Mercurial > repos > bgruening > tabpfn
view main.py @ 0:2a0c6d2090f4 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn commit bce8b0297bff54e7e29a6106a7f385fd1318c0aa
author | bgruening |
---|---|
date | Wed, 15 Jan 2025 12:33:37 +0000 |
parents | |
children | abe1c3ac9145 |
line wrap: on
line source
""" Tabular data prediction using TabPFN """ import argparse import time import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import accuracy_score, average_precision_score, precision_recall_curve from tabpfn import TabPFNClassifier def separate_features_labels(data): df = pd.read_csv(data, sep="\t") labels = df.iloc[:, -1] features = df.iloc[:, :-1] return features, labels def train_evaluate(args): """ Train TabPFN """ tr_features, tr_labels = separate_features_labels(args["train_data"]) te_features, te_labels = separate_features_labels(args["test_data"]) classifier = TabPFNClassifier(device='cpu') s_time = time.time() classifier.fit(tr_features, tr_labels) e_time = time.time() print("Time taken by TabPFN for training: {} seconds".format(e_time - s_time)) y_eval = classifier.predict(te_features) print('Accuracy', accuracy_score(te_labels, y_eval)) pred_probas_test = classifier.predict_proba(te_features) te_features["predicted_labels"] = y_eval te_features.to_csv("output_predicted_data", sep="\t", index=None) precision, recall, thresholds = precision_recall_curve(te_labels, pred_probas_test[:, 1]) average_precision = average_precision_score(te_labels, pred_probas_test[:, 1]) plt.figure(figsize=(8, 6)) plt.plot(recall, precision, label=f'Precision-Recall Curve (AP={average_precision:.2f})') plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision-Recall Curve') plt.legend(loc='lower left') plt.grid(True) plt.savefig("output_prec_recall_curve.png") if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-trdata", "--train_data", required=True, help="Train data") arg_parser.add_argument("-tedata", "--test_data", required=True, help="Test data") # get argument values args = vars(arg_parser.parse_args()) train_evaluate(args)