# HG changeset patch # User davidvanzessen # Date 1409831183 14400 # Node ID 778a9d130904928bbfada7922723492900ecdbe8 # Parent 7d97fa9a042332f707840fc72576eff7e51be2b5 Uploaded diff -r 7d97fa9a0423 -r 778a9d130904 RScript.bak.r --- a/RScript.bak.r Fri May 09 09:35:32 2014 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,317 +0,0 @@ -#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) - -args <- commandArgs(trailingOnly = TRUE) - -inFile = args[1] -outFile = args[2] -outDir = args[3] -clonalType = args[4] - -if (!("gridExtra" %in% rownames(installed.packages()))) { - install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") -} -library(gridExtra) -if (!("ggplot2" %in% rownames(installed.packages()))) { - install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") -} -require(ggplot2) -if (!("plyr" %in% rownames(installed.packages()))) { - install.packages("plyr", repos="http://cran.xl-mirror.nl/") -} -require(plyr) - -if (!("data.table" %in% rownames(installed.packages()))) { - install.packages("data.table", repos="http://cran.xl-mirror.nl/") -} -library(data.table) - - -test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") - -test = test[test$Sample != "",] - -test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) -test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) -test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) - -#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) -test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) - -PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] -if("Functionality" %in% colnames(test)) { - PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] -} - -NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] - -#PRODF = PROD[ -1] - -PRODF = PROD - -#PRODF = unique(PRODF) -PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] - -PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) -PRODFV$Length = as.numeric(PRODFV$Length) -Total = 0 -Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) - -PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) -PRODFD$Length = as.numeric(PRODFD$Length) -Total = 0 -Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) - -PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) -PRODFJ$Length = as.numeric(PRODFJ$Length) -Total = 0 -Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) - -V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") -tcV = textConnection(V) -Vchain = read.table(tcV, sep="\t", header=TRUE) -PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) -close(tcV) - -D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") -tcD = textConnection(D) -Dchain = read.table(tcD, sep="\t", header=TRUE) -PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) -close(tcD) - - -J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") -tcJ = textConnection(J) -Jchain = read.table(tcJ, sep="\t", header=TRUE) -PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) -close(tcJ) - -setwd(outDir) - -write.table(PRODF, "allUnique.tsv", sep="\t",quote=F,row.names=F,col.names=T) - -pV = ggplot(PRODFV) -pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") - -png("VPlot.png",width = 1280, height = 720) -pV -dev.off(); - -pD = ggplot(PRODFD) -pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") - -png("DPlot.png",width = 800, height = 600) -pD -dev.off(); - -pJ = ggplot(PRODFJ) -pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") - -png("JPlot.png",width = 800, height = 600) -pJ -dev.off(); - -revVchain = Vchain -revDchain = Dchain -revVchain$chr.orderV = rev(revVchain$chr.orderV) -revDchain$chr.orderD = rev(revDchain$chr.orderD) - -plotVD <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("D genes") + - ylab("V Genes") - - png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) - print(img) - dev.off() -} - -VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) - -VandDCount$l = log(VandDCount$Length) -maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) -VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) -VandDCount$relLength = VandDCount$l / VandDCount$max - -cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) - -completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) -completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) -completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) -VDList = split(completeVD, f=completeVD[,"Sample"]) - -lapply(VDList, FUN=plotVD) - - - -plotVJ <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("J genes") + - ylab("V Genes") - - png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) - print(img) - dev.off() -} - -VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) - -VandJCount$l = log(VandJCount$Length) -maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) -VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) -VandJCount$relLength = VandJCount$l / VandJCount$max - -cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) - -completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) -completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) -completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) -VJList = split(completeVJ, f=completeVJ[,"Sample"]) -lapply(VJList, FUN=plotVJ) - -plotDJ <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("J genes") + - ylab("D Genes") - - png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) - print(img) - dev.off() -} - -DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) - -DandJCount$l = log(DandJCount$Length) -maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) -DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) -DandJCount$relLength = DandJCount$l / DandJCount$max - -cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) - -completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) -completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) -completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) -DJList = split(completeDJ, f=completeDJ[,"Sample"]) -lapply(DJList, FUN=plotDJ) - - -sampleFile <- file("samples.txt") -un = unique(test$Sample) -un = paste(un, sep="\n") -writeLines(un, sampleFile) -close(sampleFile) - - -if("Replicate" %in% colnames(test)) -{ - clonalityFrame = PROD - clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) - clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] - write.table(clonalityFrame, "clonalityComplete.tsv", sep="\t",quote=F,row.names=F,col.names=T) - - ClonalitySampleReplicatePrint <- function(dat){ - write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) - } - - clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) - lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) - - ClonalitySamplePrint <- function(dat){ - write.table(dat, paste("clonality_", unique(dat$Sample) , ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) - } - - clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) - lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) - - clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) - clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) - clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count - clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") - - ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') - tcct = textConnection(ct) - CT = read.table(tcct, sep="\t", header=TRUE) - close(tcct) - clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) - clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight - - ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) - ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) - clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) - ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads - - ReplicatePrint <- function(dat){ - write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) - lapply(ReplicateSplit, FUN=ReplicatePrint) - - ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) - - - ReplicateSumPrint <- function(dat){ - write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) - lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) - - clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) - clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow - clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) - clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) - - ClonalityScorePrint <- function(dat){ - write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - clonalityScore = clonalFreqCount[c("Sample", "Result")] - clonalityScore = unique(clonalityScore) - - clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) - lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) - - clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] - - - - ClonalityOverviewPrint <- function(dat){ - write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) - lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) -} diff -r 7d97fa9a0423 -r 778a9d130904 RScript.r --- a/RScript.r Fri May 09 09:35:32 2014 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,452 +0,0 @@ -#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) - -args <- commandArgs(trailingOnly = TRUE) - -inFile = args[1] -outFile = args[2] -outDir = args[3] -clonalType = args[4] -species = args[5] -locus = args[6] -selection = args[7] - - - -if (!("gridExtra" %in% rownames(installed.packages()))) { - install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") -} -library(gridExtra) -if (!("ggplot2" %in% rownames(installed.packages()))) { - install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") -} -require(ggplot2) -if (!("plyr" %in% rownames(installed.packages()))) { - install.packages("plyr", repos="http://cran.xl-mirror.nl/") -} -require(plyr) - -if (!("data.table" %in% rownames(installed.packages()))) { - install.packages("data.table", repos="http://cran.xl-mirror.nl/") -} -library(data.table) - -if (!("reshape2" %in% rownames(installed.packages()))) { - install.packages("reshape2", repos="http://cran.xl-mirror.nl/") -} -library(reshape2) - - -test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") - -test = test[test$Sample != "",] - -test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) -test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) -test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) - -#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) -test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) - -PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] -if("Functionality" %in% colnames(test)) { - PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] -} - -NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] - -#PRODF = PROD[ -1] - -PRODF = PROD - -#PRODF = unique(PRODF) - - - -if(selection == "unique"){ - PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] -} - -PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) -PRODFV$Length = as.numeric(PRODFV$Length) -Total = 0 -Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) - -PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) -PRODFD$Length = as.numeric(PRODFD$Length) -Total = 0 -Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) - -PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) -PRODFJ$Length = as.numeric(PRODFJ$Length) -Total = 0 -Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) -PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) -PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) - - -if(species == "human"){ - if(locus == "igh"){ - cat("human igh") - } else if (locus == "igk"){ - cat("human igk") - } else if (locus == "igl"){ - cat("human igl") - } -} else if (species == "mouse"){ - if(locus == "igh"){ - cat("mouse igh") - } else if (locus == "igk"){ - cat("mouse igk") - } else if (locus == "igl"){ - cat("mouse igl") - } -} - -V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") -D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") -J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") - - - - -tcV = textConnection(V) -Vchain = read.table(tcV, sep="\t", header=TRUE) -PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) -close(tcV) - - -tcD = textConnection(D) -Dchain = read.table(tcD, sep="\t", header=TRUE) -PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) -close(tcD) - - - -tcJ = textConnection(J) -Jchain = read.table(tcJ, sep="\t", header=TRUE) -PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) -close(tcJ) - -setwd(outDir) - -write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) - -pV = ggplot(PRODFV) -pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") -write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -png("VPlot.png",width = 1280, height = 720) -pV -dev.off(); - -pD = ggplot(PRODFD) -pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") -write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -png("DPlot.png",width = 800, height = 600) -pD -dev.off(); - -pJ = ggplot(PRODFJ) -pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) -pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") -write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -png("JPlot.png",width = 800, height = 600) -pJ -dev.off(); - -VGenes = PRODF[,c("Sample", "Top.V.Gene")] -VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) -VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) -TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) -VGenes = merge(VGenes, TotalPerSample, by="Sample") -VGenes$Frequency = VGenes$Count * 100 / VGenes$total -VPlot = ggplot(VGenes) -VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - ggtitle("Distribution of V gene families") + - ylab("Percentage of sequences") -png("VFPlot.png") -VPlot -dev.off(); -write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -DGenes = PRODF[,c("Sample", "Top.D.Gene")] -DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) -DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) -TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) -DGenes = merge(DGenes, TotalPerSample, by="Sample") -DGenes$Frequency = DGenes$Count * 100 / DGenes$total -DPlot = ggplot(DGenes) -DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - ggtitle("Distribution of D gene families") + - ylab("Percentage of sequences") -png("DFPlot.png") -DPlot -dev.off(); -write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -JGenes = PRODF[,c("Sample", "Top.J.Gene")] -JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) -JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) -TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) -JGenes = merge(JGenes, TotalPerSample, by="Sample") -JGenes$Frequency = JGenes$Count * 100 / JGenes$total -JPlot = ggplot(JGenes) -JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - ggtitle("Distribution of J gene families") + - ylab("Percentage of sequences") -png("JFPlot.png") -JPlot -dev.off(); -write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) - -CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) -TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) -CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") -CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total -CDR3LengthPlot = ggplot(CDR3Length) -CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - ggtitle("Length distribution of CDR3") + - xlab("CDR3 Length") + - ylab("Percentage of sequences") -png("CDR3LengthPlot.png",width = 1280, height = 720) -CDR3LengthPlot -dev.off() -write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) - -revVchain = Vchain -revDchain = Dchain -revVchain$chr.orderV = rev(revVchain$chr.orderV) -revDchain$chr.orderD = rev(revDchain$chr.orderD) - -plotVD <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("D genes") + - ylab("V Genes") - - png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) - print(img) - - dev.off() - write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) -} - -VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) - -VandDCount$l = log(VandDCount$Length) -maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) -VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) -VandDCount$relLength = VandDCount$l / VandDCount$max - -cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) - -completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) -completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) -completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) -VDList = split(completeVD, f=completeVD[,"Sample"]) - -lapply(VDList, FUN=plotVD) - - - -plotVJ <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("J genes") + - ylab("V Genes") - - png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) - print(img) - dev.off() - write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) -} - -VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) - -VandJCount$l = log(VandJCount$Length) -maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) -VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) -VandJCount$relLength = VandJCount$l / VandJCount$max - -cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) - -completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) -completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) -completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) -VJList = split(completeVJ, f=completeVJ[,"Sample"]) -lapply(VJList, FUN=plotVJ) - -plotDJ <- function(dat){ - if(length(dat[,1]) == 0){ - return() - } - img = ggplot() + - geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + - theme(axis.text.x = element_text(angle = 90, hjust = 1)) + - scale_fill_gradient(low="gold", high="blue", na.value="white") + - ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + - xlab("J genes") + - ylab("D Genes") - - png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) - print(img) - dev.off() - write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) -} - -DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) - -DandJCount$l = log(DandJCount$Length) -maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) -DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) -DandJCount$relLength = DandJCount$l / DandJCount$max - -cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) - -completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) -completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) -completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) -DJList = split(completeDJ, f=completeDJ[,"Sample"]) -lapply(DJList, FUN=plotDJ) - - -sampleFile <- file("samples.txt") -un = unique(test$Sample) -un = paste(un, sep="\n") -writeLines(un, sampleFile) -close(sampleFile) - - -if("Replicate" %in% colnames(test)) -{ - clonalityFrame = PROD - clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) - clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] - write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) - - ClonalitySampleReplicatePrint <- function(dat){ - write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) - } - - clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) - #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) - - ClonalitySamplePrint <- function(dat){ - write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) - } - - clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) - #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) - - clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) - clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) - clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count - clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") - - ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') - tcct = textConnection(ct) - CT = read.table(tcct, sep="\t", header=TRUE) - close(tcct) - clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) - clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight - - ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) - ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) - clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) - ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads - - ReplicatePrint <- function(dat){ - write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) - lapply(ReplicateSplit, FUN=ReplicatePrint) - - ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) - - - ReplicateSumPrint <- function(dat){ - write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) - lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) - - clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) - clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) - clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow - clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) - clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) - - ClonalityScorePrint <- function(dat){ - write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - clonalityScore = clonalFreqCount[c("Sample", "Result")] - clonalityScore = unique(clonalityScore) - - clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) - lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) - - clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] - - - - ClonalityOverviewPrint <- function(dat){ - write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) - } - - clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) - lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) -} - -if("Functionality" %in% colnames(test)) -{ - newData = data.frame(data.table(PROD)[,list(unique=.N, - VH.DEL=mean(X3V.REGION.trimmed.nt.nb), - P1=mean(P3V.nt.nb), - N1=mean(N1.REGION.nt.nb), - P2=mean(P5D.nt.nb), - DEL.DH=mean(X5D.REGION.trimmed.nt.nb), - DH.DEL=mean(X3D.REGION.trimmed.nt.nb), - P3=mean(P3D.nt.nb), - N2=mean(N2.REGION.nt.nb), - P4=mean(P5J.nt.nb), - DEL.JH=mean(X5J.REGION.trimmed.nt.nb), - Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + - mean(X5D.REGION.trimmed.nt.nb) + - mean(X3D.REGION.trimmed.nt.nb) + - mean(X5J.REGION.trimmed.nt.nb)), - - Total.N=( mean(N1.REGION.nt.nb) + - mean(N2.REGION.nt.nb)), - - Total.P=( mean(P3V.nt.nb) + - mean(P5D.nt.nb) + - mean(P3D.nt.nb) + - mean(P5J.nt.nb))), - by=c("Sample")]) - write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) -} diff -r 7d97fa9a0423 -r 778a9d130904 RScript_b.r --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RScript_b.r Thu Sep 04 07:46:23 2014 -0400 @@ -0,0 +1,462 @@ +#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +args <- commandArgs(trailingOnly = TRUE) + +inFile = args[1] +outFile = args[2] +outDir = args[3] +clonalType = args[4] +species = args[5] +locus = args[6] +selection = args[7] + + + +if (!("gridExtra" %in% rownames(installed.packages()))) { + install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") +} +library(gridExtra) +if (!("ggplot2" %in% rownames(installed.packages()))) { + install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") +} +library(ggplot2) +if (!("plyr" %in% rownames(installed.packages()))) { + install.packages("plyr", repos="http://cran.xl-mirror.nl/") +} +library(plyr) + +if (!("data.table" %in% rownames(installed.packages()))) { + install.packages("data.table", repos="http://cran.xl-mirror.nl/") +} +library(data.table) + +if (!("reshape2" %in% rownames(installed.packages()))) { + install.packages("reshape2", repos="http://cran.xl-mirror.nl/") +} +library(reshape2) + + +test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") + +test = test[test$Sample != "",] + +test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) +test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) +test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) + +#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) +test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) + +PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] +if("Functionality" %in% colnames(test)) { + PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] +} + +NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] + +#PRODF = PROD[ -1] + +PRODF = PROD + +#PRODF = unique(PRODF) + + + +if(selection == "unique"){ + PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] +} + +PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) +PRODFV$Length = as.numeric(PRODFV$Length) +Total = 0 +Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) +PRODFD$Length = as.numeric(PRODFD$Length) +Total = 0 +Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) +PRODFJ$Length = as.numeric(PRODFJ$Length) +Total = 0 +Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) + +V = c("v.name\tchr.orderV") +D = c("v.name\tchr.orderD") +J = c("v.name\tchr.orderJ") + +if(species == "human"){ + if(locus == "igh"){ + V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54") + D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18") + J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") + } else if (locus == "igk"){ + V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38") + D = c("v.name\tchr.orderD\n") + J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5") + } else if (locus == "igl"){ + V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33") + D = c("v.name\tchr.orderD\n") + J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5") + } +} else if (species == "mouse"){ + if(locus == "igh"){ + cat("mouse igh not yet implemented") + } else if (locus == "igk"){ + cat("mouse igk not yet implemented") + } else if (locus == "igl"){ + cat("mouse igl not yet implemented") + } +} + +useD = TRUE +if(species == "human" && (locus == "igk" || locus == "igl")){ + useD = FALSE +} + +tcV = textConnection(V) +Vchain = read.table(tcV, sep="\t", header=TRUE) +PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) +close(tcV) + +tcD = textConnection(D) +Dchain = read.table(tcD, sep="\t", header=TRUE) +PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) +close(tcD) + +tcJ = textConnection(J) +Jchain = read.table(tcJ, sep="\t", header=TRUE) +PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) +close(tcJ) + +setwd(outDir) + +write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) + +pV = ggplot(PRODFV) +pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") +write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +png("VPlot.png",width = 1280, height = 720) +pV +dev.off(); + +if(useD){ + pD = ggplot(PRODFD) + pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + + png("DPlot.png",width = 800, height = 600) + print(pD) + dev.off(); +} + +pJ = ggplot(PRODFJ) +pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") +write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +png("JPlot.png",width = 800, height = 600) +pJ +dev.off(); + +VGenes = PRODF[,c("Sample", "Top.V.Gene")] +VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) +VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) +TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) +VGenes = merge(VGenes, TotalPerSample, by="Sample") +VGenes$Frequency = VGenes$Count * 100 / VGenes$total +VPlot = ggplot(VGenes) +VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of V gene families") + + ylab("Percentage of sequences") +png("VFPlot.png") +VPlot +dev.off(); +write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +if(useD){ + DGenes = PRODF[,c("Sample", "Top.D.Gene")] + DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) + DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) + TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) + DGenes = merge(DGenes, TotalPerSample, by="Sample") + DGenes$Frequency = DGenes$Count * 100 / DGenes$total + DPlot = ggplot(DGenes) + DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of D gene families") + + ylab("Percentage of sequences") + png("DFPlot.png") + print(DPlot) + dev.off(); + write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) +} + +JGenes = PRODF[,c("Sample", "Top.J.Gene")] +JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) +JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) +TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) +JGenes = merge(JGenes, TotalPerSample, by="Sample") +JGenes$Frequency = JGenes$Count * 100 / JGenes$total +JPlot = ggplot(JGenes) +JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of J gene families") + + ylab("Percentage of sequences") +png("JFPlot.png") +JPlot +dev.off(); +write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) +TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) +CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") +CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total +CDR3LengthPlot = ggplot(CDR3Length) +CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Length distribution of CDR3") + + xlab("CDR3 Length") + + ylab("Percentage of sequences") +png("CDR3LengthPlot.png",width = 1280, height = 720) +CDR3LengthPlot +dev.off() +write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) + +revVchain = Vchain +revDchain = Dchain +revVchain$chr.orderV = rev(revVchain$chr.orderV) +revDchain$chr.orderD = rev(revDchain$chr.orderD) + +if(useD){ + plotVD <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("D genes") + + ylab("V Genes") + + png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + dev.off() + write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) + } + + VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) + + VandDCount$l = log(VandDCount$Length) + maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) + VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) + VandDCount$relLength = VandDCount$l / VandDCount$max + + cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) + + completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) + completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) + completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) + VDList = split(completeVD, f=completeVD[,"Sample"]) + + lapply(VDList, FUN=plotVD) +} + +plotVJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + cat(paste(unique(dat[3])[1,1])) + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("V Genes") + + png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + dev.off() + write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) +} + +VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) + +VandJCount$l = log(VandJCount$Length) +maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) +VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) +VandJCount$relLength = VandJCount$l / VandJCount$max + +cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + +completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) +completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) +completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) +VJList = split(completeVJ, f=completeVJ[,"Sample"]) +lapply(VJList, FUN=plotVJ) + +if(useD){ + plotDJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("D Genes") + + png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) + print(img) + dev.off() + write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) + } + + + DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) + + DandJCount$l = log(DandJCount$Length) + maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) + DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) + DandJCount$relLength = DandJCount$l / DandJCount$max + + cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + + completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) + completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) + completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) + DJList = split(completeDJ, f=completeDJ[,"Sample"]) + lapply(DJList, FUN=plotDJ) +} + +sampleFile <- file("samples.txt") +un = unique(test$Sample) +un = paste(un, sep="\n") +writeLines(un, sampleFile) +close(sampleFile) + + +if("Replicate" %in% colnames(test)) +{ + clonalityFrame = PROD + clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) + clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] + write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) + + ClonalitySampleReplicatePrint <- function(dat){ + write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) + } + + clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) + #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) + + ClonalitySamplePrint <- function(dat){ + write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) + } + + clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) + #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) + + clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) + clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) + clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count + clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") + + ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') + tcct = textConnection(ct) + CT = read.table(tcct, sep="\t", header=TRUE) + close(tcct) + clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) + clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight + + ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) + clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) + ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads + + ReplicatePrint <- function(dat){ + write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSplit, FUN=ReplicatePrint) + + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) + + + ReplicateSumPrint <- function(dat){ + write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) + + clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) + clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow + clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) + clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) + + ClonalityScorePrint <- function(dat){ + write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityScore = clonalFreqCount[c("Sample", "Result")] + clonalityScore = unique(clonalityScore) + + clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) + lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) + + clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] + + + + ClonalityOverviewPrint <- function(dat){ + write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) + lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) +} + +if("Functionality" %in% colnames(test)) +{ + newData = data.frame(data.table(PROD)[,list(unique=.N, + VH.DEL=mean(X3V.REGION.trimmed.nt.nb), + P1=mean(P3V.nt.nb), + N1=mean(N1.REGION.nt.nb), + P2=mean(P5D.nt.nb), + DEL.DH=mean(X5D.REGION.trimmed.nt.nb), + DH.DEL=mean(X3D.REGION.trimmed.nt.nb), + P3=mean(P3D.nt.nb), + N2=mean(N2.REGION.nt.nb), + P4=mean(P5J.nt.nb), + DEL.JH=mean(X5J.REGION.trimmed.nt.nb), + Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + + mean(X5D.REGION.trimmed.nt.nb) + + mean(X3D.REGION.trimmed.nt.nb) + + mean(X5J.REGION.trimmed.nt.nb)), + + Total.N=( mean(N1.REGION.nt.nb) + + mean(N2.REGION.nt.nb)), + + Total.P=( mean(P3V.nt.nb) + + mean(P5D.nt.nb) + + mean(P3D.nt.nb) + + mean(P5J.nt.nb))), + by=c("Sample")]) + write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) +} diff -r 7d97fa9a0423 -r 778a9d130904 RScript_t.r --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RScript_t.r Thu Sep 04 07:46:23 2014 -0400 @@ -0,0 +1,499 @@ +#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +args <- commandArgs(trailingOnly = TRUE) + +inFile = args[1] +outFile = args[2] +outDir = args[3] +clonalType = args[4] +species = args[5] +locus = args[6] +selection = args[7] + +if (!("gridExtra" %in% rownames(installed.packages()))) { + install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") +} +library(gridExtra) +if (!("ggplot2" %in% rownames(installed.packages()))) { + install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") +} +library(ggplot2) +if (!("plyr" %in% rownames(installed.packages()))) { + install.packages("plyr", repos="http://cran.xl-mirror.nl/") +} +library(plyr) + +if (!("data.table" %in% rownames(installed.packages()))) { + install.packages("data.table", repos="http://cran.xl-mirror.nl/") +} +library(data.table) + +if (!("reshape2" %in% rownames(installed.packages()))) { + install.packages("reshape2", repos="http://cran.xl-mirror.nl/") +} +library(reshape2) + + +test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") + +test = test[test$Sample != "",] + +print("test1\n") + +test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) +test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) +test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) + +#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) +test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) + +PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] +if("Functionality" %in% colnames(test)) { + PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] +} + +NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] + +#PRODF = PROD[ -1] + +PRODF = PROD +print("test2\n") +#PRODF = unique(PRODF) +if(any(grepl(pattern="_", x=PRODF$ID))){ #dumb and way to simple + PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID) + PRODF$freq = gsub("_.*", "", PRODF$freq) + PRODF$freq = as.numeric(PRODF$freq) + if(any(is.na(PRODF$freq))){ #fix the dumbness if it fails + PRODF$freq = 1 + if(selection == "unique"){ + PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] + } + } +} else { + PRODF$freq = 1 + if(selection == "unique"){ + PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] + } +} + +PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")]) +PRODFV$Length = as.numeric(PRODFV$Length) +Total = 0 +Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")]) +PRODFD$Length = as.numeric(PRODFD$Length) +Total = 0 +Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")]) +PRODFJ$Length = as.numeric(PRODFJ$Length) +Total = 0 +Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) + +V = c("v.name\tchr.orderV\n") +D = c("v.name\tchr.orderD\n") +J = c("v.name\tchr.orderJ\n") + +print("test3\n") + +if(species == "human"){ + if(locus == "trb"){ + V = c("v.name\tchr.orderV\nTRBV2\t1\nTRBV3-1\t2\nTRBV4-1\t3\nTRBV5-1\t4\nTRBV6-1\t5\nTRBV4-2\t6\nTRBV6-2\t7\nTRBV4-3\t8\nTRBV6-3\t9\nTRBV7-2\t10\nTRBV6-4\t11\nTRBV7-3\t12\nTRBV9\t13\nTRBV10-1\t14\nTRBV11-1\t15\nTRBV10-2\t16\nTRBV11-2\t17\nTRBV6-5\t18\nTRBV7-4\t19\nTRBV5-4\t20\nTRBV6-6\t21\nTRBV5-5\t22\nTRBV7-6\t23\nTRBV5-6\t24\nTRBV6-8\t25\nTRBV7-7\t26\nTRBV6-9\t27\nTRBV7-8\t28\nTRBV5-8\t29\nTRBV7-9\t30\nTRBV13\t31\nTRBV10-3\t32\nTRBV11-3\t33\nTRBV12-3\t34\nTRBV12-4\t35\nTRBV12-5\t36\nTRBV14\t37\nTRBV15\t38\nTRBV16\t39\nTRBV18\t40\nTRBV19\t41\nTRBV20-1\t42\nTRBV24-1\t43\nTRBV25-1\t44\nTRBV27\t45\nTRBV28\t46\nTRBV29-1\t47\nTRBV30\t48") + D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n") + J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ1-6\t6\nTRBJ2-1\t7\nTRBJ2-2\t8\nTRBJ2-3\t9\nTRBJ2-4\t10\nTRBJ2-5\t11\nTRBJ2-6\t12\nTRBJ2-7\t13") + } else if (locus == "tra"){ + V = c("v.name\tchr.orderVTRAV1-1\t1\nTRAV1-2\t2\nTRAV2\t3\nTRAV3\t4\nTRAV4\t5\nTRAV5\t6\nTRAV6\t7\nTRAV7\t8\nTRAV8-1\t9\nTRAV9-1\t10\nTRAV10\t11\nTRAV12-1\t12\nTRAV8-2\t13\nTRAV8-3\t14\nTRAV13-1\t15\nTRAV12-2\t16\nTRAV8-4\t17\nTRAV13-2\t18\nTRAV14/DV4\t19\nTRAV9-2\t20\nTRAV12-3\t21\nTRAV8-6\t22\nTRAV16\t23\nTRAV17\t24\nTRAV18\t25\nTRAV19\t26\nTRAV20\t27\nTRAV21\t28\nTRAV22\t29\nTRAV23/DV6\t30\nTRAV24\t31\nTRAV25\t32\nTRAV26-1\t33\nTRAV27\t34\nTRAV29/DV5\t35\nTRAV30\t36\nTRAV26-2\t37\nTRAV34\t38\nTRAV35\t39\nTRAV36/DV7\t40\nTRAV38-1\t41\nTRAV38-2/DV8\t42\nTRAV39\t43\nTRAV40\t44\nTRAV41\t45\n") + D = c("v.name\tchr.orderD\n") + J = c("v.name\tchr.orderJ\nTRAJ57\t1\nTRAJ56\t2\nTRAJ54\t3\nTRAJ53\t4\nTRAJ52\t5\nTRAJ50\t6\nTRAJ49\t7\nTRAJ48\t8\nTRAJ47\t9\nTRAJ46\t10\nTRAJ45\t11\nTRAJ44\t12\nTRAJ43\t13\nTRAJ42\t14\nTRAJ41\t15\nTRAJ40\t16\nTRAJ39\t17\nTRAJ38\t18\nTRAJ37\t19\nTRAJ36\t20\nTRAJ34\t21\nTRAJ33\t22\nTRAJ32\t23\nTRAJ31\t24\nTRAJ30\t25\nTRAJ29\t26\nTRAJ28\t27\nTRAJ27\t28\nTRAJ26\t29\nTRAJ24\t30\nTRAJ23\t31\nTRAJ22\t32\nTRAJ21\t33\nTRAJ20\t34\nTRAJ18\t35\nTRAJ17\t36\nTRAJ16\t37\nTRAJ15\t38\nTRAJ14\t39\nTRAJ13\t40\nTRAJ12\t41\nTRAJ11\t42\nTRAJ10\t43\nTRAJ9\t44\nTRAJ8\t45\nTRAJ7\t46\nTRAJ6\t47\nTRAJ5\t48\nTRAJ4\t49\nTRAJ3\t50") + } else if (locus == "trg"){ + V = c("v.name\tchr.orderV\nTRGV9\t1\nTRGV8\t2\nTRGV5\t3\nTRGV4\t4\nTRGV3\t5\nTRGV2\t6") + D = c("v.name\tchr.orderD\n") + J = c("v.name\tchr.orderJ\nTRGJ2\t1\nTRGJP2\t2\nTRGJ1\t3\nTRGJP1\t4") + } else if (locus == "trd"){ + V = c("v.name\tchr.orderV\nTRDV1\t1\nTRDV2\t2\nTRDV3\t3") + D = c("v.name\tchr.orderD\nTRDD1\t1\nTRDD2\t2\nTRDD3\t3") + J = c("v.name\tchr.orderJ\nTRDJ1\t1\nTRDJ4\t2\nTRDJ2\t3\nTRDJ3\t4") + } +} else if (species == "mouse"){ + if(locus == "trb"){ + cat("mouse trb not yet implemented") + } else if (locus == "tra"){ + cat("mouse tra not yet implemented") + } else if (locus == "trg"){ + cat("mouse trg not yet implemented") + } else if (locus == "trd"){ + cat("mouse trd not yet implemented") + } +} +useD = TRUE +if(species == "human" && locus == "tra"){ + useD = FALSE + cat("No D Genes in this species/locus") +} + +print("test4\n") + +tcV = textConnection(V) +Vchain = read.table(tcV, sep="\t", header=TRUE) +PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) +close(tcV) + + +tcD = textConnection(D) +Dchain = read.table(tcD, sep="\t", header=TRUE) +PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) +close(tcD) + + + +tcJ = textConnection(J) +Jchain = read.table(tcJ, sep="\t", header=TRUE) +PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) +close(tcJ) + +setwd(outDir) + +write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) + +pV = ggplot(PRODFV) +pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") +write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +png("VPlot.png",width = 1280, height = 720) +pV +dev.off(); + +pD = ggplot(PRODFD) +pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") +write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +png("DPlot.png",width = 800, height = 600) +pD +dev.off(); + +pJ = ggplot(PRODFJ) +pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") +write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +png("JPlot.png",width = 800, height = 600) +pJ +dev.off(); + +print("test5\n") + +VGenes = PRODF[,c("Sample", "Top.V.Gene", "freq")] +VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) +VGenes = data.frame(data.table(VGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.V.Gene")]) +TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) +VGenes = merge(VGenes, TotalPerSample, by="Sample") +VGenes$Frequency = VGenes$Count * 100 / VGenes$total +VPlot = ggplot(VGenes) +VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of V gene families") + + ylab("Percentage of sequences") +png("VFPlot.png") +VPlot +dev.off(); +write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +DGenes = PRODF[,c("Sample", "Top.D.Gene", "freq")] +DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) +DGenes = data.frame(data.table(DGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.D.Gene")]) +TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) +DGenes = merge(DGenes, TotalPerSample, by="Sample") +DGenes$Frequency = DGenes$Count * 100 / DGenes$total +DPlot = ggplot(DGenes) +DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of D gene families") + + ylab("Percentage of sequences") +png("DFPlot.png") +DPlot +dev.off(); +write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +JGenes = PRODF[,c("Sample", "Top.J.Gene", "freq")] +JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) +JGenes = data.frame(data.table(JGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.J.Gene")]) +TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) +JGenes = merge(JGenes, TotalPerSample, by="Sample") +JGenes$Frequency = JGenes$Count * 100 / JGenes$total +JPlot = ggplot(JGenes) +JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Distribution of J gene families") + + ylab("Percentage of sequences") +png("JFPlot.png") +JPlot +dev.off(); +write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) + +CDR3Length = data.frame(data.table(PRODF)[, list(Count=sum(freq)), by=c("Sample", "CDR3.Length.DNA")]) +TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) +CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") +CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total +CDR3LengthPlot = ggplot(CDR3Length) +CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + ggtitle("Length distribution of CDR3") + + xlab("CDR3 Length") + + ylab("Percentage of sequences") +png("CDR3LengthPlot.png",width = 1280, height = 720) +CDR3LengthPlot +dev.off() +write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) + +revVchain = Vchain +revDchain = Dchain +revVchain$chr.orderV = rev(revVchain$chr.orderV) +revDchain$chr.orderD = rev(revDchain$chr.orderD) + +print("test6\n") + +plotVD <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("D genes") + + ylab("V Genes") + + png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + + dev.off() + write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) +} + +VandDCount = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) + +VandDCount$l = log(VandDCount$Length) +maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) +VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) +VandDCount$relLength = VandDCount$l / VandDCount$max + +cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) + +completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) +completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) +completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) +VDList = split(completeVD, f=completeVD[,"Sample"]) + +lapply(VDList, FUN=plotVD) + +plotVJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("V Genes") + + png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + dev.off() + write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) +} + +VandJCount = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) + +VandJCount$l = log(VandJCount$Length) +maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) +VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) +VandJCount$relLength = VandJCount$l / VandJCount$max + +cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + +completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) +completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) +completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) +VJList = split(completeVJ, f=completeVJ[,"Sample"]) +lapply(VJList, FUN=plotVJ) + +plotDJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("D Genes") + + png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) + print(img) + dev.off() + write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) +} + +DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) + +DandJCount$l = log(DandJCount$Length) +maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) +DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) +DandJCount$relLength = DandJCount$l / DandJCount$max + +cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + +completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) +completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) +completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) +DJList = split(completeDJ, f=completeDJ[,"Sample"]) +lapply(DJList, FUN=plotDJ) + +sampleFile <- file("samples.txt") +un = unique(test$Sample) +un = paste(un, sep="\n") +writeLines(un, sampleFile) +close(sampleFile) + +print("test7\n") + +if("Replicate" %in% colnames(test)) +{ + clonalityFrame = PROD + clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) + clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] + write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) + + ClonalitySampleReplicatePrint <- function(dat){ + write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) + } + + clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) + #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) + + ClonalitySamplePrint <- function(dat){ + write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) + } + + clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) + #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) + + clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) + clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) + clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count + clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") + + ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') + tcct = textConnection(ct) + CT = read.table(tcct, sep="\t", header=TRUE) + close(tcct) + clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) + clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight + + ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) + clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) + ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads + + ReplicatePrint <- function(dat){ + write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSplit, FUN=ReplicatePrint) + + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) + + + ReplicateSumPrint <- function(dat){ + write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) + + writeClonalitySequences <- function(dat){ + for(i in c(2,3,4,5,6)){ + fltr = dat[dat$Type == i,] + if(length(fltr[,1]) == 0){ + next + } + tmp = clonalityFrame[clonalityFrame$Sample == fltr$Sample[1] & clonalityFrame$VDJCDR3 %in% fltr$VDJCDR3,] + tmp = tmp[order(tmp$VDJCDR3),] + write.table(tmp, paste("ClonalitySequences_", unique(dat[1])[1,1] , "_", i, ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=T) + } + } + freqsplt = split(clonalFreq[clonalFreq$Type > 1,], clonalFreq[clonalFreq$Type > 1,]$Sample) + lapply(freqsplt, FUN=writeClonalitySequences) + + clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) + clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow + clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) + clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) + + ClonalityScorePrint <- function(dat){ + write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityScore = clonalFreqCount[c("Sample", "Result")] + clonalityScore = unique(clonalityScore) + + clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) + lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) + + clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] + + + + ClonalityOverviewPrint <- function(dat){ + write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) + lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) +} + +print("test8\n") + +if("Functionality" %in% colnames(test)) +{ + newData = data.frame(data.table(PROD)[,list(unique=.N, + VH.DEL=mean(X3V.REGION.trimmed.nt.nb), + P1=mean(P3V.nt.nb), + N1=mean(N1.REGION.nt.nb), + P2=mean(P5D.nt.nb), + DEL.DH=mean(X5D.REGION.trimmed.nt.nb), + DH.DEL=mean(X3D.REGION.trimmed.nt.nb), + P3=mean(P3D.nt.nb), + N2=mean(N2.REGION.nt.nb), + P4=mean(P5J.nt.nb), + DEL.JH=mean(X5J.REGION.trimmed.nt.nb), + Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + + mean(X5D.REGION.trimmed.nt.nb) + + mean(X3D.REGION.trimmed.nt.nb) + + mean(X5J.REGION.trimmed.nt.nb)), + + Total.N=( mean(N1.REGION.nt.nb) + + mean(N2.REGION.nt.nb)), + + Total.P=( mean(P3V.nt.nb) + + mean(P5D.nt.nb) + + mean(P3D.nt.nb) + + mean(P5J.nt.nb))), + by=c("Sample")]) + write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) +} + +print("test9\n") diff -r 7d97fa9a0423 -r 778a9d130904 complete.sh --- a/complete.sh Fri May 09 09:35:32 2014 -0400 +++ b/complete.sh Thu Sep 04 07:46:23 2014 -0400 @@ -1,14 +1,14 @@ #!/bin/bash -clonalType=${@:(-6):1} -html=${@:(-5):1} -imageDir=${@:(-4):1} -species=${@:(-3):1} -locus=${@:(-2):1} -selection=${@:(-1):1} -dataCount=`expr $# - 6` -inputData=${@:(1):dataCount} -echo ${inputData[@]} +inputFiles=($1) +outputDir=$3 +outputFile=$3/index.html #$1 +clonalType=$4 +species=$5 +locus=$6 +selection=$7 + +html=$2 dir="$(cd "$(dirname "$0")" && pwd)" array=("$@") echo "

Progress

" > $html @@ -25,7 +25,7 @@ echo "" >> $html echo "" >> $html - perl $dir/igparse.pl $PWD/$4 0 | grep -v "D:" | cut -f2- > $5 + perl $dir/igparse.pl $PWD/$4 0 | grep -v "D:" | cut -f2- > "$5" echo "" >> $html } @@ -36,17 +36,20 @@ } -id=${inputData[0]} +id="" forwardSlash="/" mergerInput=() -count=0 -for current in $inputData; do - if [[ "$current" != *"$forwardSlash"* ]]; then - id=$current - count=0 - mergerInput+=($id) - continue - fi +echo "Before loop" +count=1 +for current in "${inputFiles[@]}" +do + if [[ "$current" != *"$forwardSlash"* ]]; then + id="$current" + mergerInput+=($id) + count=1 + continue + fi + echo "working on $current" fileName=$(basename $current) parsedFileName="${fileName%.*}" parsedFileName="$PWD/$parsedFileName.parsed" @@ -66,139 +69,28 @@ done wait - +echo "after loop" echo "" >> $html echo "" >> $html -python $dir/igblastmerge.py ${mergerInput[*]} --output $PWD/merged.txt +python $dir/experimental_design.py ${mergerInput[*]} --output $PWD/merged.txt echo "" >> $html echo "" >> $html echo "" >> $html - -inputFile=$PWD/merged.txt -outputDir=$imageDir -outputFile=$outputDir/index.html -mkdir $outputDir -Rscript --verbose $dir/RScript.r $inputFile $outputDir $outputDir $clonalType $species $locus $selection 2>&1 -cp $dir/tabber.js $outputDir -cp $dir/style.css $outputDir -cp $dir/script.js $outputDir -echo "

Click here for the results

Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)
" > $html -echo "Report on:" >> $outputFile -for sample in $samples; do - echo " $sample" >> $outputFile -done -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile - -echo "
" >> $outputFile -echo "
" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "
" >> $outputFile - -samples=`cat $outputDir/samples.txt` -count=1 -echo "
" >> $outputFile -for sample in $samples; do - echo "
info
Finished blast of sample $3 of patient $2
Starting parse of sample $3 of patient $2
Finished parse of sample $3 of patient $2
-----------------------------------
merging
done
-----------------------------------
plotting
" >> $outputFile - - mv "$outputDir/HeatmapVD_$sample.png" "$outputDir/VD_$sample.png" - echo "" >> $outputFile - mv "$outputDir/HeatmapVJ_$sample.png" "$outputDir/VJ_$sample.png" - echo "" >> $outputFile - mv "$outputDir/HeatmapDJ_$sample.png" "$outputDir/DJ_$sample.png" - echo "
" >> $outputFile - count=$((count+1)) -done -echo "" >> $outputFile +if [ "$locus" == "igh" ] || [ "$locus" == "igk" ] || [ "$locus" == "igl" ]; then + bash $dir/r_wrapper_b.sh $PWD/merged.txt $2 $outputDir $clonalType $species $locus $selection +else + bash $dir/r_wrapper_t.sh $PWD/merged.txt $2 $outputDir $clonalType $species $locus $selection +fi -hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)" -#if its a 'new' merged file with replicate info -if [[ "$hasReplicateColumn" == "Yes" ]] ; then - echo "
" >> $outputFile - for sample in $samples; do - clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)" - echo "
" >> $outputFile - echo "" >> $outputFile + - #replicate,reads,squared - echo "" >> $outputFile - while IFS=, read replicate reads squared - do - - echo "" >> $outputFile - done < $outputDir/ReplicateReads_$sample.csv - - #sum of reads and reads squared - while IFS=, read readsSum squaredSum - do - echo "" >> $outputFile - done < $outputDir/ReplicateSumReads_$sample.csv - - #overview - echo "" >> $outputFile - while IFS=, read type count weight weightedCount - do - echo "" >> $outputFile - done < $outputDir/ClonalityOverView_$sample.csv - echo "
Clonality Score: $clonalityScore
Replicate IDNumber of ReadsReads Squared
$replicate$reads$squared
Sum$readsSum$squaredSum
Coincidence TypeRaw Coincidence FreqCoincidence WeightCoincidences, Weighted
$type$count$weight$weightedCount
" >> $outputFile - done - echo "
" >> $outputFile -fi -hasJunctionData="$(if head -n 1 $inputFile | grep -q '3V-REGION trimmed-nt nb'; then echo 'Yes'; else echo 'No'; fi)" -if [[ "$hasJunctionData" == "Yes" ]] ; then - echo "
" >> $outputFile - while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP - do - echo "" >> $outputFile - done < $outputDir/junctionAnalysis.csv - echo "
SampleuniqueVH.DELP1N1P2DEL.DHDH.DELP3N2P4DEL.JHTotal.DelTotal.NTotal.P
$Sample$unique$VHDEL$P1$N1$P2$DELDH$DHDEL$P3$N2$P4$DELJH$TotalDel$TotalN$TotalP
" >> $outputFile -fi -echo "
" >> $outputFile -for sample in $samples; do - echo "" >> $outputFile -done -echo "
IDInclude
$sample
" >> $outputFile -echo "
" >> $outputFile -echo "
" >> $outputFile -echo "
" >> $outputFile -echo "
" >> $outputFile -echo "
" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile - -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile - -echo "" >> $outputFile -echo "" >> $outputFile -echo "" >> $outputFile - -for sample in $samples; do - echo "" >> $outputFile - echo "" >> $outputFile - echo "" >> $outputFile -done - -echo "
DescriptionLink
The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType)Download
The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType)Download
The dataset used to generate the CDR3 length frequency graphDownload
The dataset used to generate the V gene family frequency graphDownload
The dataset used to generate the D gene family frequency graphDownload
The dataset used to generate the J gene family frequency graphDownload
The dataset used to generate the V gene frequency graphDownload
The dataset used to generate the D gene frequency graphDownload
The dataset used to generate the J gene frequency graphDownload
The data used to generate the VD heatmap for $sample.Download
The data used to generate the VJ heatmap for $sample.Download
The data used to generate the DJ heatmap for $sample.Download
" >> $outputFile -echo "
" >> $outputFile diff -r 7d97fa9a0423 -r 778a9d130904 complete_immunerepertoire.xml --- a/complete_immunerepertoire.xml Fri May 09 09:35:32 2014 -0400 +++ b/complete_immunerepertoire.xml Thu Sep 04 07:46:23 2014 -0400 @@ -1,20 +1,20 @@ - complete.sh + complete.sh " #for $i, $f in enumerate($patients) - ${f.id} + ${f.id} #for $j, $g in enumerate($f.samples) - ${g.sample} + ${g.sample} #end for #end for - "$clonaltype_select" $out_file $out_file.files_path $species $locus $selection +" $out_file $out_file.files_path "$clonaltype_select" $species $locus $selection - - - + + + @@ -34,6 +34,10 @@ + + + + diff -r 7d97fa9a0423 -r 778a9d130904 experimental_design.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/experimental_design.py Thu Sep 04 07:46:23 2014 -0400 @@ -0,0 +1,44 @@ +import sys +import pandas as pd + +def main(): + patients = {} + files = [] + sample_id = sys.argv[1] + imgt_files = 0 + blast_files = 0 + #organize files + for arg in sys.argv[2:-2]: + if arg.find("/") is -1: + patients[sample_id] = files + files = [] + sample_id = arg + else: + df = pd.read_csv(arg, sep="\t", dtype=object) + if "Functionality" in list(df.columns.values): + df["VDJ Frame"][df["Functionality"] != "productive"] = "In-frame with stop codon" + imgt_files += 1 + else: + blast_files += 1 + files.append(df) + patients[sample_id] = files + columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Functionality', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb', u'Sample', u'Replicate'] + if blast_files is not 0: + print "Has a parsed blastn file, using limited columns." + columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Sample', u'Replicate'] + + result = None + for patient_id, samples in patients.iteritems(): + count = 1 + for sample in samples: + sample['Sample'] = patient_id + sample['Replicate'] = str(count) + count += 1 + if result is None: + result = sample[columns] + else: + result = result.append(sample[columns]) + result.to_csv(sys.argv[-1], sep="\t", index=False, index_label="index") + +if __name__ == "__main__": + main() diff -r 7d97fa9a0423 -r 778a9d130904 igblastmerge.py --- a/igblastmerge.py Fri May 09 09:35:32 2014 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,44 +0,0 @@ -import sys -import pandas as pd - -def main(): - patients = {} - files = [] - sample_id = sys.argv[1] - imgt_files = 0 - blast_files = 0 - #organize files - for arg in sys.argv[2:-2]: - if arg.find("/") is -1: - patients[sample_id] = files - files = [] - sample_id = arg - else: - df = pd.read_csv(arg, sep="\t") - if "Functionality" in list(df.columns.values): - df["VDJ Frame"][df["Functionality"] != "productive"] = "In-frame with stop codon" - imgt_files += 1 - else: - blast_files += 1 - files.append(df) - patients[sample_id] = files - columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Functionality', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb', u'Sample', u'Replicate'] - if blast_files is not 0: - print "Has a parsed blastn file, using limited columns." - columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Sample', u'Replicate'] - - result = None - for patient_id, samples in patients.iteritems(): - count = 1 - for sample in samples: - sample['Sample'] = patient_id - sample['Replicate'] = str(count) - count += 1 - if result is None: - result = sample[columns] - else: - result = result.append(sample[columns]) - result.to_csv(sys.argv[-1], sep="\t", index=False, index_label="index") - -if __name__ == "__main__": - main() diff -r 7d97fa9a0423 -r 778a9d130904 r_wrapper_b.sh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/r_wrapper_b.sh Thu Sep 04 07:46:23 2014 -0400 @@ -0,0 +1,156 @@ +#!/bin/bash + +inputFile=$1 +outputDir=$3 +outputFile=$3/index.html #$2 +clonalType=$4 +species=$5 +locus=$6 +selection=$7 + +useD="false" +if [[ "$species" == "human" && "$locus" = "igh" ]] ; then + useD="true" +fi +dir="$(cd "$(dirname "$0")" && pwd)" +mkdir $3 +Rscript --verbose $dir/RScript_b.r $inputFile $outputDir $outputDir $clonalType $species $locus $selection 2>&1 +cp $dir/tabber.js $outputDir +cp $dir/style.css $outputDir +cp $dir/script.js $outputDir +cp $dir/jquery-1.11.0.min.js $outputDir +cp $dir/jquery.tablesorter.min.js $outputDir +cp $dir/asc.gif $outputDir +cp $dir/desc.gif $outputDir +cp $dir/bg.gif $outputDir +samples=`cat $outputDir/samples.txt` +echo "

Click here for the results

Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)
" > $2 +echo "Report on:" >> $outputFile +for sample in $samples; do + echo " $sample" >> $outputFile +done +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "
" >> $outputFile + +echo "
" >> $outputFile +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "
" >> $outputFile + +count=1 +echo "
" >> $outputFile +for sample in $samples; do + echo "
" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "
" >> $outputFile + count=$((count+1)) +done +echo "
" >> $outputFile + +#echo "
" >> $outputFile + +hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)" +echo "$hasReplicateColumn" +#if its a 'new' merged file with replicate info +if [[ "$hasReplicateColumn" == "Yes" ]] ; then + echo "
" >> $outputFile + for sample in $samples; do + clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)" + echo "
" >> $outputFile + echo "" >> $outputFile + + #replicate,reads,squared + echo "" >> $outputFile + while IFS=, read replicate reads squared + do + + echo "" >> $outputFile + done < $outputDir/ReplicateReads_$sample.csv + + #sum of reads and reads squared + while IFS=, read readsSum squaredSum + do + echo "" >> $outputFile + done < $outputDir/ReplicateSumReads_$sample.csv + + #overview + echo "" >> $outputFile + while IFS=, read type count weight weightedCount + do + echo "" >> $outputFile + done < $outputDir/ClonalityOverView_$sample.csv + echo "
Clonality Score: $clonalityScore
Replicate IDNumber of ReadsReads Squared
$replicate$reads$squared
Sum$readsSum$squaredSum
Coincidence TypeRaw Coincidence FreqCoincidence WeightCoincidences, Weighted
$type$count$weight$weightedCount
" >> $outputFile + done + echo "
" >> $outputFile +fi + +hasJunctionData="$(if head -n 1 $inputFile | grep -q '3V-REGION trimmed-nt nb'; then echo 'Yes'; else echo 'No'; fi)" + +if [[ "$hasJunctionData" == "Yes" ]] ; then + echo "
" >> $outputFile + while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP + do + echo "" >> $outputFile + done < $outputDir/junctionAnalysis.csv + echo "
SampleuniqueVH.DELP1N1P2DEL.DHDH.DELP3N2P4DEL.JHTotal.DelTotal.NTotal.P
$Sample$unique$VHDEL$P1$N1$P2$DELDH$DHDEL$P3$N2$P4$DELJH$TotalDel$TotalN$TotalP
" >> $outputFile +fi + +echo "
" >> $outputFile +for sample in $samples; do + echo "" >> $outputFile +done +echo "
IDInclude
$sample
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile + +echo "
" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile + +echo "" >> $outputFile + +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile + +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile + +for sample in $samples; do + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi +done + +echo "
DescriptionLink
The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType)Download
The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType)Download
The dataset used to generate the CDR3 length frequency graphDownload
The dataset used to generate the V gene family frequency graphDownload
The dataset used to generate the D gene family frequency graphDownload
The dataset used to generate the J gene family frequency graphDownload
The dataset used to generate the V gene frequency graphDownload
The dataset used to generate the D gene frequency graphDownload
The dataset used to generate the J gene frequency graphDownload
The data used to generate the VD heatmap for $sample.Download
The data used to generate the VJ heatmap for $sample.Download
The data used to generate the DJ heatmap for $sample.Download
" >> $outputFile +echo "
" >> $outputFile diff -r 7d97fa9a0423 -r 778a9d130904 r_wrapper_t.sh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/r_wrapper_t.sh Thu Sep 04 07:46:23 2014 -0400 @@ -0,0 +1,151 @@ +#!/bin/bash + +inputFile=$1 +outputDir=$3 +outputFile=$3/index.html #$2 +clonalType=$4 +species=$5 +locus=$6 +selection=$7 +useD="true" +if [[ "$species" == "human" && "$locus" = "tra" ]] ; then + useD="false" +fi +dir="$(cd "$(dirname "$0")" && pwd)" +mkdir $3 +Rscript --verbose $dir/RScript_t.r $inputFile $outputDir $outputDir $clonalType $species $locus $selection 2>&1 +cp $dir/tabber.js $outputDir +cp $dir/style.css $outputDir +cp $dir/script.js $outputDir +cp $dir/jquery-1.11.0.min.js $outputDir +cp $dir/jquery.tablesorter.min.js $outputDir +cp $dir/asc.gif $outputDir +cp $dir/desc.gif $outputDir +cp $dir/bg.gif $outputDir +echo "

Click here for the results

Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)
" > $2 +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "
" >> $outputFile + +echo "
" >> $outputFile +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "
" >> $outputFile + +samples=`cat $outputDir/samples.txt` +count=1 +echo "
" >> $outputFile +for sample in $samples; do + echo "
" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "
" >> $outputFile + count=$((count+1)) +done +echo "
" >> $outputFile + + +hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)" +echo "$hasReplicateColumn" +#if its a 'new' merged file with replicate info +if [[ "$hasReplicateColumn" == "Yes" ]] ; then + echo "
" >> $outputFile + for sample in $samples; do + clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)" + echo "
" >> $outputFile + echo "" >> $outputFile + + #replicate,reads,squared + echo "" >> $outputFile + while IFS=, read replicate reads squared + do + + echo "" >> $outputFile + done < $outputDir/ReplicateReads_$sample.csv + + #sum of reads and reads squared + while IFS=, read readsSum squaredSum + do + echo "" >> $outputFile + done < $outputDir/ReplicateSumReads_$sample.csv + + #overview + echo "" >> $outputFile + while IFS=, read type count weight weightedCount + do + echo "" >> $outputFile + done < $outputDir/ClonalityOverView_$sample.csv + echo "
Clonality Score: $clonalityScore
Replicate IDNumber of ReadsReads Squared
$replicate$reads$squared
Sum$readsSum$squaredSum
Coincidence TypeRaw Coincidence FreqCoincidence WeightCoincidences, Weighted
$type$count$weight$weightedCount
" >> $outputFile + done + echo "
" >> $outputFile +fi + +hasJunctionData="$(if head -n 1 $inputFile | grep -q '3V-REGION trimmed-nt nb'; then echo 'Yes'; else echo 'No'; fi)" + +if [[ "$hasJunctionData" == "Yes" ]] ; then + echo "
" >> $outputFile + while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP + do + echo "" >> $outputFile + done < $outputDir/junctionAnalysis.csv + echo "
SampleuniqueVH.DELP1N1P2DEL.DHDH.DELP3N2P4DEL.JHTotal.DelTotal.NTotal.P
$Sample$unique$VHDEL$P1$N1$P2$DELDH$DHDEL$P3$N2$P4$DELJH$TotalDel$TotalN$TotalP
" >> $outputFile +fi + +echo "
" >> $outputFile +for sample in $samples; do + echo "" >> $outputFile +done +echo "
IDInclude
$sample
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile +echo "
" >> $outputFile + +echo "
" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile +echo "" >> $outputFile + +echo "" >> $outputFile + +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile + +echo "" >> $outputFile +if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile +fi +echo "" >> $outputFile + +for sample in $samples; do + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi + echo "" >> $outputFile + if [[ "$useD" == "true" ]] ; then + echo "" >> $outputFile + fi +done + +echo "
DescriptionLink
The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType)Download
The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType)Download
The dataset used to generate the CDR3 length frequency graphDownload
The dataset used to generate the V gene family frequency graphDownload
The dataset used to generate the D gene family frequency graphDownload
The dataset used to generate the J gene family frequency graphDownload
The dataset used to generate the V gene frequency graphDownload
The dataset used to generate the D gene frequency graphDownload
The dataset used to generate the J gene frequency graphDownload
The data used to generate the VD heatmap for $sample.Download
The data used to generate the VJ heatmap for $sample.Download
The data used to generate the DJ heatmap for $sample.Download
" >> $outputFile +echo "
" >> $outputFile diff -r 7d97fa9a0423 -r 778a9d130904 script.js --- a/script.js Fri May 09 09:35:32 2014 -0400 +++ b/script.js Thu Sep 04 07:46:23 2014 -0400 @@ -1,32 +1,36 @@ function compareAdd(id){ var img = document.createElement('img'); - img.setAttribute('src', 'VD_' + id + '.png'); + img.setAttribute('src', 'HeatmapVD_' + id + '.png'); var td = document.createElement('td'); td.setAttribute('id', "comparison_vd_" + id); td.appendChild(img) - document.getElementById('comparison_table_vd').appendChild(td); + $('#comparison_table_vd').append(td); img = document.createElement('img'); - img.setAttribute('src', 'VJ_' + id + '.png'); + img.setAttribute('src', 'HeatmapVJ_' + id + '.png'); td = document.createElement('td'); td.setAttribute('id', "comparison_vj_" + id); td.appendChild(img) - document.getElementById('comparison_table_vj').appendChild(td); + $('#comparison_table_vj').append(td); img = document.createElement('img'); - img.setAttribute('src', 'DJ_' + id + '.png'); + img.setAttribute('src', 'HeatmapDJ_' + id + '.png'); td = document.createElement('td'); td.setAttribute('id', "comparison_dj_" + id); td.appendChild(img) - document.getElementById('comparison_table_dj').appendChild(td); + $('#comparison_table_dj').append(td); - document.getElementById('compare_checkbox_' + id).setAttribute('onchange', "javascript:compareRemove('" + id + "')"); + $('#compare_checkbox_' + id).attr('onchange', "javascript:compareRemove('" + id + "')"); } function compareRemove(id){ - document.getElementById("comparison_vd_" + id).remove() - document.getElementById("comparison_vj_" + id).remove() - document.getElementById("comparison_dj_" + id).remove() - document.getElementById('compare_checkbox_' + id).setAttribute('onchange', "javascript:compareAdd('" + id + "')"); + $("#comparison_vd_" + id).remove() + $("#comparison_vj_" + id).remove() + $("#comparison_dj_" + id).remove() + $("#compare_checkbox_" + id).attr('onchange', "javascript:compareAdd('" + id + "')"); } + +$( document ).ready(function () { + $('#junction_table').tablesorter(); +}) diff -r 7d97fa9a0423 -r 778a9d130904 tool_dependencies.xml --- a/tool_dependencies.xml Fri May 09 09:35:32 2014 -0400 +++ b/tool_dependencies.xml Thu Sep 04 07:46:23 2014 -0400 @@ -6,7 +6,7 @@ - wget ftp://ftp.ncbi.nih.gov/blast/executables/igblast/release/1.0.0/ncbi-igblast-1.0.0-x64-linux.tar.gz -P $INSTALL_DIR + wget ftp://ftp.ncbi.nih.gov/blast/executables/igblast/release/1.3.0/ncbi-igblast-1.0.0-x64-linux.tar.gz -P $INSTALL_DIR tar zxvf $INSTALL_DIR/ncbi-igblast-1.0.0-x64-linux.tar.gz -C $INSTALL_DIR $INSTALL_DIR/ncbi-igblast-1.0.0/bin