Mercurial > repos > davidvanzessen > argalaxy_tools
comparison mutation_analysis.r @ 57:16c7fc1c4bf8 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Fri, 18 Mar 2016 07:50:34 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 56:2eb94c08e550 | 57:16c7fc1c4bf8 |
|---|---|
| 1 library(data.table) | |
| 2 library(ggplot2) | |
| 3 | |
| 4 args <- commandArgs(trailingOnly = TRUE) | |
| 5 | |
| 6 input = args[1] | |
| 7 genes = unlist(strsplit(args[2], ",")) | |
| 8 outputdir = args[3] | |
| 9 print(args[4]) | |
| 10 include_fr1 = ifelse(args[4] == "yes", T, F) | |
| 11 setwd(outputdir) | |
| 12 | |
| 13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
| 14 | |
| 15 if(length(dat$Sequence.ID) == 0){ | |
| 16 setwd(outputdir) | |
| 17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
| 18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") | |
| 19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
| 20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
| 21 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 22 transitionTable["A","A"] = NA | |
| 23 transitionTable["C","C"] = NA | |
| 24 transitionTable["G","G"] = NA | |
| 25 transitionTable["T","T"] = NA | |
| 26 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
| 27 cat("0", file="n.txt") | |
| 28 stop("No data") | |
| 29 } | |
| 30 | |
| 31 | |
| 32 | |
| 33 cleanup_columns = c("FR1.IMGT.c.a", | |
| 34 "FR2.IMGT.g.t", | |
| 35 "CDR1.IMGT.Nb.of.nucleotides", | |
| 36 "CDR2.IMGT.t.a", | |
| 37 "FR1.IMGT.c.g", | |
| 38 "CDR1.IMGT.c.t", | |
| 39 "FR2.IMGT.a.c", | |
| 40 "FR2.IMGT.Nb.of.mutations", | |
| 41 "FR2.IMGT.g.c", | |
| 42 "FR2.IMGT.a.g", | |
| 43 "FR3.IMGT.t.a", | |
| 44 "FR3.IMGT.t.c", | |
| 45 "FR2.IMGT.g.a", | |
| 46 "FR3.IMGT.c.g", | |
| 47 "FR1.IMGT.Nb.of.mutations", | |
| 48 "CDR1.IMGT.g.a", | |
| 49 "CDR1.IMGT.t.g", | |
| 50 "CDR1.IMGT.g.c", | |
| 51 "CDR2.IMGT.Nb.of.nucleotides", | |
| 52 "FR2.IMGT.a.t", | |
| 53 "CDR1.IMGT.Nb.of.mutations", | |
| 54 "CDR1.IMGT.a.g", | |
| 55 "FR3.IMGT.a.c", | |
| 56 "FR1.IMGT.g.a", | |
| 57 "FR3.IMGT.a.g", | |
| 58 "FR1.IMGT.a.t", | |
| 59 "CDR2.IMGT.a.g", | |
| 60 "CDR2.IMGT.Nb.of.mutations", | |
| 61 "CDR2.IMGT.g.t", | |
| 62 "CDR2.IMGT.a.c", | |
| 63 "CDR1.IMGT.t.c", | |
| 64 "FR3.IMGT.g.c", | |
| 65 "FR1.IMGT.g.t", | |
| 66 "FR3.IMGT.g.t", | |
| 67 "CDR1.IMGT.a.t", | |
| 68 "FR1.IMGT.a.g", | |
| 69 "FR3.IMGT.a.t", | |
| 70 "FR3.IMGT.Nb.of.nucleotides", | |
| 71 "FR2.IMGT.t.c", | |
| 72 "CDR2.IMGT.g.a", | |
| 73 "FR2.IMGT.t.a", | |
| 74 "CDR1.IMGT.t.a", | |
| 75 "FR2.IMGT.t.g", | |
| 76 "FR3.IMGT.t.g", | |
| 77 "FR2.IMGT.Nb.of.nucleotides", | |
| 78 "FR1.IMGT.t.a", | |
| 79 "FR1.IMGT.t.g", | |
| 80 "FR3.IMGT.c.t", | |
| 81 "FR1.IMGT.t.c", | |
| 82 "CDR2.IMGT.a.t", | |
| 83 "FR2.IMGT.c.t", | |
| 84 "CDR1.IMGT.g.t", | |
| 85 "CDR2.IMGT.t.g", | |
| 86 "FR1.IMGT.Nb.of.nucleotides", | |
| 87 "CDR1.IMGT.c.g", | |
| 88 "CDR2.IMGT.t.c", | |
| 89 "FR3.IMGT.g.a", | |
| 90 "CDR1.IMGT.a.c", | |
| 91 "FR2.IMGT.c.a", | |
| 92 "FR3.IMGT.Nb.of.mutations", | |
| 93 "FR2.IMGT.c.g", | |
| 94 "CDR2.IMGT.g.c", | |
| 95 "FR1.IMGT.g.c", | |
| 96 "CDR2.IMGT.c.t", | |
| 97 "FR3.IMGT.c.a", | |
| 98 "CDR1.IMGT.c.a", | |
| 99 "CDR2.IMGT.c.g", | |
| 100 "CDR2.IMGT.c.a", | |
| 101 "FR1.IMGT.c.t", | |
| 102 "FR1.IMGT.Nb.of.silent.mutations", | |
| 103 "FR2.IMGT.Nb.of.silent.mutations", | |
| 104 "FR3.IMGT.Nb.of.silent.mutations", | |
| 105 "FR1.IMGT.Nb.of.nonsilent.mutations", | |
| 106 "FR2.IMGT.Nb.of.nonsilent.mutations", | |
| 107 "FR3.IMGT.Nb.of.nonsilent.mutations") | |
| 108 | |
| 109 for(col in cleanup_columns){ | |
| 110 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
| 111 #dat[dat[,col] == "",] = "0" | |
| 112 dat[,col] = as.numeric(dat[,col]) | |
| 113 dat[is.na(dat[,col]),] = 0 | |
| 114 } | |
| 115 | |
| 116 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
| 117 if(!include_fr1){ | |
| 118 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
| 119 } | |
| 120 | |
| 121 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
| 122 | |
| 123 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
| 124 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
| 125 | |
| 126 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
| 127 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
| 128 | |
| 129 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
| 130 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
| 131 | |
| 132 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
| 133 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
| 134 | |
| 135 | |
| 136 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
| 137 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
| 138 | |
| 139 | |
| 140 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
| 141 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
| 142 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
| 143 | |
| 144 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
| 145 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
| 146 | |
| 147 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
| 148 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
| 149 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
| 150 | |
| 151 | |
| 152 FRRegions = regions[grepl("FR", regions)] | |
| 153 CDRRegions = regions[grepl("CDR", regions)] | |
| 154 | |
| 155 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 156 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
| 157 | |
| 158 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 159 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
| 160 | |
| 161 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 162 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
| 163 | |
| 164 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 165 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
| 166 | |
| 167 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | |
| 168 | |
| 169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 170 | |
| 171 setwd(outputdir) | |
| 172 | |
| 173 | |
| 174 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | |
| 175 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | |
| 176 | |
| 177 j = i - 1 | |
| 178 x = (j * 3) + 1 | |
| 179 y = (j * 3) + 2 | |
| 180 z = (j * 3) + 3 | |
| 181 | |
| 182 if(nrow(tmp) > 0){ | |
| 183 | |
| 184 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 185 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
| 186 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | |
| 187 | |
| 188 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | |
| 189 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 190 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
| 191 | |
| 192 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | |
| 193 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 194 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
| 195 | |
| 196 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | |
| 197 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
| 198 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
| 199 | |
| 200 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
| 201 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 202 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
| 203 | |
| 204 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | |
| 205 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
| 206 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
| 207 | |
| 208 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
| 209 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 210 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
| 211 | |
| 212 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | |
| 213 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | |
| 214 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
| 215 | |
| 216 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | |
| 217 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
| 218 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
| 219 } | |
| 220 | |
| 221 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
| 222 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 223 transitionTable["A","A"] = NA | |
| 224 transitionTable["C","C"] = NA | |
| 225 transitionTable["G","G"] = NA | |
| 226 transitionTable["T","T"] = NA | |
| 227 | |
| 228 if(nrow(tmp) > 0){ | |
| 229 for(nt1 in nts){ | |
| 230 for(nt2 in nts){ | |
| 231 if(nt1 == nt2){ | |
| 232 next | |
| 233 } | |
| 234 NT1 = LETTERS[letters == nt1] | |
| 235 NT2 = LETTERS[letters == nt2] | |
| 236 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 237 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 238 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 239 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 240 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 241 if(include_fr1){ | |
| 242 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
| 243 } else { | |
| 244 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
| 245 } | |
| 246 } | |
| 247 } | |
| 248 } | |
| 249 | |
| 250 | |
| 251 print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
| 252 | |
| 253 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 254 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
| 255 | |
| 256 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
| 257 cat(length(tmp$Sequence.ID), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
| 258 | |
| 259 matrx | |
| 260 } | |
| 261 | |
| 262 nts = c("a", "c", "g", "t") | |
| 263 zeros=rep(0, 4) | |
| 264 | |
| 265 funcs = c(median, sum, mean) | |
| 266 fnames = c("median", "sum", "mean") | |
| 267 | |
| 268 for(i in 1:length(funcs)){ | |
| 269 func = funcs[[i]] | |
| 270 fname = fnames[[i]] | |
| 271 | |
| 272 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) | |
| 273 | |
| 274 for(i in 1:length(genes)){ | |
| 275 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | |
| 276 } | |
| 277 | |
| 278 matrx = calculate_result(i + 1, ".*", dat, matrx, func, fname, name="all") | |
| 279 | |
| 280 result = data.frame(matrx) | |
| 281 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
| 282 | |
| 283 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | |
| 284 } | |
| 285 | |
| 286 | |
| 287 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
| 288 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
| 289 } | |
| 290 | |
| 291 | |
| 292 genesForPlot = gsub("[0-9]", "", dat$best_match) | |
| 293 genesForPlot = data.frame(table(genesForPlot)) | |
| 294 colnames(genesForPlot) = c("Gene","Freq") | |
| 295 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 296 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 297 | |
| 298 | |
| 299 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 300 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 301 pc = pc + coord_polar(theta="y") | |
| 302 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")")) | |
| 303 | |
| 304 png(filename="all.png") | |
| 305 pc | |
| 306 dev.off() | |
| 307 | |
| 308 | |
| 309 #blegh | |
| 310 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | |
| 311 if(length(genesForPlot) > 0){ | |
| 312 genesForPlot = data.frame(table(genesForPlot)) | |
| 313 colnames(genesForPlot) = c("Gene","Freq") | |
| 314 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 315 | |
| 316 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 317 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 318 pc = pc + coord_polar(theta="y") | |
| 319 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
| 320 write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 321 | |
| 322 png(filename="ca.png") | |
| 323 print(pc) | |
| 324 dev.off() | |
| 325 } | |
| 326 | |
| 327 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match | |
| 328 if(length(genesForPlot) > 0){ | |
| 329 genesForPlot = data.frame(table(genesForPlot)) | |
| 330 colnames(genesForPlot) = c("Gene","Freq") | |
| 331 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 332 | |
| 333 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 334 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 335 pc = pc + coord_polar(theta="y") | |
| 336 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
| 337 write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 338 | |
| 339 png(filename="cg.png") | |
| 340 print(pc) | |
| 341 dev.off() | |
| 342 } | |
| 343 | |
| 344 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
| 345 | |
| 346 p = ggplot(dat, aes(best_match, percentage_mutations)) | |
| 347 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | |
| 348 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | |
| 349 | |
| 350 png(filename="scatter.png") | |
| 351 print(p) | |
| 352 dev.off() | |
| 353 | |
| 354 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 355 | |
| 356 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | |
| 357 | |
| 358 | |
| 359 | |
| 360 | |
| 361 | |
| 362 | |
| 363 dat$best_match_class = substr(dat$best_match, 0, 2) | |
| 364 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | |
| 365 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | |
| 366 | |
| 367 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | |
| 368 | |
| 369 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) | |
| 370 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") | |
| 371 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") | |
| 372 | |
| 373 png(filename="frequency_ranges.png") | |
| 374 print(p) | |
| 375 dev.off() | |
| 376 | |
| 377 frequency_bins_data_by_class = frequency_bins_data | |
| 378 | |
| 379 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 380 | |
| 381 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) | |
| 382 | |
| 383 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 384 | |
| 385 | |
| 386 #frequency_bins_data_by_class | |
| 387 #frequency_ranges_subclasses.txt | |
| 388 | |
| 389 | |
| 390 | |
| 391 | |
| 392 | |
| 393 | |
| 394 | |
| 395 | |
| 396 | |
| 397 | |
| 398 | |
| 399 | |
| 400 | |
| 401 | |
| 402 | |
| 403 | |
| 404 | |
| 405 | |
| 406 | |
| 407 | |
| 408 | |
| 409 | |
| 410 | |
| 411 | |
| 412 | |
| 413 | |
| 414 |
