Mercurial > repos > davidvanzessen > argalaxy_tools
comparison mutation_analysis.r @ 57:16c7fc1c4bf8 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 18 Mar 2016 07:50:34 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
56:2eb94c08e550 | 57:16c7fc1c4bf8 |
---|---|
1 library(data.table) | |
2 library(ggplot2) | |
3 | |
4 args <- commandArgs(trailingOnly = TRUE) | |
5 | |
6 input = args[1] | |
7 genes = unlist(strsplit(args[2], ",")) | |
8 outputdir = args[3] | |
9 print(args[4]) | |
10 include_fr1 = ifelse(args[4] == "yes", T, F) | |
11 setwd(outputdir) | |
12 | |
13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
14 | |
15 if(length(dat$Sequence.ID) == 0){ | |
16 setwd(outputdir) | |
17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") | |
19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
21 row.names(transitionTable) = c("A", "C", "G", "T") | |
22 transitionTable["A","A"] = NA | |
23 transitionTable["C","C"] = NA | |
24 transitionTable["G","G"] = NA | |
25 transitionTable["T","T"] = NA | |
26 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
27 cat("0", file="n.txt") | |
28 stop("No data") | |
29 } | |
30 | |
31 | |
32 | |
33 cleanup_columns = c("FR1.IMGT.c.a", | |
34 "FR2.IMGT.g.t", | |
35 "CDR1.IMGT.Nb.of.nucleotides", | |
36 "CDR2.IMGT.t.a", | |
37 "FR1.IMGT.c.g", | |
38 "CDR1.IMGT.c.t", | |
39 "FR2.IMGT.a.c", | |
40 "FR2.IMGT.Nb.of.mutations", | |
41 "FR2.IMGT.g.c", | |
42 "FR2.IMGT.a.g", | |
43 "FR3.IMGT.t.a", | |
44 "FR3.IMGT.t.c", | |
45 "FR2.IMGT.g.a", | |
46 "FR3.IMGT.c.g", | |
47 "FR1.IMGT.Nb.of.mutations", | |
48 "CDR1.IMGT.g.a", | |
49 "CDR1.IMGT.t.g", | |
50 "CDR1.IMGT.g.c", | |
51 "CDR2.IMGT.Nb.of.nucleotides", | |
52 "FR2.IMGT.a.t", | |
53 "CDR1.IMGT.Nb.of.mutations", | |
54 "CDR1.IMGT.a.g", | |
55 "FR3.IMGT.a.c", | |
56 "FR1.IMGT.g.a", | |
57 "FR3.IMGT.a.g", | |
58 "FR1.IMGT.a.t", | |
59 "CDR2.IMGT.a.g", | |
60 "CDR2.IMGT.Nb.of.mutations", | |
61 "CDR2.IMGT.g.t", | |
62 "CDR2.IMGT.a.c", | |
63 "CDR1.IMGT.t.c", | |
64 "FR3.IMGT.g.c", | |
65 "FR1.IMGT.g.t", | |
66 "FR3.IMGT.g.t", | |
67 "CDR1.IMGT.a.t", | |
68 "FR1.IMGT.a.g", | |
69 "FR3.IMGT.a.t", | |
70 "FR3.IMGT.Nb.of.nucleotides", | |
71 "FR2.IMGT.t.c", | |
72 "CDR2.IMGT.g.a", | |
73 "FR2.IMGT.t.a", | |
74 "CDR1.IMGT.t.a", | |
75 "FR2.IMGT.t.g", | |
76 "FR3.IMGT.t.g", | |
77 "FR2.IMGT.Nb.of.nucleotides", | |
78 "FR1.IMGT.t.a", | |
79 "FR1.IMGT.t.g", | |
80 "FR3.IMGT.c.t", | |
81 "FR1.IMGT.t.c", | |
82 "CDR2.IMGT.a.t", | |
83 "FR2.IMGT.c.t", | |
84 "CDR1.IMGT.g.t", | |
85 "CDR2.IMGT.t.g", | |
86 "FR1.IMGT.Nb.of.nucleotides", | |
87 "CDR1.IMGT.c.g", | |
88 "CDR2.IMGT.t.c", | |
89 "FR3.IMGT.g.a", | |
90 "CDR1.IMGT.a.c", | |
91 "FR2.IMGT.c.a", | |
92 "FR3.IMGT.Nb.of.mutations", | |
93 "FR2.IMGT.c.g", | |
94 "CDR2.IMGT.g.c", | |
95 "FR1.IMGT.g.c", | |
96 "CDR2.IMGT.c.t", | |
97 "FR3.IMGT.c.a", | |
98 "CDR1.IMGT.c.a", | |
99 "CDR2.IMGT.c.g", | |
100 "CDR2.IMGT.c.a", | |
101 "FR1.IMGT.c.t", | |
102 "FR1.IMGT.Nb.of.silent.mutations", | |
103 "FR2.IMGT.Nb.of.silent.mutations", | |
104 "FR3.IMGT.Nb.of.silent.mutations", | |
105 "FR1.IMGT.Nb.of.nonsilent.mutations", | |
106 "FR2.IMGT.Nb.of.nonsilent.mutations", | |
107 "FR3.IMGT.Nb.of.nonsilent.mutations") | |
108 | |
109 for(col in cleanup_columns){ | |
110 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
111 #dat[dat[,col] == "",] = "0" | |
112 dat[,col] = as.numeric(dat[,col]) | |
113 dat[is.na(dat[,col]),] = 0 | |
114 } | |
115 | |
116 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
117 if(!include_fr1){ | |
118 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
119 } | |
120 | |
121 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
122 | |
123 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
124 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
125 | |
126 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
127 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
128 | |
129 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
130 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
131 | |
132 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
133 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
134 | |
135 | |
136 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
137 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
138 | |
139 | |
140 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
141 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
142 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
143 | |
144 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
145 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
146 | |
147 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
148 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
149 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
150 | |
151 | |
152 FRRegions = regions[grepl("FR", regions)] | |
153 CDRRegions = regions[grepl("CDR", regions)] | |
154 | |
155 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
156 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
157 | |
158 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
159 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
160 | |
161 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
162 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
163 | |
164 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
165 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
166 | |
167 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | |
168 | |
169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
170 | |
171 setwd(outputdir) | |
172 | |
173 | |
174 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | |
175 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | |
176 | |
177 j = i - 1 | |
178 x = (j * 3) + 1 | |
179 y = (j * 3) + 2 | |
180 z = (j * 3) + 3 | |
181 | |
182 if(nrow(tmp) > 0){ | |
183 | |
184 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
185 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
186 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | |
187 | |
188 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | |
189 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
190 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
191 | |
192 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | |
193 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
194 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
195 | |
196 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | |
197 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
198 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
199 | |
200 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
201 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
202 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
203 | |
204 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | |
205 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
206 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
207 | |
208 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
209 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
210 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
211 | |
212 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | |
213 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | |
214 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
215 | |
216 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | |
217 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
218 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
219 } | |
220 | |
221 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
222 row.names(transitionTable) = c("A", "C", "G", "T") | |
223 transitionTable["A","A"] = NA | |
224 transitionTable["C","C"] = NA | |
225 transitionTable["G","G"] = NA | |
226 transitionTable["T","T"] = NA | |
227 | |
228 if(nrow(tmp) > 0){ | |
229 for(nt1 in nts){ | |
230 for(nt2 in nts){ | |
231 if(nt1 == nt2){ | |
232 next | |
233 } | |
234 NT1 = LETTERS[letters == nt1] | |
235 NT2 = LETTERS[letters == nt2] | |
236 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
237 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
238 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
239 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
240 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
241 if(include_fr1){ | |
242 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
243 } else { | |
244 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
245 } | |
246 } | |
247 } | |
248 } | |
249 | |
250 | |
251 print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
252 | |
253 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
254 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
255 | |
256 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
257 cat(length(tmp$Sequence.ID), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
258 | |
259 matrx | |
260 } | |
261 | |
262 nts = c("a", "c", "g", "t") | |
263 zeros=rep(0, 4) | |
264 | |
265 funcs = c(median, sum, mean) | |
266 fnames = c("median", "sum", "mean") | |
267 | |
268 for(i in 1:length(funcs)){ | |
269 func = funcs[[i]] | |
270 fname = fnames[[i]] | |
271 | |
272 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) | |
273 | |
274 for(i in 1:length(genes)){ | |
275 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | |
276 } | |
277 | |
278 matrx = calculate_result(i + 1, ".*", dat, matrx, func, fname, name="all") | |
279 | |
280 result = data.frame(matrx) | |
281 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
282 | |
283 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | |
284 } | |
285 | |
286 | |
287 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
288 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
289 } | |
290 | |
291 | |
292 genesForPlot = gsub("[0-9]", "", dat$best_match) | |
293 genesForPlot = data.frame(table(genesForPlot)) | |
294 colnames(genesForPlot) = c("Gene","Freq") | |
295 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
296 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
297 | |
298 | |
299 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
300 pc = pc + geom_bar(width = 1, stat = "identity") | |
301 pc = pc + coord_polar(theta="y") | |
302 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")")) | |
303 | |
304 png(filename="all.png") | |
305 pc | |
306 dev.off() | |
307 | |
308 | |
309 #blegh | |
310 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | |
311 if(length(genesForPlot) > 0){ | |
312 genesForPlot = data.frame(table(genesForPlot)) | |
313 colnames(genesForPlot) = c("Gene","Freq") | |
314 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
315 | |
316 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
317 pc = pc + geom_bar(width = 1, stat = "identity") | |
318 pc = pc + coord_polar(theta="y") | |
319 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
320 write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
321 | |
322 png(filename="ca.png") | |
323 print(pc) | |
324 dev.off() | |
325 } | |
326 | |
327 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match | |
328 if(length(genesForPlot) > 0){ | |
329 genesForPlot = data.frame(table(genesForPlot)) | |
330 colnames(genesForPlot) = c("Gene","Freq") | |
331 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
332 | |
333 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
334 pc = pc + geom_bar(width = 1, stat = "identity") | |
335 pc = pc + coord_polar(theta="y") | |
336 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
337 write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
338 | |
339 png(filename="cg.png") | |
340 print(pc) | |
341 dev.off() | |
342 } | |
343 | |
344 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
345 | |
346 p = ggplot(dat, aes(best_match, percentage_mutations)) | |
347 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | |
348 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | |
349 | |
350 png(filename="scatter.png") | |
351 print(p) | |
352 dev.off() | |
353 | |
354 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
355 | |
356 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | |
357 | |
358 | |
359 | |
360 | |
361 | |
362 | |
363 dat$best_match_class = substr(dat$best_match, 0, 2) | |
364 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | |
365 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | |
366 | |
367 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | |
368 | |
369 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) | |
370 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") | |
371 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") | |
372 | |
373 png(filename="frequency_ranges.png") | |
374 print(p) | |
375 dev.off() | |
376 | |
377 frequency_bins_data_by_class = frequency_bins_data | |
378 | |
379 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
380 | |
381 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) | |
382 | |
383 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
384 | |
385 | |
386 #frequency_bins_data_by_class | |
387 #frequency_ranges_subclasses.txt | |
388 | |
389 | |
390 | |
391 | |
392 | |
393 | |
394 | |
395 | |
396 | |
397 | |
398 | |
399 | |
400 | |
401 | |
402 | |
403 | |
404 | |
405 | |
406 | |
407 | |
408 | |
409 | |
410 | |
411 | |
412 | |
413 | |
414 |