Mercurial > repos > bgruening > upload_testing
view short_reads_figure_score.py @ 90:b061185bcb83 draft
Uploaded
author | bernhardlutz |
---|---|
date | Thu, 23 Jan 2014 14:53:46 -0500 |
parents | c4a3a8999945 |
children |
line wrap: on
line source
#!/usr/bin/env python """ boxplot: - box: first quartile and third quartile - line inside the box: median - outlier: 1.5 IQR higher than the third quartile or 1.5 IQR lower than the first quartile IQR = third quartile - first quartile - The smallest/largest value that is not an outlier is connected to the box by with a horizontal line. """ import os, sys, math, tempfile, re #from rpy import * import rpy2.robjects as robjects import rpy2.rlike.container as rlc import rpy2.rinterface as ri r = robjects.r assert sys.version_info[:2] >= ( 2, 4 ) def stop_err( msg ): sys.stderr.write( "%s\n" % msg ) sys.exit() def merge_to_20_datapoints( score ): number_of_points = 20 read_length = len( score ) step = int( math.floor( ( read_length - 1 ) * 1.0 / number_of_points ) ) scores = [] point = 1 point_sum = 0 step_average = 0 score_points = 0 for i in xrange( 1, read_length ): if i < ( point * step ): point_sum += int( score[i] ) step_average += 1 else: point_avg = point_sum * 1.0 / step_average scores.append( point_avg ) point += 1 point_sum = 0 step_average = 0 if step_average > 0: point_avg = point_sum * 1.0 / step_average scores.append( point_avg ) if len( scores ) > number_of_points: last_avg = 0 for j in xrange( number_of_points - 1, len( scores ) ): last_avg += scores[j] last_avg = last_avg / ( len(scores) - number_of_points + 1 ) else: last_avg = scores[-1] score_points = [] for k in range( number_of_points - 1 ): score_points.append( scores[k] ) score_points.append( last_avg ) return score_points def __main__(): invalid_lines = 0 infile_score_name = sys.argv[1].strip() outfile_R_name = sys.argv[2].strip() infile_name = infile_score_name # Determine tabular or fasta format within the first 100 lines seq_method = None data_type = None for i, line in enumerate( file( infile_name ) ): line = line.rstrip( '\r\n' ) if not line or line.startswith( '#' ): continue if data_type == None: if line.startswith( '>' ): data_type = 'fasta' continue elif len( line.split( '\t' ) ) > 0: fields = line.split() for score in fields: try: int( score ) data_type = 'tabular' seq_method = 'solexa' break except: break elif data_type == 'fasta': fields = line.split() for score in fields: try: int( score ) seq_method = '454' break except: break if i == 100: break if data_type is None: stop_err( 'This tool can only use fasta data or tabular data.' ) if seq_method is None: stop_err( 'Invalid data for fasta format.') # Determine fixed length or variable length within the first 100 lines read_length = 0 variable_length = False if seq_method == 'solexa': for i, line in enumerate( file( infile_name ) ): line = line.rstrip( '\r\n' ) if not line or line.startswith( '#' ): continue scores = line.split('\t') if read_length == 0: read_length = len( scores ) if read_length != len( scores ): variable_length = True break if i == 100: break elif seq_method == '454': score = '' for i, line in enumerate( file( infile_name ) ): line = line.rstrip( '\r\n' ) if not line or line.startswith( '#' ): continue if line.startswith( '>' ): if len( score ) > 0: score = score.split() if read_length == 0: read_length = len( score ) if read_length != len( score ): variable_length = True break score = '' else: score = score + ' ' + line if i == 100: break if variable_length: number_of_points = 20 else: number_of_points = read_length read_length_threshold = 100 # minimal read length for 454 file score_points = [] score_matrix = [] invalid_scores = 0 if seq_method == 'solexa': for i, line in enumerate( open( infile_name ) ): line = line.rstrip( '\r\n' ) if not line or line.startswith( '#' ): continue tmp_array = [] scores = line.split( '\t' ) for bases in scores: nuc_errors = bases.split() try: nuc_errors[0] = int( nuc_errors[0] ) nuc_errors[1] = int( nuc_errors[1] ) nuc_errors[2] = int( nuc_errors[2] ) nuc_errors[3] = int( nuc_errors[3] ) big = max( nuc_errors ) except: #print 'Invalid numbers in the file. Skipped.' invalid_scores += 1 big = 0 tmp_array.append( big ) score_points.append( tmp_array ) elif seq_method == '454': # skip the last fasta sequence score = '' for i, line in enumerate( open( infile_name ) ): line = line.rstrip( '\r\n' ) if not line or line.startswith( '#' ): continue if line.startswith( '>' ): if len( score ) > 0: score = ['0'] + score.split() read_length = len( score ) tmp_array = [] if not variable_length: score.pop(0) score_points.append( score ) tmp_array = score elif read_length > read_length_threshold: score_points_tmp = merge_to_20_datapoints( score ) score_points.append( score_points_tmp ) tmp_array = score_points_tmp score = '' else: score = "%s %s" % ( score, line ) if len( score ) > 0: score = ['0'] + score.split() read_length = len( score ) if not variable_length: score.pop(0) score_points.append( score ) elif read_length > read_length_threshold: score_points_tmp = merge_to_20_datapoints( score ) score_points.append( score_points_tmp ) tmp_array = score_points_tmp # reverse the matrix, for R for i in range( number_of_points - 1 ): tmp_array = [] for j in range( len( score_points ) ): try: tmp_array.append( int( score_points[j][i] ) ) except: invalid_lines += 1 score_matrix.append( tmp_array ) # generate pdf figures #outfile_R_pdf = outfile_R_name #r.pdf( outfile_R_pdf ) outfile_R_png = outfile_R_name print 'Writing bitmap' r.bitmap( outfile_R_png ) title = "boxplot of quality scores" empty_score_matrix_columns = 0 for i, subset in enumerate( score_matrix ): if not subset: empty_score_matrix_columns += 1 score_matrix[i] = [0] if not variable_length: print 'Creating fixed boxplot ' r.boxplot( score_matrix, xlab="location in read length", main=title ) else: print 'Creating variable boxplot' r.boxplot( score_matrix, xlab="position within read (% of total length)", xaxt="n", main=title ) x_old_range = [] x_new_range = [] step = read_length_threshold / number_of_points for i in xrange( 0, read_length_threshold, step ): x_old_range.append( ( i / step ) ) x_new_range.append( i ) print 'Writing axis' r.axis( 1, x_old_range, x_new_range ) print 'calling dev.off()' r('dev.off()') if invalid_scores > 0: print 'Skipped %d invalid scores. ' % invalid_scores if invalid_lines > 0: print 'Skipped %d invalid lines. ' % invalid_lines if empty_score_matrix_columns > 0: print '%d missing scores in score_matrix. ' % empty_score_matrix_columns #r.quit(save = "no") if __name__=="__main__":__main__()