Mercurial > repos > bgruening > xchem_transfs_scoring
comparison transfs.xml @ 0:69fe50d03b80 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/transfs commit d9a9e2f0e12fe9d2c37f632d99f2164df577b4af"
author | bgruening |
---|---|
date | Fri, 27 Mar 2020 13:11:29 +0000 |
parents | |
children | 189f598faea1 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:69fe50d03b80 |
---|---|
1 <tool id="xchem_transfs_scoring" name="XChem TransFS pose scoring" version="0.2.0"> | |
2 <description>using deep learning</description> | |
3 | |
4 <requirements> | |
5 <!--requirement type="package" version="3.0.0">openbabel</requirement--> | |
6 <!--requirement type="package" version="3.7">python</requirement--> | |
7 <!-- many other requirements are needed --> | |
8 <container type="docker">informaticsmatters/deep-app-ubuntu-1604:0.9</container> | |
9 </requirements> | |
10 <command detect_errors="exit_code"><![CDATA[ | |
11 | |
12 cd /train/fragalysis_test_files/ && | |
13 mkdir workdir && | |
14 cd workdir && | |
15 | |
16 cp '$ligands' ligands.sdf && | |
17 cp '$receptor' receptor.pdb && | |
18 | |
19 ##mkdir -p /root/train/ && | |
20 ##ln -s /train/fragalysis_test_files/ /root/train/ && | |
21 | |
22 ##adduser centos --uid 1000 --quiet --no-create-home --system && | |
23 ##apt install sudo -y && | |
24 | |
25 ## mkdir -p ligands && | |
26 cd ../ && | |
27 python '$__tool_directory__/transfs.py' -i ./workdir/ligands.sdf -r ./workdir/receptor.pdb -d $distance -w /train/fragalysis_test_files/workdir && | |
28 ls -l && | |
29 ls -l workdir && | |
30 sudo -u ubuntu cp ./workdir/output.sdf '$output' && | |
31 head -n 10000 ./workdir/output.sdf && | |
32 | |
33 mkdir -p ./pdb && | |
34 cp -r ./workdir/receptor*.pdb ./pdb && | |
35 tar -cvhf archiv.tar ./pdb && | |
36 sudo -u ubuntu cp archiv.tar '$output_receptors' && | |
37 | |
38 sudo -u ubuntu cp ./workdir/predictions.txt '$predictions' | |
39 | |
40 | |
41 ]]></command> | |
42 | |
43 <inputs> | |
44 <param type="data" name="receptor" format="pdb" label="Receptor" help="Select a receptor (pdb format)."/> | |
45 <param type="data" name="ligands" format="sdf,mol" label="Ligands" help="Ligands (docked poses) in SDF format)"/> | |
46 <param name="distance" type="float" value="2.0" min="1.0" max="5.0" label="Distance to waters" help="Remove waters closer than this distance to any ligand heavy atom"/> | |
47 <param type="hidden" name="mock" value="" label="Mock calculations" help="Use random numbers instead of running on GPU"/> | |
48 </inputs> | |
49 <outputs> | |
50 <data name="output" format="sdf" label="XChem pose scoring on ${on_string}"/> | |
51 <data name="predictions" format="txt" label="Predictions on ${on_string}"/> | |
52 <data name="output_receptors" format="tar" label="Receptors ${on_string}"/> | |
53 | |
54 <!--collection name="pdb_files" type="list" label="PDB files with variable number of waters"> | |
55 <discover_datasets pattern="__name_and_ext__" directory="pdb" /> | |
56 </collection--> | |
57 </outputs> | |
58 | |
59 <tests> | |
60 <test> | |
61 <param name="receptor" value="receptor.pdb"/> | |
62 <param name="ligands" value="ligands.sdf"/> | |
63 <param name="mock" value="--mock" /> | |
64 <param name="distance" value="4.0"/> | |
65 <output name="output" ftype="sdf"> | |
66 <assert_contents> | |
67 <has_text text="TransFSReceptor"/> | |
68 <has_text text="TransFSScore"/> | |
69 </assert_contents> | |
70 </output> | |
71 <!--output_collection name="pdb_files" type="list" count="2" /--> | |
72 </test> | |
73 </tests> | |
74 <help><![CDATA[ | |
75 | |
76 .. class:: infomark | |
77 | |
78 This tool performs scoring of docked ligand poses using deep learning. | |
79 It uses the gnina and libmolgrid toolkits to perform the scoring to generate | |
80 a prediction for how good the pose is. | |
81 | |
82 | |
83 ----- | |
84 | |
85 .. class:: infomark | |
86 | |
87 **Inputs** | |
88 | |
89 1. The protein receptor to dock into as a file in PDB format. This should have the ligand removed but retain the waters. | |
90 2. A set of ligand poses to score in SDF format. | |
91 | |
92 ----- | |
93 | |
94 .. class:: infomark | |
95 | |
96 **Outputs** | |
97 | |
98 An SDF file is produced as output. The binding affinity scores are contained within the SDF file | |
99 as the TransFSScore property and the PDB file (with the waters that clash with the ligand removed) | |
100 that was used for the scoring as the TransFSReceptor property. | |
101 Values for the score range from 0 (poor binding) to 1 (good binding). | |
102 | |
103 A set of PDB files is also output, each one with different crystallographic waters removed. Each ligand is | |
104 examined against input PDB structure and the with waters that clash (any heavy atom of the ligand closer than | |
105 the 'distance' parameter being removed. The filenames are encoded with the water numbers that are removed. | |
106 | |
107 ]]></help> | |
108 </tool> |