Mercurial > repos > davidvanzessen > combined_immune_repertoire_imgt
comparison imgtconvert.py @ 1:d2b3bcabb478 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Mon, 09 Dec 2013 06:08:52 -0500 |
| parents | |
| children | 8418fab78894 |
comparison
equal
deleted
inserted
replaced
| 0:e71c59b72669 | 1:d2b3bcabb478 |
|---|---|
| 1 import pandas as pd | |
| 2 import re | |
| 3 import argparse | |
| 4 import os | |
| 5 | |
| 6 def stop_err( msg, ret=1 ): | |
| 7 sys.stderr.write( msg ) | |
| 8 sys.exit( ret ) | |
| 9 | |
| 10 #docs.python.org/dev/library/argparse.html | |
| 11 parser = argparse.ArgumentParser() | |
| 12 parser.add_argument("--input", help="Input folder with files") | |
| 13 parser.add_argument("--output", help="Output file") | |
| 14 | |
| 15 args = parser.parse_args() | |
| 16 | |
| 17 old_summary_columns = [u'Sequence ID', u'JUNCTION frame', u'V-GENE and allele', u'D-GENE and allele', u'J-GENE and allele', u'CDR1-IMGT length', u'CDR2-IMGT length', u'CDR3-IMGT length', u'Orientation'] | |
| 18 old_sequence_columns = [u'CDR1-IMGT', u'CDR2-IMGT', u'CDR3-IMGT'] | |
| 19 old_junction_columns = [u'JUNCTION'] | |
| 20 | |
| 21 added_summary_columns = [u'V-REGION identity %', u'V-REGION identity nt', u'D-REGION reading frame', u'AA JUNCTION', u'Functionality comment', u'Sequence'] | |
| 22 added_sequence_columns = [u'FR1-IMGT', u'FR2-IMGT', u'FR3-IMGT', u'CDR3-IMGT', u'JUNCTION', u'J-REGION', u'FR4-IMGT'] | |
| 23 added_junction_columns = [u"P3'V-nt nb", u'N1-REGION-nt nb', u"P5'D-nt nb", u"P3'D-nt nb", u'N2-REGION-nt nb', u"P5'J-nt nb", u"3'V-REGION trimmed-nt nb", u"5'D-REGION trimmed-nt nb", u"3'D-REGION trimmed-nt nb", u"5'J-REGION trimmed-nt nb"] | |
| 24 | |
| 25 inputFolder = args.input | |
| 26 | |
| 27 dirContents = os.listdir(inputFolder) | |
| 28 if len(dirContents) == 1: | |
| 29 inputFolder = os.path.join(inputFolder, dirContents[0]) | |
| 30 if os.path.isdir(inputFolder): | |
| 31 print "is dir" | |
| 32 dirContents = os.listdir(inputFolder) | |
| 33 files = sorted([os.path.join(inputFolder, f) for f in dirContents]) | |
| 34 | |
| 35 if len(files) % 3 is not 0: | |
| 36 stop_err("Files in zip not a multiple of 3, it should contain the all the 1_, 5_ and 6_ files for a sample") | |
| 37 import sys | |
| 38 sys.exit() | |
| 39 | |
| 40 | |
| 41 triplets = [] | |
| 42 step = len(files) / 3 | |
| 43 for i in range(0, step): | |
| 44 triplets.append((files[i], files[i + step], files[i + step + step])) | |
| 45 | |
| 46 outFile = args.output | |
| 47 | |
| 48 fSummary = pd.read_csv(triplets[0][0], sep="\t") | |
| 49 fSequence = pd.read_csv(triplets[0][1], sep="\t") | |
| 50 fJunction = pd.read_csv(triplets[0][2], sep="\t") | |
| 51 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
| 52 | |
| 53 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
| 54 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
| 55 | |
| 56 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
| 57 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
| 58 | |
| 59 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
| 60 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
| 61 | |
| 62 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
| 63 tmp["CDR3 Length DNA"] = '1' | |
| 64 tmp["Strand"] = fSummary["Orientation"] | |
| 65 tmp["CDR3 Found How"] = 'a' | |
| 66 | |
| 67 for col in added_summary_columns: | |
| 68 tmp[col] = fSummary[col] | |
| 69 | |
| 70 for col in added_sequence_columns: | |
| 71 tmp[col] = fSequence[col] | |
| 72 | |
| 73 for col in added_junction_columns: | |
| 74 tmp[col] = fJunction[col] | |
| 75 | |
| 76 outFrame = tmp | |
| 77 | |
| 78 for triple in triplets[1:]: | |
| 79 fSummary = pd.read_csv(triple[0], sep="\t") | |
| 80 fSequence = pd.read_csv(triple[1], sep="\t") | |
| 81 fJunction = pd.read_csv(triple[2], sep="\t") | |
| 82 | |
| 83 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
| 84 | |
| 85 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
| 86 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
| 87 | |
| 88 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
| 89 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
| 90 | |
| 91 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
| 92 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
| 93 | |
| 94 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
| 95 tmp["CDR3 Length DNA"] = '1' | |
| 96 tmp["Strand"] = fSummary["Orientation"] | |
| 97 tmp["CDR3 Found How"] = 'a' | |
| 98 | |
| 99 for col in added_summary_columns: | |
| 100 tmp[col] = fSummary[col] | |
| 101 | |
| 102 for col in added_sequence_columns: | |
| 103 tmp[col] = fSequence[col] | |
| 104 | |
| 105 for col in added_junction_columns: | |
| 106 tmp[col] = fJunction[col] | |
| 107 | |
| 108 outFrame = outFrame.append(tmp) | |
| 109 | |
| 110 outFrame.columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb'] | |
| 111 | |
| 112 vPattern = re.compile(r"IGHV[1-9]-[0-9ab]+-?[1-9]?") | |
| 113 dPattern = re.compile(r"IGHD[1-9]-[0-9ab]+") | |
| 114 jPattern = re.compile(r"IGHJ[1-9]") | |
| 115 | |
| 116 def filterGenes(s, pattern): | |
| 117 if type(s) is not str: | |
| 118 return "NA" | |
| 119 res = pattern.search(s) | |
| 120 if res: | |
| 121 return res.group(0) | |
| 122 return "NA" | |
| 123 | |
| 124 | |
| 125 outFrame["Top V Gene"] = outFrame["Top V Gene"].apply(lambda x: filterGenes(x, vPattern)) | |
| 126 outFrame["Top D Gene"] = outFrame["Top D Gene"].apply(lambda x: filterGenes(x, dPattern)) | |
| 127 outFrame["Top J Gene"] = outFrame["Top J Gene"].apply(lambda x: filterGenes(x, jPattern)) | |
| 128 | |
| 129 | |
| 130 | |
| 131 tmp = outFrame["VDJ Frame"] | |
| 132 tmp = tmp.replace("in-frame", "In-frame") | |
| 133 tmp = tmp.replace("null", "Out-of-frame") | |
| 134 tmp = tmp.replace("out-of-frame", "Out-of-frame") | |
| 135 outFrame["VDJ Frame"] = tmp | |
| 136 outFrame["CDR3 Length"] = outFrame["CDR3 Seq DNA"].map(str).map(len) | |
| 137 safeLength = lambda x: len(x) if type(x) == str else 0 | |
| 138 outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top D Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows? | |
| 139 outFrame.to_csv(outFile, sep="\t", index=False) |
