Mercurial > repos > bgruening > upload_testing
view kcca.py @ 90:b061185bcb83 draft
Uploaded
author | bernhardlutz |
---|---|
date | Thu, 23 Jan 2014 14:53:46 -0500 |
parents | c4a3a8999945 |
children |
line wrap: on
line source
#!/usr/bin/env python """ Run kernel CCA using kcca() from R 'kernlab' package usage: %prog [options] -i, --input=i: Input file -o, --output1=o: Summary output -x, --x_cols=x: X-Variable columns -y, --y_cols=y: Y-Variable columns -k, --kernel=k: Kernel function -f, --features=f: Number of canonical components to return -s, --sigma=s: sigma -d, --degree=d: degree -l, --scale=l: scale -t, --offset=t: offset -r, --order=r: order usage: %prog input output1 x_cols y_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) """ from galaxy import eggs import sys, string #from rpy import * import rpy2.robjects as robjects import rpy2.rlike.container as rlc from rpy2.robjects.packages import importr r = robjects.r import numpy import pkg_resources; pkg_resources.require( "bx-python" ) from bx.cookbook import doc_optparse def stop_err(msg): sys.stderr.write(msg) sys.exit() #Parse Command Line options, args = doc_optparse.parse( __doc__ ) #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} infile = options.input x_cols = options.x_cols.split(',') y_cols = options.y_cols.split(',') kernel = options.kernel outfile = options.output1 ncomps = int(options.features) fout = open(outfile,'w') if ncomps < 1: print "You chose to return '0' canonical components. Please try rerunning the tool with number of components = 1 or more." sys.exit() elems = [] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) x_vals = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 #x_vals.append([]) y_vals = [] for k,col in enumerate(y_cols): y_cols[k] = int(col)-1 #y_vals.append([]) NA = 'NA' skipped = 0 for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.strip().split("\t") valid_line = True for col in x_cols+y_cols: try: assert float(fields[col]) except: skipped += 1 valid_line = False break if valid_line: for k,col in enumerate(x_cols): try: xval = float(fields[col]) except: xval = NaN# #x_vals[k].append(xval) x_vals.append(xval) for k,col in enumerate(y_cols): try: yval = float(fields[col]) except: yval = NaN# #y_vals[k].append(yval) y_vals.append(yval) except: skipped += 1 #x_vals1 = numpy.asarray(x_vals).transpose() #y_vals1 = numpy.asarray(y_vals).transpose() #x_dat= r.list(array(x_vals1)) #y_dat= r.list(array(y_vals1)) x_dat = r['matrix'](robjects.FloatVector(x_vals),ncol=len(x_cols),byrow=True) y_dat = r['matrix'](robjects.FloatVector(y_vals),ncol=len(y_cols),byrow=True) try: r.suppressWarnings(r.library('kernlab')) except: stop_err('Missing R library kernlab') #set_default_mode(NO_CONVERSION) if kernel=="rbfdot" or kernel=="anovadot": pars = r.list(sigma=float(options.sigma)) elif kernel=="polydot": pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) elif kernel=="tanhdot": pars = r.list(scale=float(options.scale),offset=float(options.offset)) elif kernel=="besseldot": pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) elif kernel=="anovadot": pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) else: pars = rlist() try: kcc = r.kcca(x=x_dat, y=y_dat, kernel=kernel, kpar=pars, ncomps=ncomps) except RException, rex: stop_err("Encountered error while performing kCCA on the input data: %s" %(rex)) #set_default_mode(BASIC_CONVERSION) kcor = r.kcor(kcc) if ncomps == 1: kcor = [kcor] xcoef = r.xcoef(kcc) ycoef = r.ycoef(kcc) print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in kcor])) print >>fout, "#Estimated X-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) #for obs,val in enumerate(xcoef): # print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) for i in range(1,xcoef.nrow+1): vals = [] for j in range(1,xcoef.ncol+1): vals.append("%.4g" % xcoef.rx2(i,j)[0]) print >>fout, "%s\t%s" %(i, "\t".join(vals)) print >>fout, "#Estimated Y-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) #for obs,val in enumerate(ycoef): # print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) for i in range(1,ycoef.nrow+1): vals = [] for j in range(1,ycoef.ncol+1): vals.append("%.4g" % ycoef.rx2(i,j)[0]) print >>fout, "%s\t%s" %(i, "\t".join(vals))