Mercurial > repos > bgruening > upload_testing
view partialR_square.xml @ 81:642150134c55 draft
Uploaded
author | bernhardlutz |
---|---|
date | Mon, 20 Jan 2014 14:40:40 -0500 |
parents | c4a3a8999945 |
children |
line wrap: on
line source
<tool id="partialRsq" name="Compute partial R square" version="1.1.0"> <description> </description> <expand macro="requirements" /> <macros> <import>statistic_tools_macros.xml</import> </macros> <command interpreter="python"> partialR_square.py $input1 $response_col $predictor_cols $out_file1 1>/dev/null </command> <inputs> <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/> <param name="response_col" label="Response column (Y)" type="data_column" data_ref="input1" /> <param name="predictor_cols" label="Predictor columns (X)" type="data_column" data_ref="input1" multiple="true"> <validator type="no_options" message="Please select at least one column."/> </param> </inputs> <outputs> <data format="input" name="out_file1" metadata_source="input1" /> </outputs> <tests> <!-- Test data with vlid values --> <test> <param name="input1" value="regr_inp.tabular"/> <param name="response_col" value="3"/> <param name="predictor_cols" value="1,2"/> <output name="out_file1" file="partialR_result.tabular"/> </test> </tests> <help> .. class:: infomark **TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters* ----- .. class:: infomark **What it does** This tool computes the Partial R squared for all possible variable subsets using the following formula: **Partial R squared = [SSE(without i: 1,2,...,p-1) - SSE (full: 1,2,..,i..,p-1) / SSE(without i: 1,2,...,p-1)]**, which denotes the case where the 'i'th predictor is dropped. In general, **Partial R squared = [SSE(without i: 1,2,...,p-1) - SSE (full: 1,2,..,i..,p-1) / SSE(without i: 1,2,...,p-1)]**, where, - SSE (full: 1,2,..,i..,p-1) = Sum of Squares left out by the full set of predictors SSE(X1, X2 … Xp) - SSE (full: 1,2,..,i..,p-1) = Sum of Squares left out by the set of predictors excluding; for example, if we omit the first predictor, it will be SSE(X2 … Xp). The 4 columns in the output are described below: - Column 1 (Model): denotes the variables present in the model - Column 2 (R-sq): denotes the R-squared value corresponding to the model in Column 1 - Column 3 (Partial R squared_Terms): denotes the variable/s for which Partial R squared is computed. These are the variables that are absent in the reduced model in Column 1. A '-' in this column indicates that the model in Column 1 is the Full model. - Column 4 (Partial R squared): denotes the Partial R squared value corresponding to the variable/s in Column 3. A '-' in this column indicates that the model in Column 1 is the Full model. *R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.* </help> </tool>