Mercurial > repos > davidvanzessen > argalaxy_tools
comparison report_clonality/RScript.r @ 48:d08dfc8d5225 draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 27 Jan 2016 10:36:35 -0500 |
parents | d97e1421aa86 |
children | 2a79f9adf89b |
comparison
equal
deleted
inserted
replaced
47:d97e1421aa86 | 48:d08dfc8d5225 |
---|---|
60 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) | 60 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) |
61 | 61 |
62 #filter uniques | 62 #filter uniques |
63 inputdata.removed = inputdata[NULL,] | 63 inputdata.removed = inputdata[NULL,] |
64 | 64 |
65 if(filter_uniques == "yes" && c("CDR1.Seq", "CDR2.Seq", "CDR3.Seq", "FR1.IMGT", "FR2.IMGT", "FR3.IMGT") %in% names(inputdata)){ | 65 filter_uniques = filter_uniques == "yes" && c("CDR1.Seq", "CDR2.Seq", "CDR3.Seq", "FR1.IMGT", "FR2.IMGT", "FR3.IMGT") %in% names(inputdata) |
66 | |
67 if(filter_uniques){ | |
66 | 68 |
67 clmns = names(inputdata) | 69 clmns = names(inputdata) |
68 | 70 |
69 inputdata$unique.def = paste(inputdata$CDR1.Seq, inputdata$CDR2.Seq, inputdata$CDR3.Seq, inputdata$FR1.IMGT, inputdata$FR2.IMGT, inputdata$FR3.IMGT) | 71 inputdata$unique.def = paste(inputdata$CDR1.Seq, inputdata$CDR2.Seq, inputdata$CDR3.Seq, inputdata$FR1.IMGT, inputdata$FR2.IMGT, inputdata$FR3.IMGT) |
70 inputdata.filtered = inputdata[duplicated(inputdata$unique.def),] | 72 inputdata.filtered = inputdata[duplicated(inputdata$unique.def),] |
175 sample_productive_count$perc_prod_un = round(sample_productive_count$Productive_unique / sample_productive_count$All * 100) | 177 sample_productive_count$perc_prod_un = round(sample_productive_count$Productive_unique / sample_productive_count$All * 100) |
176 | 178 |
177 sample_productive_count$perc_unprod = round(sample_productive_count$Unproductive / sample_productive_count$All * 100) | 179 sample_productive_count$perc_unprod = round(sample_productive_count$Unproductive / sample_productive_count$All * 100) |
178 sample_productive_count$perc_unprod_un = round(sample_productive_count$Unproductive_unique / sample_productive_count$All * 100) | 180 sample_productive_count$perc_unprod_un = round(sample_productive_count$Unproductive_unique / sample_productive_count$All * 100) |
179 | 181 |
180 inputdata.removed.s = data.table(inputdata.removed)[, list(UniqueRemoved=.N), by=c("Sample")] | 182 |
181 | 183 if(filter_uniques){ |
182 sample_productive_count = merge(sample_productive_count, inputdata.removed.s, by="Sample") | 184 inputdata.removed.s = data.table(inputdata.removed)[, list(UniqueRemoved=.N), by=c("Sample")] |
183 | 185 |
184 sample_productive_count$perc_rem = round(sample_productive_count$UniqueRemoved / sample_productive_count$All * 100) | 186 sample_productive_count = merge(sample_productive_count, inputdata.removed.s, by="Sample") |
185 | 187 |
188 sample_productive_count$perc_rem = round(sample_productive_count$UniqueRemoved / sample_productive_count$All * 100) | |
189 } else { | |
190 sample_productive_count$UniqueRemoved = 0 | |
191 sample_productive_count$perc_rem = 0 | |
192 } | |
186 | 193 |
187 sample_replicate_productive_count = inputdata.dt[, list(All=.N, | 194 sample_replicate_productive_count = inputdata.dt[, list(All=.N, |
188 Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), | 195 Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), |
189 perc_prod = 1, | 196 perc_prod = 1, |
190 Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), | 197 Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), |
199 sample_replicate_productive_count$perc_prod_un = round(sample_replicate_productive_count$Productive_unique / sample_replicate_productive_count$All * 100) | 206 sample_replicate_productive_count$perc_prod_un = round(sample_replicate_productive_count$Productive_unique / sample_replicate_productive_count$All * 100) |
200 | 207 |
201 sample_replicate_productive_count$perc_unprod = round(sample_replicate_productive_count$Unproductive / sample_replicate_productive_count$All * 100) | 208 sample_replicate_productive_count$perc_unprod = round(sample_replicate_productive_count$Unproductive / sample_replicate_productive_count$All * 100) |
202 sample_replicate_productive_count$perc_unprod_un = round(sample_replicate_productive_count$Unproductive_unique / sample_replicate_productive_count$All * 100) | 209 sample_replicate_productive_count$perc_unprod_un = round(sample_replicate_productive_count$Unproductive_unique / sample_replicate_productive_count$All * 100) |
203 | 210 |
204 inputdata.removed.sr = data.table(inputdata.removed)[, list(UniqueRemoved=.N), by=c("samples_replicates")] | 211 |
205 | 212 if(filter_uniques){ |
206 sample_replicate_productive_count = merge(sample_replicate_productive_count, inputdata.removed.sr, by="samples_replicates") | 213 inputdata.removed.sr = data.table(inputdata.removed)[, list(UniqueRemoved=.N), by=c("samples_replicates")] |
207 | 214 |
208 sample_replicate_productive_count$perc_rem = round(sample_replicate_productive_count$UniqueRemoved / sample_productive_count$All * 100) | 215 sample_replicate_productive_count = merge(sample_replicate_productive_count, inputdata.removed.sr, by="samples_replicates") |
209 | 216 |
217 sample_replicate_productive_count$perc_rem = round(sample_replicate_productive_count$UniqueRemoved / sample_productive_count$All * 100) | |
218 } else { | |
219 sample_replicate_productive_count$UniqueRemoved = 0 | |
220 sample_replicate_productive_count$perc_rem = 0 | |
221 } | |
210 | 222 |
211 setnames(sample_replicate_productive_count, colnames(sample_productive_count)) | 223 setnames(sample_replicate_productive_count, colnames(sample_productive_count)) |
212 | 224 |
213 counts = rbind(sample_replicate_productive_count, sample_productive_count) | 225 counts = rbind(sample_replicate_productive_count, sample_productive_count) |
214 counts = counts[order(counts$Sample),] | 226 counts = counts[order(counts$Sample),] |