Mercurial > repos > bzonnedda > conifer2
comparison conifer.py @ 10:9dd5a52b4e53 draft
Uploaded
| author | bzonnedda |
|---|---|
| date | Mon, 20 Feb 2017 06:34:06 -0500 |
| parents | |
| children | 9196f299dc5e |
comparison
equal
deleted
inserted
replaced
| 9:599c23ab7615 | 10:9dd5a52b4e53 |
|---|---|
| 1 ####################################################################### | |
| 2 ####################################################################### | |
| 3 # CoNIFER: Copy Number Inference From Exome Reads | |
| 4 # Developed by Niklas Krumm (C) 2012 | |
| 5 # nkrumm@gmail.com | |
| 6 # | |
| 7 # homepage: http://conifer.sf.net | |
| 8 # This program is described in: | |
| 9 # Krumm et al. 2012. Genome Research. doi:10.1101/gr.138115.112 | |
| 10 # | |
| 11 # This file is part of CoNIFER. | |
| 12 # CoNIFER is free software: you can redistribute it and/or modify | |
| 13 # it under the terms of the GNU General Public License as published by | |
| 14 # the Free Software Foundation, either version 3 of the License, or | |
| 15 # (at your option) any later version. | |
| 16 # | |
| 17 # This program is distributed in the hope that it will be useful, | |
| 18 # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 19 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 20 # GNU General Public License for more details. | |
| 21 # | |
| 22 # You should have received a copy of the GNU General Public License | |
| 23 # along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 24 ####################################################################### | |
| 25 ####################################################################### | |
| 26 | |
| 27 import argparse | |
| 28 import os, sys, copy | |
| 29 import glob | |
| 30 import csv | |
| 31 import conifer_functions as cf | |
| 32 import operator | |
| 33 from tables import * | |
| 34 import numpy as np | |
| 35 | |
| 36 def CF_analyze(args): | |
| 37 # do path/file checks: | |
| 38 try: | |
| 39 # read probes table | |
| 40 probe_fn = str(args.probes[0]) | |
| 41 probes = cf.loadProbeList(probe_fn) | |
| 42 num_probes = len(probes) | |
| 43 print '[INIT] Successfully read in %d probes from %s' % (num_probes, probe_fn) | |
| 44 except IOError as e: | |
| 45 print '[ERROR] Cannot read probes file: ', probe_fn | |
| 46 sys.exit(0) | |
| 47 | |
| 48 try: | |
| 49 svd_outfile_fn = str(args.output) | |
| 50 h5file_out = openFile(svd_outfile_fn, mode='w') | |
| 51 probe_group = h5file_out.createGroup("/","probes","probes") | |
| 52 except IOError as e: | |
| 53 print '[ERROR] Cannot open SVD output file for writing: ', svd_outfile_fn | |
| 54 sys.exit(0) | |
| 55 | |
| 56 if args.write_svals != "": | |
| 57 sval_f = open(args.write_svals,'w') | |
| 58 | |
| 59 if args.plot_scree != "": | |
| 60 try: | |
| 61 import matplotlib | |
| 62 matplotlib.use('Agg') | |
| 63 import matplotlib.pyplot as plt | |
| 64 import pylab as P | |
| 65 from matplotlib.lines import Line2D | |
| 66 from matplotlib.patches import Rectangle | |
| 67 except: | |
| 68 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?" | |
| 69 sys.exit(0) | |
| 70 | |
| 71 plt.gcf().clear() | |
| 72 fig = plt.figure(figsize=(10,5)) | |
| 73 ax = fig.add_subplot(111) | |
| 74 | |
| 75 rpkm_dir = str(args.rpkm_dir[0]) | |
| 76 rpkm_files = glob.glob(rpkm_dir + "/*") | |
| 77 if len(rpkm_files) == 0: | |
| 78 print '[ERROR] Cannot find any files in RPKM directory (or directory path is incorrect): ', rpkm_dir | |
| 79 sys.exit(0) | |
| 80 elif len(rpkm_files) == 1: | |
| 81 print '[ERROR] Found only 1 RPKM file (sample). CoNIFER requires multiple samples (8 or more) to run. Exiting.' | |
| 82 sys.exit(0) | |
| 83 elif len(rpkm_files) < 8: | |
| 84 print '[WARNING] Only found %d samples... this is less than the recommended minimum, and CoNIFER may not analyze this dataset correctly!' % len(rpkm_files) | |
| 85 elif len(rpkm_files) <= int(args.svd): | |
| 86 print '[ERROR] The number of SVD values specified (%d) must be less than the number of samples (%d). Either add more samples to the analysis or reduce the --svd parameter! Exiting.' % (len(rpkm_files), int(args.svd)) | |
| 87 sys.exit(0) | |
| 88 else: | |
| 89 print '[INIT] Found %d RPKM files in %s' % (len(rpkm_files), rpkm_dir) | |
| 90 | |
| 91 # read in samples names and generate file list | |
| 92 samples = {} | |
| 93 for f in rpkm_files: | |
| 94 s = '.'.join(f.split('/')[-1].split('.')[0:-1]) | |
| 95 print "[INIT] Mapping file to sampleID: %s --> %s" % (f, s) | |
| 96 samples[s] = f | |
| 97 | |
| 98 #check uniqueness and total # of samples | |
| 99 if len(set(samples)) != len(set(rpkm_files)): | |
| 100 print '[ERROR] Could not successfully derive sample names from RPKM filenames. There are probably non-unique sample names! Please rename files using <sampleID>.txt format!' | |
| 101 sys.exit(0) | |
| 102 | |
| 103 # LOAD RPKM DATA | |
| 104 RPKM_data = np.zeros([num_probes,len(samples)], dtype=np.float) | |
| 105 failed_samples = 0 | |
| 106 | |
| 107 for i,s in enumerate(samples.keys()): | |
| 108 t = np.loadtxt(samples[s], dtype=np.float, delimiter="\t", skiprows=0, usecols=[2]) | |
| 109 if len(t) != num_probes: | |
| 110 print "[WARNING] Number of RPKM values for %s in file %s does not match number of defined probes in %s. **This sample will be dropped from analysis**!" % (s, samples[s], probe_fn) | |
| 111 _ = samples.pop(s) | |
| 112 failed_samples += 1 | |
| 113 else: | |
| 114 RPKM_data[:,i] = t | |
| 115 print "[INIT] Successfully read RPKM data for sampleID: %s" % s | |
| 116 | |
| 117 RPKM_data = RPKM_data[:,0:len(samples)] | |
| 118 print "[INIT] Finished reading RPKM files. Total number of samples in experiment: %d (%d failed to read properly)" % (len(samples), failed_samples) | |
| 119 | |
| 120 if len(samples) <= int(args.svd): | |
| 121 print '[ERROR] The number of SVD values specified (%d) must be less than the number of samples (%d). Either add more samples to the analysis or reduce the --svd parameter! Exiting.' % (int(args.svd), len(samples)) | |
| 122 sys.exit(0) | |
| 123 | |
| 124 # BEGIN | |
| 125 chrs_to_process = set(map(operator.itemgetter("chr"),probes)) | |
| 126 chrs_to_process_str = ', '.join([cf.chrInt2Str(c) for c in chrs_to_process]) | |
| 127 print '[INIT] Attempting to process chromosomes: ', chrs_to_process_str | |
| 128 | |
| 129 | |
| 130 | |
| 131 for chr in chrs_to_process: | |
| 132 print "[RUNNING: chr%d] Now on: %s" %(chr, cf.chrInt2Str(chr)) | |
| 133 chr_group_name = "chr%d" % chr | |
| 134 chr_group = h5file_out.createGroup("/",chr_group_name,chr_group_name) | |
| 135 | |
| 136 chr_probes = filter(lambda i: i["chr"] == chr, probes) | |
| 137 num_chr_probes = len(chr_probes) | |
| 138 start_probeID = chr_probes[0]['probeID'] | |
| 139 stop_probeID = chr_probes[-1]['probeID'] | |
| 140 print "[RUNNING: chr%d] Found %d probes; probeID range is [%d-%d]" % (chr, len(chr_probes), start_probeID-1, stop_probeID) # probeID is 1-based and slicing is 0-based, hence the start_probeID-1 term | |
| 141 | |
| 142 rpkm = RPKM_data[start_probeID:stop_probeID,:] | |
| 143 | |
| 144 print "[RUNNING: chr%d] Calculating median RPKM" % chr | |
| 145 median = np.median(rpkm,1) | |
| 146 sd = np.std(rpkm,1) | |
| 147 probe_mask = median >= float(args.min_rpkm) | |
| 148 print "[RUNNING: chr%d] Masking %d probes with median RPKM < %f" % (chr, np.sum(probe_mask==False), float(args.min_rpkm)) | |
| 149 | |
| 150 rpkm = rpkm[probe_mask, :] | |
| 151 num_chr_probes = np.sum(probe_mask) | |
| 152 | |
| 153 if num_chr_probes <= len(samples): | |
| 154 print "[ERROR] This chromosome has fewer informative probes than there are samples in the analysis! There are probably no mappings on this chromosome. Please remove these probes from the probes.txt file" | |
| 155 sys.exit(0) | |
| 156 | |
| 157 probeIDs = np.array(map(operator.itemgetter("probeID"),chr_probes))[probe_mask] | |
| 158 probe_starts = np.array(map(operator.itemgetter("start"),chr_probes))[probe_mask] | |
| 159 probe_stops = np.array(map(operator.itemgetter("stop"),chr_probes))[probe_mask] | |
| 160 gene_names = np.array(map(operator.itemgetter("name"),chr_probes))[probe_mask] | |
| 161 | |
| 162 dt = np.dtype([('probeID',np.uint32),('start',np.uint32),('stop',np.uint32), ('name', np.str_, 20)]) | |
| 163 | |
| 164 out_probes = np.empty(num_chr_probes,dtype=dt) | |
| 165 out_probes['probeID'] = probeIDs | |
| 166 out_probes['start'] = probe_starts | |
| 167 out_probes['stop'] = probe_stops | |
| 168 out_probes['name'] = gene_names | |
| 169 probe_table = h5file_out.createTable(probe_group,"probes_chr%d" % chr,cf.probe,"chr%d" % chr) | |
| 170 probe_table.append(out_probes) | |
| 171 | |
| 172 print "[RUNNING: chr%d] Calculating ZRPKM scores..." % chr | |
| 173 rpkm = np.apply_along_axis(cf.zrpkm, 0, rpkm, median[probe_mask], sd[probe_mask]) | |
| 174 | |
| 175 # svd transform | |
| 176 print "[RUNNING: chr%d] SVD decomposition..." % chr | |
| 177 components_removed = int(args.svd) | |
| 178 | |
| 179 U, S, Vt = np.linalg.svd(rpkm,full_matrices=False) | |
| 180 new_S = np.diag(np.hstack([np.zeros([components_removed]),S[components_removed:]])) | |
| 181 | |
| 182 if args.write_svals != "": | |
| 183 sval_f.write('chr' + str(chr) + '\t' + '\t'.join([str(_i) for _i in S]) + "\n") | |
| 184 | |
| 185 if args.plot_scree != "": | |
| 186 ax.plot(S, label='chr' + str(chr),lw=0.5) | |
| 187 | |
| 188 # reconstruct data matrix | |
| 189 rpkm = np.dot(U, np.dot(new_S, Vt)) | |
| 190 | |
| 191 | |
| 192 # save to HDF5 file | |
| 193 print "[RUNNING: chr%d] Saving SVD-ZRPKM values" % chr | |
| 194 | |
| 195 for i,s in enumerate(samples): | |
| 196 out_data = np.empty(num_chr_probes,dtype='u4,f8') | |
| 197 out_data['f0'] = probeIDs | |
| 198 out_data['f1'] = rpkm[:,i] | |
| 199 sample_tbl = h5file_out.createTable(chr_group,"sample_" + str(s),cf.rpkm_value,"%s" % str(s)) | |
| 200 sample_tbl.append(out_data) | |
| 201 | |
| 202 | |
| 203 print "[RUNNING] Saving sampleIDs to file..." | |
| 204 sample_group = h5file_out.createGroup("/","samples","samples") | |
| 205 sample_table = h5file_out.createTable(sample_group,"samples",cf.sample,"samples") | |
| 206 dt = np.dtype([('sampleID',np.str_,100)]) | |
| 207 out_samples = np.empty(len(samples.keys()),dtype=dt) | |
| 208 out_samples['sampleID'] = np.array(samples.keys()) | |
| 209 sample_table.append(out_samples) | |
| 210 | |
| 211 | |
| 212 if args.write_sd != "": | |
| 213 print "[RUNNING] Calculating standard deviations for all samples (this can take a while)..." | |
| 214 | |
| 215 sd_file = open(args.write_sd,'w') | |
| 216 | |
| 217 for i,s in enumerate(samples): | |
| 218 # collect all SVD-ZRPKM values | |
| 219 count = 1 | |
| 220 for chr in chrs_to_process: | |
| 221 if count == 1: | |
| 222 sd_out = h5file_out.root._f_getChild("chr%d" % chr)._f_getChild("sample_%s" % s).read(field="rpkm").flatten() | |
| 223 else: | |
| 224 sd_out = np.hstack([sd_out,out.h5file_out.root._f_getChild("chr%d" % chr)._f_getChild("sample_%s" % s).read(field="rpkm").flatten()]) | |
| 225 | |
| 226 sd = np.std(sd_out) | |
| 227 sd_file.write("%s\t%f\n" % (s,sd)) | |
| 228 | |
| 229 sd_file.close() | |
| 230 | |
| 231 if args.plot_scree != "": | |
| 232 plt.title("Scree plot") | |
| 233 if len(samples) < 50: | |
| 234 plt.xlim([0,len(samples)]) | |
| 235 plt.xlabel("S values") | |
| 236 else: | |
| 237 plt.xlim([0,50]) | |
| 238 plt.xlabel("S values (only first 50 plotted)") | |
| 239 plt.ylabel("Relative contributed variance") | |
| 240 plt.savefig(args.plot_scree) | |
| 241 | |
| 242 print "[FINISHED]" | |
| 243 h5file_out.close() | |
| 244 sys.exit(0) | |
| 245 | |
| 246 def CF_export(args): | |
| 247 try: | |
| 248 h5file_in_fn = str(args.input) | |
| 249 h5file_in = openFile(h5file_in_fn, mode='r') | |
| 250 except IOError as e: | |
| 251 print '[ERROR] Cannot open CoNIFER input file for reading: ', h5file_in_fn | |
| 252 sys.exit(0) | |
| 253 | |
| 254 # read probes | |
| 255 probes = {} | |
| 256 for probes_chr in h5file_in.root.probes: | |
| 257 probes[probes_chr.title] = probes_chr.read() | |
| 258 | |
| 259 if args.sample =='all': | |
| 260 all_samples = list(h5file_in.root.samples.samples.read(field="sampleID")) | |
| 261 | |
| 262 out_path = os.path.abspath(args.output) | |
| 263 | |
| 264 print "[INIT] Preparing to export all samples (%d samples) to %s" % (len(all_samples), out_path) | |
| 265 for sample in all_samples: | |
| 266 try: | |
| 267 outfile_fn = out_path + "/" + sample + ".bed" | |
| 268 outfile_f = open(outfile_fn,'w') | |
| 269 except IOError as e: | |
| 270 print '[ERROR] Cannot open output file for writing: ', outfile_fn | |
| 271 sys.exit(0) | |
| 272 print "[RUNNING] Exporting %s" % sample | |
| 273 | |
| 274 cf.export_sample(h5file_in,sample,probes,outfile_f) | |
| 275 outfile_f.close() | |
| 276 | |
| 277 elif len(args.sample) == 1: | |
| 278 out_path = os.path.abspath(args.output) | |
| 279 sample = args.sample[0] | |
| 280 print "[INIT] Preparing to export sampleID %s to %s" % (args.sample[0], out_path) | |
| 281 try: | |
| 282 if os.path.isdir(out_path): | |
| 283 outfile_fn = out_path + "/" + sample + ".bed" | |
| 284 else: | |
| 285 outfile_fn = out_path | |
| 286 outfile_f = open(outfile_fn,'w') | |
| 287 except IOError as e: | |
| 288 print '[ERROR] Cannot open output file for writing: ', outfile_fn | |
| 289 sys.exit(0) | |
| 290 print "[RUNNING] Exporting %s to %s" % (sample, outfile_fn) | |
| 291 | |
| 292 cf.export_sample(h5file_in,sample,probes,outfile_f) | |
| 293 outfile_f.close() | |
| 294 | |
| 295 else: | |
| 296 out_path = os.path.abspath(args.output) | |
| 297 print "[INIT] Preparing to export %d samples to %s" % (len(args.sample), out_path) | |
| 298 for sample in args.sample: | |
| 299 try: | |
| 300 if os.path.isdir(out_path): | |
| 301 outfile_fn = out_path + "/" + sample + ".bed" | |
| 302 else: | |
| 303 outfile_fn = out_path | |
| 304 outfile_f = open(outfile_fn,'w') | |
| 305 except IOError as e: | |
| 306 print '[ERROR] Cannot open output file for writing: ', outfile_fn | |
| 307 sys.exit(0) | |
| 308 print "[RUNNING] Exporting %s to %s" % (sample, outfile_fn) | |
| 309 | |
| 310 cf.export_sample(h5file_in,sample,probes,outfile_f) | |
| 311 outfile_f.close() | |
| 312 sys.exit(0) | |
| 313 | |
| 314 def CF_call(args): | |
| 315 try: | |
| 316 h5file_in_fn = str(args.input) | |
| 317 h5file_in = openFile(h5file_in_fn, mode='r') | |
| 318 except IOError as e: | |
| 319 print '[ERROR] Cannot open CoNIFER input file for reading: ', h5file_in_fn | |
| 320 sys.exit(0) | |
| 321 | |
| 322 try: | |
| 323 callfile_fn = str(args.output) | |
| 324 callfile_f = open(callfile_fn, mode='w') | |
| 325 except IOError as e: | |
| 326 print '[ERROR] Cannot open output file for writing: ', callfile_fn | |
| 327 sys.exit(0) | |
| 328 | |
| 329 chrs_to_process = [] | |
| 330 for chr in h5file_in.root: | |
| 331 if chr._v_title not in ('probes','samples'): | |
| 332 chrs_to_process.append(chr._v_title.replace("chr","")) | |
| 333 | |
| 334 h5file_in.close() | |
| 335 | |
| 336 print '[INIT] Initializing caller at threshold = %f' % (args.threshold) | |
| 337 | |
| 338 r = cf.rpkm_reader(h5file_in_fn) | |
| 339 | |
| 340 all_calls = [] | |
| 341 | |
| 342 for chr in chrs_to_process: | |
| 343 print '[RUNNING] Now processing chr%s' % chr | |
| 344 data = r.getExonValuesByRegion(chr) | |
| 345 | |
| 346 #raw_data = copy.copy(data) | |
| 347 _ = data.smooth() | |
| 348 | |
| 349 mean= np.mean(data.rpkm,axis=1) | |
| 350 sd = np.std(data.rpkm,axis=1) | |
| 351 | |
| 352 for sample in r.getSampleList(): | |
| 353 sample_data = data.getSample([sample]).flatten() | |
| 354 #sample_raw_data = raw_data.getSample([sample]).flatten() | |
| 355 | |
| 356 dup_mask = sample_data >= args.threshold | |
| 357 del_mask = sample_data <= -1*args.threshold | |
| 358 | |
| 359 dup_bkpoints = cf.getbkpoints(dup_mask) #returns exon coordinates for this chromosome (numpy array coords) | |
| 360 del_bkpoints = cf.getbkpoints(del_mask) | |
| 361 | |
| 362 | |
| 363 dups = [] | |
| 364 for start,stop in dup_bkpoints: | |
| 365 try: new_start = np.max(np.where(sample_data[:start] < (mean[:start] + 3*sd[:start]))) | |
| 366 except ValueError: new_start = 0 | |
| 367 try: new_stop = stop + np.min(np.where(sample_data[stop:] < (mean[stop:] + 3*sd[stop:]))) | |
| 368 except ValueError: new_stop = data.shape[1]-1 | |
| 369 dups.append({"sampleID":sample,"chromosome": cf.chrInt2Str(chr), "start":data.exons[new_start]["start"], "stop": data.exons[new_stop]["stop"], "state": "dup"}) | |
| 370 | |
| 371 dels = [] | |
| 372 for start,stop in del_bkpoints: | |
| 373 try: new_start = np.max(np.where(sample_data[:start] > (-1*mean[:start] - 3*sd[:start]))) | |
| 374 except ValueError: new_start = 0 | |
| 375 try: new_stop = stop + np.min(np.where(sample_data[stop:] > (-1*mean[stop:] - 3*sd[stop:]))) | |
| 376 except ValueError: new_stop = data.shape[1]-1 | |
| 377 dels.append({"sampleID":sample,"chromosome": cf.chrInt2Str(chr), "start":data.exons[new_start]["start"], "stop": data.exons[new_stop]["stop"], "state": "del"}) | |
| 378 | |
| 379 dels = cf.mergeCalls(dels) #merges overlapping calls | |
| 380 dups = cf.mergeCalls(dups) | |
| 381 | |
| 382 #print sampleID, len(dels), len(dups) | |
| 383 | |
| 384 all_calls.extend(list(dels)) | |
| 385 all_calls.extend(list(dups)) | |
| 386 | |
| 387 # print calls to file | |
| 388 header = ['sampleID','chromosome','start','stop','state'] | |
| 389 | |
| 390 callfile_f.write('\t'.join(header) + "\n") | |
| 391 for call in all_calls: | |
| 392 print "%s\t%s\t%d\t%d\t%s" % (call["sampleID"], call["chromosome"], call["start"], call["stop"], call["state"]) | |
| 393 callfile_f.write("%s\t%s\t%d\t%d\t%s\n" % (call["sampleID"], call["chromosome"], call["start"], call["stop"], call["state"])) | |
| 394 | |
| 395 sys.exit(0) | |
| 396 | |
| 397 def CF_plot(args): | |
| 398 try: | |
| 399 import locale | |
| 400 import matplotlib | |
| 401 matplotlib.use('Agg') | |
| 402 import matplotlib.pyplot as plt | |
| 403 import pylab as P | |
| 404 from matplotlib.lines import Line2D | |
| 405 from matplotlib.patches import Rectangle | |
| 406 _ = locale.setlocale(locale.LC_ALL, '') | |
| 407 except: | |
| 408 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?" | |
| 409 sys.exit(0) | |
| 410 | |
| 411 | |
| 412 chr, start, stop = cf.parseLocString(args.region) | |
| 413 | |
| 414 r = cf.rpkm_reader(args.input) | |
| 415 | |
| 416 data = r.getExonValuesByRegion(chr,start,stop) | |
| 417 _ = data.smooth() | |
| 418 | |
| 419 plt.gcf().clear() | |
| 420 fig = plt.figure(figsize=(10,5)) | |
| 421 ax = fig.add_subplot(111) | |
| 422 | |
| 423 | |
| 424 ax.plot(data.rpkm, linewidth = 0.3, c='k') | |
| 425 | |
| 426 | |
| 427 if args.sample != 'none': | |
| 428 cnt = 1 | |
| 429 coloriter = iter(['r','b','g','y']) | |
| 430 for sample in args.sample: | |
| 431 try: | |
| 432 color, sampleID = sample.split(":") | |
| 433 except: | |
| 434 color =coloriter.next() | |
| 435 sampleID = sample | |
| 436 | |
| 437 ax.plot(data.getSample([sampleID]), linewidth = 1, c=color, label = sampleID) | |
| 438 | |
| 439 if cnt == 1: | |
| 440 cf.plotRawData(ax, r.getExonValuesByRegion(chr,start,stop,sampleList=[sampleID]).getSample([sampleID]),color=color) | |
| 441 cnt +=1 | |
| 442 plt.legend(prop={'size':10},frameon=False) | |
| 443 | |
| 444 cf.plotGenes(ax, data) | |
| 445 cf.plotGenomicCoords(plt,data) | |
| 446 plt.xlim(0,data.shape[1]) | |
| 447 plt.ylim(-3,3) | |
| 448 | |
| 449 plt.title("%s: %s - %s" % (cf.chrInt2Str(chr),locale.format("%d",start, grouping=True),locale.format("%d",stop, grouping=True))) | |
| 450 plt.xlabel("Position") | |
| 451 plt.ylabel("SVD-ZRPKM Values") | |
| 452 | |
| 453 plt.savefig(args.output) | |
| 454 | |
| 455 sys.exit(0) | |
| 456 | |
| 457 def CF_plotcalls(args): | |
| 458 try: | |
| 459 import matplotlib | |
| 460 matplotlib.use('Agg') | |
| 461 import matplotlib.pyplot as plt | |
| 462 import pylab as P | |
| 463 from matplotlib.lines import Line2D | |
| 464 from matplotlib.patches import Rectangle | |
| 465 except: | |
| 466 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?" | |
| 467 sys.exit(0) | |
| 468 | |
| 469 import locale | |
| 470 try: | |
| 471 _ = locale.setlocale(locale.LC_ALL, 'en_US') | |
| 472 except: | |
| 473 _ = locale.setlocale(locale.LC_ALL, '') | |
| 474 | |
| 475 try: | |
| 476 callfile_fn = str(args.calls) | |
| 477 callfile_f = open(callfile_fn, mode='r') | |
| 478 except IOError as e: | |
| 479 print '[ERROR] Cannot open call file for reading: ', callfile_fn | |
| 480 sys.exit(0) | |
| 481 | |
| 482 all_calls = [] | |
| 483 header = callfile_f.readline() | |
| 484 | |
| 485 for line in callfile_f: | |
| 486 sampleID, chr, start, stop, state = line.strip().split() | |
| 487 chr = cf.chrStr2Int(chr) | |
| 488 all_calls.append({"chromosome":int(chr), "start":int(start), "stop":int(stop), "sampleID":sampleID}) | |
| 489 | |
| 490 r = cf.rpkm_reader(args.input) | |
| 491 | |
| 492 for call in all_calls: | |
| 493 chr = call["chromosome"] | |
| 494 start = call["start"] | |
| 495 stop = call["stop"] | |
| 496 sampleID = call["sampleID"] | |
| 497 | |
| 498 exons = r.getExonIDs(chr,int(start),int(stop)) | |
| 499 | |
| 500 | |
| 501 window_start = max(exons[0]-args.window,0) | |
| 502 window_stop = exons[-1]+args.window | |
| 503 | |
| 504 data = r.getExonValuesByExons(chr,window_start, window_stop) | |
| 505 _ = data.smooth() | |
| 506 | |
| 507 plt.gcf().clear() | |
| 508 fig = plt.figure(figsize=(10,5)) | |
| 509 ax = fig.add_subplot(111) | |
| 510 | |
| 511 | |
| 512 ax.plot(data.rpkm, linewidth = 0.3, c='k') | |
| 513 | |
| 514 | |
| 515 ax.plot(data.getSample([sampleID]), linewidth = 1, c='r', label = sampleID) | |
| 516 cf.plotRawData(ax, r.getExonValuesByExons(chr,window_start, window_stop,sampleList=[sampleID]).getSample([sampleID]),color='r') | |
| 517 | |
| 518 plt.legend(prop={'size':10},frameon=False) | |
| 519 | |
| 520 cf.plotGenes(ax, data) | |
| 521 cf.plotGenomicCoords(plt,data) | |
| 522 | |
| 523 exon_start = np.where(data.exons["start"] == start)[0][0] | |
| 524 exon_stop = np.where(data.exons["stop"] == stop)[0][0] | |
| 525 _ = ax.add_line(matplotlib.lines.Line2D([exon_start,exon_stop],[2,2],color='k',lw=6,linestyle='-',alpha=1,solid_capstyle='butt')) | |
| 526 | |
| 527 _ = plt.xlim(0,data.shape[1]) | |
| 528 _ = plt.ylim(-3,3) | |
| 529 | |
| 530 plt.title("%s: %s - %s" % (cf.chrInt2Str(chr),locale.format("%d",start, grouping=True),locale.format("%d",stop, grouping=True))) | |
| 531 plt.xlabel("Position") | |
| 532 plt.ylabel("SVD-ZRPKM Values") | |
| 533 outfile = "%s_%d_%d_%s.png" % (cf.chrInt2Str(chr), start, stop, sampleID) | |
| 534 plt.savefig(args.outputdir + "/" + outfile) | |
| 535 | |
| 536 def CF_bam2RPKM(args): | |
| 537 try: | |
| 538 import pysam | |
| 539 except: | |
| 540 print '[ERROR] Cannot load pysam module! Make sure it is insalled' | |
| 541 sys.exit(0) | |
| 542 try: | |
| 543 # read probes table | |
| 544 probe_fn = str(args.probes[0]) | |
| 545 probes = cf.loadProbeList(probe_fn) | |
| 546 num_probes = len(probes) | |
| 547 print '[INIT] Successfully read in %d probes from %s' % (num_probes, probe_fn) | |
| 548 except IOError as e: | |
| 549 print '[ERROR] Cannot read probes file: ', probe_fn | |
| 550 sys.exit(0) | |
| 551 | |
| 552 try: | |
| 553 rpkm_f = open(args.output[0],'w') | |
| 554 except IOError as e: | |
| 555 print '[ERROR] Cannot open rpkm file for writing: ', args.output | |
| 556 sys.exit(0) | |
| 557 | |
| 558 print "[RUNNING] Counting total number of reads in bam file..." | |
| 559 total_reads = float(pysam.view("-c", args.input[0])[0].strip("\n")) | |
| 560 print "[RUNNING] Found %d reads" % total_reads | |
| 561 | |
| 562 f = pysam.Samfile(args.input[0], "rb" ) | |
| 563 | |
| 564 if not f._hasIndex(): | |
| 565 print "[ERROR] No index found for bam file (%s)!\n[ERROR] You must first index the bam file and include the .bai file in the same directory as the bam file!" % args.input[0] | |
| 566 sys.exit(0) | |
| 567 | |
| 568 # will be storing values in these arrays | |
| 569 readcount = np.zeros(num_probes) | |
| 570 exon_bp = np.zeros(num_probes) | |
| 571 probeIDs = np.zeros(num_probes) | |
| 572 counter = 0 | |
| 573 | |
| 574 # detect contig naming scheme here # TODO, add an optional "contigs.txt" file or automatically handle contig naming | |
| 575 bam_contigs = f.references | |
| 576 probes_contigs = [str(p) for p in set(map(operator.itemgetter("chr"),probes))] | |
| 577 | |
| 578 probes2contigmap = {} | |
| 579 | |
| 580 for probes_contig in probes_contigs: | |
| 581 if probes_contig in bam_contigs: | |
| 582 probes2contigmap[probes_contig] = probes_contig | |
| 583 elif cf.chrInt2Str(probes_contig) in bam_contigs: | |
| 584 probes2contigmap[probes_contig] = cf.chrInt2Str(probes_contig) | |
| 585 elif cf.chrInt2Str(probes_contig).replace("chr","") in bam_contigs: | |
| 586 probes2contigmap[probes_contig] = cf.chrInt2Str(probes_contig).replace("chr","") | |
| 587 else: | |
| 588 print "[ERROR] Could not find contig '%s' from %s in bam file! \n[ERROR] Perhaps the contig names for the probes are incompatible with the bam file ('chr1' vs. '1'), or unsupported contig naming is used?" % (probes_contig, probe_fn) | |
| 589 sys.exit(0) | |
| 590 | |
| 591 print "[RUNNING] Calculating RPKM values..." | |
| 592 | |
| 593 # loop through each probe | |
| 594 for p in probes: | |
| 595 | |
| 596 # f.fetch is a pysam method and returns an iterator for reads overlapping interval | |
| 597 | |
| 598 p_chr = probes2contigmap[str(p["chr"])] | |
| 599 | |
| 600 p_start = p["start"] | |
| 601 p_stop = p["stop"] | |
| 602 try: | |
| 603 iter = f.fetch(p_chr,p_start,p_stop) | |
| 604 except: | |
| 605 print "[ERROR] Could not retrieve mappings for region %s:%d-%d. Check that contigs are named correctly and the bam file is properly indexed" % (p_chr,p_start,p_stop) | |
| 606 sys.exit(0) | |
| 607 | |
| 608 for i in iter: | |
| 609 if i.pos+1 >= p_start: #this checks to make sure a read actually starts in an interval | |
| 610 readcount[counter] += 1 | |
| 611 | |
| 612 exon_bp[counter] = p_stop-p_start | |
| 613 probeIDs[counter] = counter +1 #probeIDs are 1-based | |
| 614 counter +=1 | |
| 615 | |
| 616 #calcualte RPKM values for all probes | |
| 617 rpkm = (10**9*(readcount)/(exon_bp))/(total_reads) | |
| 618 | |
| 619 out = np.vstack([probeIDs,readcount,rpkm]) | |
| 620 | |
| 621 np.savetxt(rpkm_f,out.transpose(),delimiter='\t',fmt=['%d','%d','%f']) | |
| 622 | |
| 623 rpkm_f.close() | |
| 624 | |
| 625 | |
| 626 | |
| 627 VERSION = "0.2.2" | |
| 628 parser = argparse.ArgumentParser(prog="CoNIFER", description="This is CoNIFER %s (Copy Number Inference From Exome Reads), designed to detect and genotype CNVs and CNPs from exome sequence read-depth data. See Krumm et al., Genome Research (2012) doi:10.1101/gr.138115.112 \nNiklas Krumm, 2012\n nkrumm@uw.edu" % VERSION) | |
| 629 parser.add_argument('--version', action='version', version='%(prog)s ' + VERSION) | |
| 630 subparsers = parser.add_subparsers(help='Command to be run.') | |
| 631 | |
| 632 # rpkm command | |
| 633 rpkm_parser= subparsers.add_parser('rpkm', help='Create an RPKM file from a BAM file') | |
| 634 rpkm_parser.add_argument('--probes',action='store', required=True, metavar='/path/to/probes_file.txt', nargs=1,help="Probe definition file") | |
| 635 rpkm_parser.add_argument('--input',action='store', required=True, metavar='sample.bam',nargs=1, help="Aligned BAM file") | |
| 636 rpkm_parser.add_argument('--output',action='store', required=True, metavar='sample.rpkm.txt',nargs=1, help="RPKM file to write") | |
| 637 rpkm_parser.set_defaults(func=CF_bam2RPKM) | |
| 638 | |
| 639 # analyze command | |
| 640 analyze_parser= subparsers.add_parser('analyze', help='Basic CoNIFER analysis. Reads a directory of RPKM files and a probe list and outputs a HDF5 file containing SVD-ZRPKM values.') | |
| 641 analyze_parser.add_argument('--probes',action='store', required=True, metavar='/path/to/probes_file.txt', nargs=1,help="Probe definition file") | |
| 642 analyze_parser.add_argument('--rpkm_dir',action='store', required=True, metavar='/path/to/folder/containing/rpkm_files/',nargs=1, help="Location of folder containing RPKM files. Folder should contain ONLY contain RPKM files, and all readable RPKM files will used in analysis.") | |
| 643 analyze_parser.add_argument('--output','-o', required=True, metavar='/path/to/output_file.hdf5', type=str, help="Output location of HDF5 file to contain SVD-ZRPKM values") | |
| 644 analyze_parser.add_argument('--svd', metavar='12', type=int, nargs='?', default = 12,help="Number of components to remove") | |
| 645 analyze_parser.add_argument('--min_rpkm', metavar='1.00', type=float, nargs="?", default = 1.00,help="Minimum population median RPKM per probe.") | |
| 646 analyze_parser.add_argument('--write_svals', metavar='SingularValues.txt', type=str, default= "", help="Optional file to write singular values (S-values). Used for Scree Plot.") | |
| 647 analyze_parser.add_argument('--plot_scree', metavar='ScreePlot.png', type=str, default= "", help="Optional graphical scree plot. Requires matplotlib.") | |
| 648 analyze_parser.add_argument('--write_sd', metavar='StandardDeviations.txt', type=str, default= "", help="Optional file with sample SVD-ZRPKM standard deviations. Used to filter noisy samples.") | |
| 649 analyze_parser.set_defaults(func=CF_analyze) | |
| 650 | |
| 651 # export command | |
| 652 export_parser= subparsers.add_parser('export', help='Export SVD-ZRPKM values from a HDF5 file to bed or vcf format.') | |
| 653 export_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step") | |
| 654 export_parser.add_argument('--output','-o',action='store', required=False, default='.', metavar='output.bed',help="Location of output file[s]. When exporting multiple samples, top-level directory of this path will be used.") | |
| 655 export_parser.add_argument('--sample','-s',action='store', required=False, metavar='sampleID', default='all', nargs="+",help="SampleID or comma-separated list of sampleIDs to export. Default: export all samples") | |
| 656 export_parser.set_defaults(func=CF_export) | |
| 657 | |
| 658 # plot command | |
| 659 plot_parser= subparsers.add_parser('plot', help='Plot SVD-ZRPKM values using matplotlib') | |
| 660 plot_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step") | |
| 661 plot_parser.add_argument('--region',action='store', required=True, metavar='chr#:start-stop',help="Region to plot") | |
| 662 plot_parser.add_argument('--output',action='store', required=True, metavar='image.png',help="Output path and filetype. PDF, PNG, PS, EPS, and SVG are supported.") | |
| 663 plot_parser.add_argument('--sample',action='store', required=False, metavar='sampleID',nargs="+",default='none',help="Sample[s] to highlight. The following optional color spec can be used: <color>:<sampleID>. Available colors are r,b,g,y,c,m,y,k. The unsmoothed SVD-ZRPKM values for the first sample in this list will be drawn. Default: No samples highlighted.") | |
| 664 plot_parser.set_defaults(func=CF_plot) | |
| 665 | |
| 666 # make calls command | |
| 667 call_parser= subparsers.add_parser('call', help='Very rudimentary caller for CNVs using SVD-ZRPKM thresholding.') | |
| 668 call_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step") | |
| 669 call_parser.add_argument('--output',action='store', required=True, metavar='calls.txt',help="Output file for calls") | |
| 670 call_parser.add_argument('--threshold', metavar='1.50', type=float, nargs='?', required=False, default = 1.50,help="+/- Threshold for calling (minimum SVD-ZRPKM)") | |
| 671 call_parser.set_defaults(func=CF_call) | |
| 672 | |
| 673 # plotcalls command | |
| 674 plotcalls_parser= subparsers.add_parser('plotcalls', help='Make basic plots from call file from "call" command.') | |
| 675 plotcalls_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step") | |
| 676 plotcalls_parser.add_argument('--calls',action='store', required=True, metavar='calls.txt',help="File with calls from 'call' command.") | |
| 677 plotcalls_parser.add_argument('--outputdir',action='store', required=True, metavar='/path/to/directory',help="Output directory for plots") | |
| 678 plotcalls_parser.add_argument('--window',action='store', required=False, metavar='50',default=50,help="In exons, the amount of padding to plot around each call") | |
| 679 plotcalls_parser.set_defaults(func=CF_plotcalls) | |
| 680 | |
| 681 args = parser.parse_args() | |
| 682 args.func(args) |
