center} \end{figure} <<pca, eval= $PCAEVAL, echo = $PCAECHO, results = $PCARESULT>>= predictorNames <- names(rawData)[names(rawData) != "outcome"] numPredictors <- length(predictorNames) predictors <- rawData[, predictorNames, drop = FALSE] ## PCA will fail with predictors having less than 2 unique values isZeroVar <- apply(predictors, 2, function(x) length(unique(x)) < 2) if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE] ## For whatever, only the formula interface to prcomp ## handles missing values pcaForm <- as.formula( paste("~", paste(names(predictors), collapse = "+"))) pca <- prcomp(pcaForm, data = predictors, center = TRUE, scale. = TRUE, na.action = na.omit) ## OPTION: the number of components plotted/discussed can be set numPCAcomp <- $PCACOMP pctVar <- pca$sdev^2/sum(pca$sdev^2)*100 pcaText <- paste(round(pctVar[1:numPCAcomp], 1), "\\\\%", sep = "") pcaText <- listString(pcaText) @ To get an initial assessment of the separability of the classes, principal component analysis (PCA) was used to distill the \Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp} surrogate variables (i.e. the principal components) in a manner that attempts to maximize the amount of information preserved from the original predictor set. Figure \ref{F:inititalPCA} contains plots of the first \Sexpr{numPCAcomp} components, which accounted for \Sexpr{pcaText} percent of the variability in the original predictors (respectively). %% OPTION: remark on how well (or poorly) the data separated \setkeys{Gin}{width = 0.8\textwidth} \begin{figure}[p] \begin{center} <<pcaPlot, eval = $PCAPLOTEVAL, echo = $PCAPLOTECHO, results = $PCAPLOTRESULT, fig = $PCAPLOTFIG, width = 8, height = 8>>= trellis.par.set(caretTheme(), warn = TRUE) if(numPCAcomp == 2) { axisRange <- extendrange(pca$x[, 1:2]) print( latticeBubble(x = as.data.frame(pca$x)$PC1, y = as.data.frame(pca$x)$PC2, z = rawData$outcome, type = c("p", "g"), xlab = "PC1", ylab = "PC2", xlim = axisRange, ylim = axisRange)) } else { axisRange <- extendrange(pca$x[, 1:numPCAcomp]) print( latticeBubble(x = as.data.frame(pca$x)[,1:numPCAcomp], z = rawData$outcome, type = c("p", "g"), xlab = "PC1", ylab = "PC2", xlim = axisRange, ylim = axisRange)) } @ \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp} principal components for the original data set. Smaller, lighter points indicate smaller values of the response while darker, larger points correspond to larger values of the outcome} \label{F:inititalPCA} \end{center} \end{figure} <<initialDataSplit, eval = $INITIALDATASPLITEVAL, echo = $INITIALDATASPLITECHO, results = $INITIALDATASPLITRESULT>>= ## OPTION: in small samples sizes, you may not want to set aside a ## training set and focus on the resampling results. numSamples <- nrow(rawData) predictorNames <- names(rawData)[names(rawData) != "outcome"] numPredictors <- length(predictorNames) # pctTrain <- .15 pctTrain <- $PERCENT if(pctTrain < 1) { ## OPTION: seed number can be changed set.seed(1) inTrain <- createDataPartition(rawData$outcome, p = pctTrain, list = FALSE) trainX <- rawData[ inTrain, predictorNames] testX <- rawData[-inTrain, predictorNames] trainY <- rawData[ inTrain, "outcome"] testY <- rawData[-inTrain, "outcome"] splitText <- paste("The original data were split into ", "a training set ($n$=", nrow(trainX), ") and a test set ($n$=", nrow(testX), ") in a manner that preserved the ", "distribution of the response.", sep = "") isZeroVar <- apply(trainX, 2, function(x) length(unique(x)) < 2) if(any(isZeroVar)) { trainX <- trainX[, !isZeroVar, drop = FALSE] testX <- testX[, !isZeroVar, drop = FALSE] } } else { trainX <- rawData[, predictorNames] testX <- NULL trainY <- rawData[, "outcome"] testY <- NULL splitText <- "The entire data set was used as the training set." } remove("rawData") @ \Sexpr{splitText} The data set for model building consisted of \Sexpr{numSamples} samples and \Sexpr{numPredictors} predictor variables. <<nzv, eval= $NZVEVAL, results = $NZVRESULT, echo = $NZVECHO>>= ## OPTION: other pre-processing steps can be used ppSteps <- caret:::suggestions(modName) set.seed(2) if(ppSteps["nzv"]) { nzv <- nearZeroVar(trainX) if(length(nzv) > 0) { nzvVars <- names(trainX)[nzv] trainX <- trainX[, -nzv] nzvText <- paste("There were ", length(nzv), " predictors that were removed due to", " severely unbalanced distributions that", " could negatively affect the model fit", ifelse(length(nzv) > 10, ".", paste(": ", listString(nzvVars), ".", sep = "")), sep = "") testX <- testX[, -nzv] } else nzvText <- "" } else nzvText <- "" @ \Sexpr{nzvText} <<corrFilter, eval = $CORRFILTEREVAL, results = $CORRFILTERRESULT, echo = $CORRFILTERECHO>>= if(ppSteps["corr"]) { ## OPTION: ##corrThresh <- .75 corrThresh <- $THRESHHOLDCOR highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"), corrThresh) if(length(highCorr) > 0) { corrVars <- names(trainX)[highCorr] trainX <- trainX[, -highCorr] corrText <- paste("There were ", length(highCorr), " predictors that were removed due to", " large between--predictor correlations that", " could negatively affect the model fit", ifelse(length(highCorr) > 10, ".", paste(": ", listString(highCorr), ".", sep = "")), " Removing these predictors forced", " all pair--wise correlations to be", " less than ", corrThresh, ".", sep = "") testX <- testX[, -highCorr] } else corrText <- "" }else corrText <- "" @ \Sexpr{corrText} <<preProc, eval = $PREPROCEVAL, echo = $PREPROCECHO, results = $PREPROCRESULT>>= ppMethods <- NULL if(ppSteps["center"]) ppMethods <- c(ppMethods, "center") if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale") if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute") ##OPTION other methods, such as spatial sign, can be added to this list if(length(ppMethods) > 0) { ppInfo <- preProcess(trainX, method = ppMethods) trainX <- predict(ppInfo, trainX) if(pctTrain < 1) testX <- predict(ppInfo, testX) ppText <- paste("The following pre--processing methods were", " applied to the training", ifelse(pctTrain < 1, " and test", ""), " data: ", listString(ppMethods), ".", sep = "") ppText <- gsub("center", "mean centering", ppText) ppText <- gsub("scale", "scaling to unit variance", ppText) ppText <- gsub("knnImpute", paste(ppInfo$k, "--nearest neighbor imputation", sep = ""), ppText) ppText <- gsub("spatialSign", "the spatial sign transformation", ppText) ppText <- gsub("pca", "principal component feature extraction", ppText) ppText <- gsub("ica", "independent component feature extraction", ppText) } else { ppInfo <- NULL ppText <- "" } predictorNames <- names(trainX) if(nzvText != "" | corrText != "" | ppText != "") { varText <- paste("After pre--processing, ", ncol(trainX), "predictors remained for modeling.") } else varText <- "" @ \Sexpr{ppText} \Sexpr{varText} \clearpage \section*{Model Building} <<setupWorkers, eval = TRUE, echo = $SETUPWORKERSECHO, results = $SETUPWORKERSRESULT>>= numWorkers <- $NUMWORKERS ##OPTION: turn up numWorkers to use MPI if(numWorkers > 1) { mpiCalcs <- function(X, FUN, ...) { theDots <- list(...) parLapply(theDots$cl, X, FUN) } library(snow) cl <- makeCluster(numWorkers, "MPI") } @ <<setupResampling, echo = $SETUPRESAMPLINGECHO, results = $SETUPRESAMPLINGRESULT>>= ##<<setupResampling, echo = FALSE, results = hide>>= ##OPTION: the resampling options can be changed. See ## ?trainControl for details resampName <- "repeatedcv" resampNumber <- $RESAMPLENUMBER numRepeat <- 3 resampP <- $RESAMPLENUMBERPERCENT modelInfo <- modelLookup(modName) set.seed(3) ctlObj <- trainControl(method = resampName, number = resampNumber, repeats = numRepeat, p = resampP) ##OPTION select other performance metrics as needed optMetric <- "RMSE" if(numWorkers > 1) { ctlObj$workers <- numWorkers ctlObj$computeFunction <- mpiCalcs ctlObj$computeArgs <- list(cl = cl) } @ <<setupGrid, results = $SETUPGRIDRESULT, echo = $SETUPGRIDECHO>>= ##OPTION expand or contract these grids as needed (or ## add more models gridSize <- $SETUPGRIDSIZE if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "ctree2", "ctree")) gridSize <- 5 if(modName %in% c("earth")) gridSize <- 7 if(modName %in% c("knn", "glmboost", "rf", "nodeHarvest")) gridSize <- 10 if(modName %in% c("rpart")) gridSize <- 15 if(modName %in% c("pls", "lars2", "lars")) gridSize <- min(20, ncol(trainX)) if(modName == "gbm") { tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 , .n.trees = (1:10)*20, .shrinkage = .1) } if(modName == "nnet") { tGrid <- expand.grid(.size = -1 + (1:5)*2 , .decay = c(0, .001, .01, .1)) } @ <<fitModel, results = $FITMODELRESULT, echo = $FITMODELECHO, eval = $FITMODELEVAL>>= ##OPTION alter as needed set.seed(4) modelFit <- switch(modName, gbm = { mix <- sample(seq(along = trainY)) train( trainX[mix,], trainY[mix], modName, verbose = FALSE, bag.fraction = .9, metric = optMetric, trControl = ctlObj, tuneGrid = tGrid) }, nnet = { train( trainX, trainY, modName, metric = optMetric, linout = TRUE, trace = FALSE, maxiter = 1000, MaxNWts = 5000, trControl = ctlObj, tuneGrid = tGrid) }, svmRadial =, svmPoly =, svmLinear = { train( trainX, trainY, modName, metric = optMetric, scaled = TRUE, trControl = ctlObj, tuneLength = gridSize) }, { train(trainX, trainY, modName, trControl = ctlObj, metric = optMetric, tuneLength = gridSize) }) @ <<modelDescr, echo = $MODELDESCRECHO, results = $MODELDESCRRESULT>>= summaryText <- "" resampleName <- switch(tolower(modelFit$control$method), boot = paste("the bootstrap (", length(modelFit$control$index), " reps)", sep = ""), boot632 = paste("the bootstrap 632 rule (", length(modelFit$control$index), " reps)", sep = ""), cv = paste("cross-validation (", modelFit$control$number, " fold)", sep = ""), repeatedcv = paste("cross-validation (", modelFit$control$number, " fold, repeated ", modelFit$control$repeats, " times)", sep = ""), lgocv = paste("repeated train/test splits (", length(modelFit$control$index), " reps, ", round(modelFit$control$p, 2), "$\\%$)", sep = "")) tuneVars <- latexTranslate(tolower(modelInfo$label)) tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE) if(ncol(modelFit$bestTune) == 1 && colnames(modelFit$bestTune) == ".parameter") { summaryText <- paste(summaryText, "\n\n", "There are no tuning parameters associated with this model.", "To characterize the model performance on the training set,", resampleName, "was used.", "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile}", "show summaries of the resampling results. ") } else { summaryText <- paste("There", ifelse(nrow(modelInfo) > 1, "are", "is"), nrow(modelInfo), ifelse(nrow(modelInfo) > 1, "tuning parameters", "tuning parameter"), "associated with this model:", listString(tuneVars, period = TRUE)) paramNames <- gsub(".", "", names(modelFit$$bestTune), fixed = TRUE) ##for(i in seq(along = paramNames)) ## { ## check <- modelInfo$parameter %in% paramNames[i] ## if(any(check)) ## { ## paramNames[i] <- modelInfo$label[which(check)] ## } ## } paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE) ## Check to see if there was only one combination fit summaryText <- paste(summaryText, "To choose", ifelse(nrow(modelInfo) > 1, "appropriate values of the tuning parameters,", "an appropriate value of the tuning parameter,"), resampleName, "was used to generated a profile of performance across the", nrow(modelFit$results), ifelse(nrow(modelInfo) > 1, "combinations of the tuning parameters.", "candidate values."), "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile} show", "summaries of the resampling profile. ", "The final model fitted to the entire training set was:", listString(paste(latexTranslate(tolower(paramNames)), "=", modelFit$bestTune[1,]), period = TRUE)) } @ \Sexpr{summaryText} <<resampTable, echo = $RESAMPTABLEECHO, results = $RESAMPTABLERESULT>>= tableData <- modelFit$results if(all(modelInfo$parameter == "parameter")) { tableData <- tableData[,-1, drop = FALSE] colNums <- c(length(modelFit$perfNames), length(modelFit$perfNames)) colLabels <- c("Mean", "Standard Deviation") constString <- "" isConst <- NULL } else { isConst <- apply(tableData[, modelInfo$parameter, drop = FALSE], 2, function(x) length(unique(x)) == 1) numParamInTable <- sum(!isConst) if(any(isConst)) { constParam <- modelInfo$parameter[isConst] constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE] tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE] constString <- paste("The tuning", ifelse(sum(isConst) > 1, "parmeters", "parameter"), listString(paste("``", names(constValues), "''", sep = "")), ifelse(sum(isConst) > 1, "were", "was"), "held constant at", ifelse(sum(isConst) > 1, "a value of", "values of"), listString(constValues[1,])) } else constString <- "" cn <- colnames(tableData) for(i in seq(along = cn)) { check <- modelInfo$parameter %in% cn[i] if(any(check)) { cn[i] <- modelInfo$label[which(check)] } } colnames(tableData) <- cn colNums <- c(numParamInTable, length(modelFit$perfNames), length(modelFit$perfNames)) colLabels <- c("", "Mean", "Standard Deviation") } colnames(tableData) <- gsub("SD$", "", colnames(tableData)) colnames(tableData) <- latexTranslate(colnames(tableData)) rownames(tableData) <- latexTranslate(rownames(tableData)) latex(tableData, rowname = NULL, file = "", cgroup = colLabels, n.cgroup = colNums, where = "h!", digits = 4, longtable = nrow(tableData) > 30, caption = paste(resampleName, "results from the model fit.", constString), label = "T:resamps") @ \setkeys{Gin}{ width = 0.9\textwidth} \begin{figure}[b] \begin{center} <<profilePlot, echo = $PROFILEPLOTECHO, fig = $PROFILEPLOTFIG, width = 8, height = 6>>= trellis.par.set(caretTheme(), warn = TRUE) if(all(modelInfo$parameter == "parameter") | all(isConst) | modName == "nb") { resultsPlot <- resampleHist(modelFit) plotCaption <- paste("Distributions of model performance from the ", "training set estimated using ", resampleName) } else { if(modName %in% c("svmPoly", "svmRadial", "svmLinear")) { resultsPlot <- plot(modelFit, metric = optMetric, xTrans = function(x) log10(x)) resultsPlot <- update(resultsPlot, type = c("g", "p", "l"), ylab = paste(optMetric, " (", resampleName, ")", sep = "")) } else { resultsPlot <- plot(modelFit, metric = optMetric) resultsPlot <- update(resultsPlot, type = c("g", "p", "l"), ylab = paste(optMetric, " (", resampleName, ")", sep = "")) } plotCaption <- paste("A plot of the estimates of the", optMetric, "values calculated using", resampleName) } print(resultsPlot) @ \caption[Performance Plot]{\Sexpr{plotCaption}.} \label{F:profile} \end{center} \end{figure} <<stopWorkers, echo = $STOPWORKERSECHO, results = $STOPWORKERSRESULT>>= ##<<stopWorkers, echo = FALSE, results = hide>>= if(numWorkers > 1) stopCluster(cl) @ <<testPred, results = $TESTPREDRESULT, echo = $TESTPREDECHO>>= if(pctTrain < 1) { cat("\\clearpage\n\\section*{Test Set Results}\n\n") testPreds <- extractPrediction(list(fit = modelFit), testX = testX, testY = testY) testPreds_all <- testPreds testPreds <- subset(testPreds, dataType == "Test") testPreds_test <- testPreds values <- modelFit$control$summaryFunction(testPreds) names(values) <- gsub("RMSE", "root mean squared error", names(values), fixed = TRUE) names(values) <- gsub("Rsquared", "$R^2$", names(values), fixed = TRUE) values <- format(values, digits = 3) testString <- paste("Based on the test set of", nrow(testX), "samples,", listString(paste(names(values), "was", values), period = TRUE), " A plot of the observed and predicted outcomes for the test set ", "is given in Figure \\\\ref{F:obsPred}.") testString <- paste(testString, " Using ", resampleName, ", the training set estimates were ", resampleStats(modelFit), ".", sep = "") axisRange <- extendrange(testPreds[, c("obs", "pred")]) obsPred <- xyplot(obs ~ pred, data = testPreds, xlim = axisRange, ylim = axisRange, panel = function(x, y) { panel.abline(0, 1, col = "darkgrey", lty = 2) panel.xyplot(x, y, type = c("p", "g")) panel.loess(x, y, col = "darkred", lwd = 2) }, ylab = "Observed Response", xlab = "Predicted Response") pdf("obsPred.pdf", height = 8, width = 8) trellis.par.set(caretTheme()) print(obsPred) dev.off() } else testString <- "" @ \Sexpr{testString} <<classProbsTex, results = $CLASSPROBSTEXRESULT, echo = $CLASSPROBSTEXECHO>>= if(pctTrain < 1) { cat( paste("\\begin{figure}[p]\n", "\\begin{center}\n", "\\includegraphics{obsPred}", "\\caption[Observed V Fitted Values]{", "The observed and predicted responses. ", "The grey line is the line of identity while the", "solid red line is a smoothed trend line.}\n", "\\label{F:obsPred}\n", "\\end{center}\n", "\\end{figure}")) } @ \section*{Versions} <<versions, echo = FALSE, results = tex>>= toLatex(sessionInfo()) @ <<save-data, echo = $SAVEDATAECHO, results = $SAVEDATARESULT>>= ## change this to the name of modName.... Fit<-modelFit save(Fit,testPreds_all,testPreds_test,file="$METHOD-Fit.RData") @ The model was built using $METHOD and is saved as $METHOD-Fit.RData for reuse. This contains the variable Fit. \end{document}''' return template4Rnw