Mercurial > repos > bgruening > xchem_transfs_scoring
diff server/transfs.xml @ 0:69fe50d03b80 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/transfs commit d9a9e2f0e12fe9d2c37f632d99f2164df577b4af"
author | bgruening |
---|---|
date | Fri, 27 Mar 2020 13:11:29 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/server/transfs.xml Fri Mar 27 13:11:29 2020 +0000 @@ -0,0 +1,108 @@ +<tool id="xchem_transfs_scoring" name="XChem TransFS pose scoring" version="0.2.0"> + <description>using deep learning</description> + + <requirements> + <!--requirement type="package" version="3.0.0">openbabel</requirement--> + <!--requirement type="package" version="3.7">python</requirement--> + <!-- many other requirements are needed --> + <container type="docker">informaticsmatters/deep-app-ubuntu-1604:latest</container> + </requirements> + <command detect_errors="exit_code"><![CDATA[ + + cd /train/fragalysis_test_files/ && + mkdir workdir && + cd workdir && + + cp '$ligands' ligands.sdf && + cp '$receptor' receptor.pdb && + + ##mkdir -p /root/train/ && + ##ln -s /train/fragalysis_test_files/ /root/train/ && + + ##adduser centos --uid 1000 --quiet --no-create-home --system && + ##apt install sudo -y && + + ## mkdir -p ligands && + cd ../ && + python '$__tool_directory__/transfs.py' -i ./workdir/ligands.sdf -r ./workdir/receptor.pdb -d $distance -w /train/fragalysis_test_files/workdir && + ls -l && + ls -l workdir && + sudo -u ubuntu cp ./workdir/output.sdf '$output' && + head -n 10000 ./workdir/output.sdf && + + mkdir -p ./pdb && + cp -r ./workdir/receptor*.pdb ./pdb && + tar -cvhf archiv.tar ./pdb && + sudo -u ubuntu cp archiv.tar '$output_receptors' && + + sudo -u ubuntu cp ./workdir/predictions.txt '$predictions' + + + ]]></command> + + <inputs> + <param type="data" name="receptor" format="pdb" label="Receptor" help="Select a receptor (pdb format)."/> + <param type="data" name="ligands" format="sdf,mol" label="Ligands" help="Ligands (docked poses) in SDF format)"/> + <param name="distance" type="float" value="2.0" min="1.0" max="5.0" label="Distance to waters" help="Remove waters closer than this distance to any ligand heavy atom"/> + <param type="hidden" name="mock" value="" label="Mock calculations" help="Use random numbers instead of running on GPU"/> + </inputs> + <outputs> + <data name="output" format="sdf" label="XChem pose scoring on ${on_string}"/> + <data name="predictions" format="txt" label="Predictions on ${on_string}"/> + <data name="output_receptors" format="tar" label="Receptors ${on_string}"/> + + <!--collection name="pdb_files" type="list" label="PDB files with variable number of waters"> + <discover_datasets pattern="__name_and_ext__" directory="pdb" /> + </collection--> + </outputs> + + <tests> + <test> + <param name="receptor" value="receptor.pdb"/> + <param name="ligands" value="ligands.sdf"/> + <!--param name="mock" value="- -mock"/--> + <param name="distance" value="4.0"/> + <output name="output" ftype="sdf"> + <assert_contents> + <has_text text="TransFSReceptor"/> + <has_text text="TransFSScore"/> + </assert_contents> + </output> + <!--output_collection name="pdb_files" type="list" count="2" /--> + </test> + </tests> + <help><![CDATA[ + +.. class:: infomark + +This tool performs scoring of docked ligand poses using deep learning. +It uses the gnina and libmolgrid toolkits to perform the scoring to generate +a prediction for how good the pose is. + + +----- + +.. class:: infomark + +**Inputs** + +1. The protein receptor to dock into as a file in PDB format. This should have the ligand removed but retain the waters. +2. A set of ligand poses to score in SDF format. + +----- + +.. class:: infomark + +**Outputs** + +An SDF file is produced as output. The binding affinity scores are contained within the SDF file +as the TransFSScore property and the PDB file (with the waters that clash with the ligand removed) +that was used for the scoring as the TransFSReceptor property. +Values for the score range from 0 (poor binding) to 1 (good binding). + +A set of PDB files is also output, each one with different crystallographic waters removed. Each ligand is +examined against input PDB structure and the with waters that clash (any heavy atom of the ligand closer than +the 'distance' parameter being removed. The filenames are encoded with the water numbers that are removed. + + ]]></help> +</tool>