Mercurial > repos > chemteam > fastpca
comparison fastpca.xml @ 0:7dbe8bd02431 draft default tip
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit ee29bbfa4e78dca11e2e06d0d35a434c063ab588"
| author | chemteam |
|---|---|
| date | Thu, 30 Jan 2020 12:58:19 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:7dbe8bd02431 |
|---|---|
| 1 <tool id="fastpca" name="fastpca" version="@VERSION@"> | |
| 2 <description>- dimensionality reduction of MD simulations</description> | |
| 3 <macros> | |
| 4 <token name="@VERSION@">0.9.1</token> | |
| 5 </macros> | |
| 6 <requirements> | |
| 7 <requirement type="package" version="@VERSION@">fastpca</requirement> | |
| 8 </requirements> | |
| 9 <command detect_errors="exit_code"><![CDATA[ | |
| 10 fastpca | |
| 11 -f '$input' | |
| 12 -p '$output_proj' | |
| 13 #if str($inputs.cov) == 'None': | |
| 14 -c '$output_cov' | |
| 15 #elif str($inputs.vec) == 'None': | |
| 16 -C '$inputs.cov' | |
| 17 #end if | |
| 18 #if str($inputs.vec) == 'None': | |
| 19 -v $output_vec | |
| 20 #else: | |
| 21 -V '$inputs.vec' | |
| 22 #end if | |
| 23 #if str($inputs.stats) == 'None': | |
| 24 -s '$output_stats' | |
| 25 #else: | |
| 26 -S '$inputs.stats' | |
| 27 #end if | |
| 28 -l '$output_val' | |
| 29 $norm | |
| 30 $periodic | |
| 31 $dynamic_shift | |
| 32 --verbose | |
| 33 | |
| 34 ]]></command> | |
| 35 <inputs> | |
| 36 <param format="tabular,xtc" name="input" type="data" label="Input data" help="Either a whitespace-separated tabular file or GROMACS XTC file."/> | |
| 37 <section name="inputs" title="Inputs" expanded="true" help="Use these (optional) inputs to project new data onto a previously computed principal space. If not set, the PCA will be computed from scratch and will not be comparable to previous runs." > | |
| 38 <param format="tabular" name="cov" type="data" label="Precomputed covariance/correlation matrix" optional="true"/> | |
| 39 <param format="tabular" name="vec" type="data" label="Precomputed eigenvectors" optional="true"/> | |
| 40 <param format="tabular" name="stats" type="data" label="Precomputed statistics (mean values, sigmas and boundary shifts)" optional="true"/> | |
| 41 </section> | |
| 42 | |
| 43 <param name="norm" type="select" label="How to normalize input:" help="Generally, normalization using the covariance matrix is appropriate when the variable scales are similar, and the correlation matrix is used when variables are on different scales." > | |
| 44 <option value="">Covariance</option> | |
| 45 <option value="-N">Correlation</option> | |
| 46 </param> | |
| 47 <param name="periodic" type="boolean" label="Compute covariance and PCA on a torus?" truevalue="-P" falsevalue="" value="false" help="Useful for computing PCA on periodic data - for example, dihedral angles."/> | |
| 48 <param name="dynamic_shift" type="boolean" label="Use dynamic shifting for periodic projection correction" truevalue="-D" falsevalue="" value="false" help="Default is fale, i.e. simply shift to region of lowest density"/> | |
| 49 </inputs> | |
| 50 <outputs> | |
| 51 <data name="output_proj" format="tabular"/> | |
| 52 <data name="output_cov" format="tabular"> | |
| 53 <filter>inputs["cov"] == None</filter> | |
| 54 </data> | |
| 55 <data name="output_vec" format="tabular"> | |
| 56 <filter>inputs["vec"] == None</filter> | |
| 57 </data> | |
| 58 <data name="output_stats" format="tabular"> | |
| 59 <filter>inputs["stats"] == None</filter> | |
| 60 </data> | |
| 61 <data name="output_val" format="tabular"/> | |
| 62 </outputs> | |
| 63 <tests> | |
| 64 <!-- fastpca -f contacts.dat -p proj.dat -c cov.dat -v vec.dat -s stats.dat -l val.dat -N --> | |
| 65 <test> | |
| 66 <param name="input" value="contacts.dat"/> | |
| 67 <param name="norm" value="-N"/> | |
| 68 <param name="periodic" value="false"/> | |
| 69 <param name="dynamic_shift" value="false"/> | |
| 70 <output name="output_proj" file="proj.dat"/> | |
| 71 <output name="output_cov" file="cov.dat"/> | |
| 72 <output name="output_vec" file="vec.dat"/> | |
| 73 <output name="output_stats" file="stats.dat"/> | |
| 74 <output name="output_val" file="val.dat"/> | |
| 75 </test> | |
| 76 <!-- fastpca -f contacts2.dat -p proj2.dat -C cov.dat -V vec.dat -S stats.dat -l val2.dat -N --> | |
| 77 <test> | |
| 78 <param name="input" value="contacts2.dat"/> | |
| 79 <param name="cov" value="cov.dat"/> | |
| 80 <param name="stats" value="stats.dat"/> | |
| 81 <param name="norm" value="-N"/> | |
| 82 <param name="periodic" value="false"/> | |
| 83 <param name="dynamic_shift" value="false"/> | |
| 84 <output name="output_proj" file="proj2.dat"/> | |
| 85 <output name="output_val" file="val2.dat"/> | |
| 86 </test> | |
| 87 </tests> | |
| 88 <help><![CDATA[ | |
| 89 .. class:: infomark | |
| 90 | |
| 91 **What it does** | |
| 92 | |
| 93 Dimensionality reduction of molecular dynamics trajectories. Data can be input as | |
| 94 tabular or GROMACS XTC files. In addition, data can be projected into a previously | |
| 95 computed coordinate space by providing precomputed eigenvectors, statistics and | |
| 96 a correlation/covariance matrix. | |
| 97 | |
| 98 Data can be normalized using the either the covariance or correlation matrix. Data | |
| 99 can also be calculated on a torus, which is useful for periodic data, such as protein | |
| 100 dihedral angles. | |
| 101 | |
| 102 _____ | |
| 103 | |
| 104 | |
| 105 .. class:: infomark | |
| 106 | |
| 107 **Input** | |
| 108 | |
| 109 - Tabular or XTC file | |
| 110 - If you want to project data into a previously calculated principal space, you can upload precomputed eigenvectors, statistics and correlation/covariance matrix. | |
| 111 | |
| 112 _____ | |
| 113 | |
| 114 | |
| 115 .. class:: infomark | |
| 116 | |
| 117 **Output** | |
| 118 | |
| 119 - Projected data (tabular file) with each column representing a principal component | |
| 120 - Eigenvectors, statistics and covariance/correlation matrix | |
| 121 | |
| 122 ]]></help> | |
| 123 <citations> | |
| 124 <citation type="doi">10.1063/1.4998259</citation> | |
| 125 </citations> | |
| 126 </tool> | |
| 127 |
