diff main_macros.xml @ 3:0a1812986bc3 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author bgruening
date Wed, 09 Aug 2023 11:10:37 +0000
parents 38c4f8a98038
children
line wrap: on
line diff
--- a/main_macros.xml	Mon Dec 16 10:07:37 2019 +0000
+++ b/main_macros.xml	Wed Aug 09 11:10:37 2023 +0000
@@ -1,49 +1,51 @@
 <macros>
-  <token name="@VERSION@">1.0.8.1</token>
+    <token name="@VERSION@">1.0.10.0</token>
+    <token name="@PROFILE@">21.05</token>
 
-  <xml name="python_requirements">
-      <requirements>
-          <requirement type="package" version="3.6">python</requirement>
-          <requirement type="package" version="0.8.1">Galaxy-ML</requirement>
-          <yield/>
-      </requirements>
-  </xml>
+    <xml name="python_requirements">
+        <requirements>
+            <requirement type="package" version="3.9">python</requirement>
+            <requirement type="package" version="0.10.0">galaxy-ml</requirement>
+            <yield />
+        </requirements>
+    </xml>
 
-  <xml name="macro_stdio">
+    <xml name="macro_stdio">
     <stdio>
-        <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error"/>
+      <exit_code range=":-1" level="fatal" description="Error occurred. Please check Tool Standard Error" />
+      <exit_code range="137" level="fatal_oom" description="Out of Memory" />
+      <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error" />
     </stdio>
   </xml>
-
-
-  <!--Generic interface-->
+  
+    <!--Generic interface-->
 
   <xml name="sl_Conditional" token_train="tabular" token_data="tabular" token_model="txt">
     <conditional name="selected_tasks">
-        <param name="selected_task" type="select" label="Select a Classification Task">
-            <option value="train" selected="true">Train a model</option>
-            <option value="load">Load a model and predict</option>
-        </param>
-        <when value="load">
-            <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/>
-            <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/>
-            <param name="header" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
-            <conditional name="prediction_options">
-                <param name="prediction_option" type="select" label="Select the type of prediction">
-                    <option value="predict">Predict class labels</option>
-                    <option value="advanced">Include advanced options</option>
-                </param>
-                <when value="predict">
-                </when>
-                <when value="advanced">
-                </when>
-            </conditional>
-        </when>
-        <when value="train">
-            <conditional name="selected_algorithms">
-                <yield />
-            </conditional>
-        </when>
+      <param name="selected_task" type="select" label="Select a Classification Task">
+        <option value="train" selected="true">Train a model</option>
+        <option value="load">Load a model and predict</option>
+      </param>
+      <when value="load">
+        <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file." />
+        <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify." />
+        <param name="header" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
+        <conditional name="prediction_options">
+          <param name="prediction_option" type="select" label="Select the type of prediction">
+            <option value="predict">Predict class labels</option>
+            <option value="advanced">Include advanced options</option>
+          </param>
+          <when value="predict">
+          </when>
+          <when value="advanced">
+          </when>
+        </conditional>
+      </when>
+      <when value="train">
+          <conditional name="selected_algorithms">
+              <yield />
+          </conditional>
+      </when>
     </conditional>
   </xml>
 
@@ -57,114 +59,114 @@
   <!--Generalized Linear Models-->
   <xml name="loss" token_help=" " token_select="false">
     <param argument="loss" type="select" label="Loss function"  help="@HELP@">
-        <option value="squared_loss" selected="@SELECT@">squared loss</option>
-        <option value="huber">huber</option>
-        <option value="epsilon_insensitive">epsilon insensitive</option>
-        <option value="squared_epsilon_insensitive">squared epsilon insensitive</option>
-        <yield/>
+      <option value="squared_loss" selected="@SELECT@">squared loss</option>
+      <option value="huber">huber</option>
+      <option value="epsilon_insensitive">epsilon insensitive</option>
+      <option value="squared_epsilon_insensitive">squared epsilon insensitive</option>
+      <yield />
     </param>
   </xml>
 
   <xml name="penalty" token_help=" ">
     <param argument="penalty" type="select" label="Penalty (regularization term)"  help="@HELP@">
-        <option value="l2" selected="true">l2</option>
-        <option value="l1">l1</option>
-        <option value="elasticnet">elastic net</option>
-        <option value="none">none</option>
-        <yield/>
+      <option value="l2" selected="true">l2</option>
+      <option value="l1">l1</option>
+      <option value="elasticnet">elastic net</option>
+      <option value="none">none</option>
+      <yield />
     </param>
   </xml>
 
   <xml name="l1_ratio" token_default_value="0.15" token_help=" ">
-    <param argument="l1_ratio" type="float" value="@DEFAULT_VALUE@" label="Elastic Net mixing parameter" help="@HELP@"/>
+    <param argument="l1_ratio" type="float" value="@DEFAULT_VALUE@" label="Elastic Net mixing parameter" help="@HELP@" />
   </xml>
 
   <xml name="epsilon" token_default_value="0.1" token_help="Used if loss is ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’. ">
-    <param argument="epsilon" type="float" value="@DEFAULT_VALUE@" label="Epsilon (epsilon-sensitive loss functions only)" help="@HELP@"/>
+    <param argument="epsilon" type="float" value="@DEFAULT_VALUE@" label="Epsilon (epsilon-sensitive loss functions only)" help="@HELP@" />
   </xml>
 
   <xml name="learning_rate_s" token_help=" " token_selected1="false" token_selected2="false">
     <param argument="learning_rate" type="select" optional="true" label="Learning rate schedule"  help="@HELP@">
-        <option value="optimal" selected="@SELECTED1@">optimal</option>
-        <option value="constant">constant</option>
-        <option value="invscaling" selected="@SELECTED2@">inverse scaling</option>
-        <yield/>
+      <option value="optimal" selected="@SELECTED1@">optimal</option>
+      <option value="constant">constant</option>
+      <option value="invscaling" selected="@SELECTED2@">inverse scaling</option>
+      <yield />
     </param>
   </xml>
 
   <xml name="eta0" token_default_value="0.0" token_help="Used with ‘constant’ or ‘invscaling’ schedules. ">
-    <param argument="eta0" type="float" value="@DEFAULT_VALUE@" label="Initial learning rate" help="@HELP@"/>
+    <param argument="eta0" type="float" value="@DEFAULT_VALUE@" label="Initial learning rate" help="@HELP@" />
   </xml>
 
   <xml name="power_t" token_default_value="0.5" token_help=" ">
-    <param argument="power_t" type="float" value="@DEFAULT_VALUE@" label="Exponent for inverse scaling learning rate" help="@HELP@"/>
+    <param argument="power_t" type="float" value="@DEFAULT_VALUE@" label="Exponent for inverse scaling learning rate" help="@HELP@" />
   </xml>
 
   <xml name="normalize" token_checked="false" token_help=" ">
-    <param argument="normalize" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Normalize samples before training" help=" "/>
+    <param argument="normalize" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Normalize samples before training" help=" " />
   </xml>
 
   <xml name="copy_X" token_checked="true" token_help=" ">
-    <param argument="copy_X" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Use a copy of samples" help="If false, samples would be overwritten. "/>
+    <param argument="copy_X" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Use a copy of samples" help="If false, samples would be overwritten. " />
   </xml>
 
   <xml name="ridge_params">
-    <expand macro="normalize"/>
-    <expand macro="alpha" default_value="1.0"/>
-    <expand macro="fit_intercept"/>
-    <expand macro="max_iter" default_value=""/>
-    <expand macro="tol" default_value="0.001" help_text="Precision of the solution. "/>
+    <expand macro="normalize" />
+    <expand macro="alpha" default_value="1.0" />
+    <expand macro="fit_intercept" />
+    <expand macro="max_iter" default_value="" />
+    <expand macro="tol" default_value="0.001" help_text="Precision of the solution. " />
     <!--class_weight-->
-    <expand macro="copy_X"/>
+    <expand macro="copy_X" />
     <param argument="solver" type="select" value="" label="Solver to use in the computational routines" help=" ">
-        <option value="auto" selected="true">auto</option>
-        <option value="svd">svd</option>
-        <option value="cholesky">cholesky</option>
-        <option value="lsqr">lsqr</option>
-        <option value="sparse_cg">sparse_cg</option>
-        <option value="sag">sag</option>
+      <option value="auto" selected="true">auto</option>
+      <option value="svd">svd</option>
+      <option value="cholesky">cholesky</option>
+      <option value="lsqr">lsqr</option>
+      <option value="sparse_cg">sparse_cg</option>
+      <option value="sag">sag</option>
     </param>
-    <expand macro="random_state"/>
+    <expand macro="random_state" />
   </xml>
 
   <!--Ensemble methods-->
   <xml name="n_estimators" token_default_value="10" token_help=" ">
-    <param argument="n_estimators" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of trees in the forest" help="@HELP@"/>
+    <param argument="n_estimators" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of trees in the forest" help="@HELP@" />
   </xml>
 
   <xml name="max_depth" token_default_value="" token_help=" ">
-    <param argument="max_depth" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum depth of the tree" help="@HELP@"/>
+    <param argument="max_depth" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum depth of the tree" help="@HELP@" />
   </xml>
 
   <xml name="min_samples_split" token_type="integer" token_default_value="2" token_help=" ">
-    <param argument="min_samples_split" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="Minimum number of samples required to split an internal node" help="@HELP@"/>
+    <param argument="min_samples_split" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="Minimum number of samples required to split an internal node" help="@HELP@" />
   </xml>
 
   <xml name="min_samples_leaf" token_type="integer" token_default_value="1" token_label="Minimum number of samples in newly created leaves" token_help=" ">
-    <param argument="min_samples_leaf" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP@"/>
+    <param argument="min_samples_leaf" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP@" />
   </xml>
 
   <xml name="min_weight_fraction_leaf" token_default_value="0.0" token_help=" ">
-    <param argument="min_weight_fraction_leaf" type="float" optional="true" value="@DEFAULT_VALUE@" label="Minimum weighted fraction of the input samples required to be at a leaf node" help="@HELP@"/>
+    <param argument="min_weight_fraction_leaf" type="float" optional="true" value="@DEFAULT_VALUE@" label="Minimum weighted fraction of the input samples required to be at a leaf node" help="@HELP@" />
   </xml>
 
   <xml name="max_leaf_nodes" token_default_value="" token_help=" ">
-    <param argument="max_leaf_nodes" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum number of leaf nodes in best-first method" help="@HELP@"/>
+    <param argument="max_leaf_nodes" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum number of leaf nodes in best-first method" help="@HELP@" />
   </xml>
 
   <xml name="min_impurity_decrease" token_default_value="0" token_help=" ">
-    <param argument="min_impurity_decrease" type="float" value="@DEFAULT_VALUE@" optional="true" label="The threshold value of impurity for stopping node splitting" help="@HELP@"/>
+    <param argument="min_impurity_decrease" type="float" value="@DEFAULT_VALUE@" optional="true" label="The threshold value of impurity for stopping node splitting" help="@HELP@" />
   </xml>
 
   <xml name="bootstrap" token_checked="true" token_help=" ">
-    <param argument="bootstrap" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="@CHECKED@" label="Use bootstrap samples for building trees." help="@HELP@"/>
+    <param argument="bootstrap" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="@CHECKED@" label="Use bootstrap samples for building trees." help="@HELP@" />
   </xml>
 
   <xml name="criterion" token_help=" ">
     <param argument="criterion" type="select" label="Function to measure the quality of a split"  help=" ">
-        <option value="gini" selected="true">Gini impurity</option>
-        <option value="entropy">Information gain</option>
-        <yield/>
+      <option value="gini" selected="true">Gini impurity</option>
+      <option value="entropy">Information gain</option>
+      <yield />
     </param>
   </xml>
 
@@ -172,12 +174,12 @@
     <param argument="criterion" type="select" label="Function to measure the quality of a split" >
       <option value="mse">mse - mean squared error</option>
       <option value="mae">mae - mean absolute error</option>
-      <yield/>
+      <yield />
     </param>
   </xml>
 
   <xml name="oob_score" token_checked="false" token_help=" ">
-    <param argument="oob_score" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Use out-of-bag samples to estimate the generalization error" help="@HELP@"/>
+    <param argument="oob_score" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Use out-of-bag samples to estimate the generalization error" help="@HELP@" />
   </xml>
 
   <xml name="max_features">
@@ -195,21 +197,21 @@
       <when value="log2">
       </when>
       <when value="number_input">
-        <param name="num_max_features" type="float" value="" optional="true" label="Input max_features number:" help="If int, consider the number of features at each split; If float, then max_features is a percentage and int(max_features * n_features) features are considered at each split."/>
+        <param name="num_max_features" type="float" value="" optional="true" label="Input max_features number:" help="If int, consider the number of features at each split; If float, then max_features is a percentage and int(max_features * n_features) features are considered at each split." />
       </when>
     </conditional>
   </xml>
 
   <xml name="verbose" token_default_value="0" token_help="If 1 then it prints progress and performance once in a while. If greater than 1 then it prints progress and performance for every tree.">
-    <param argument="verbose" type="integer" value="@DEFAULT_VALUE@" optional="true" label="Enable verbose output" help="@HELP@"/>
+    <param argument="verbose" type="integer" value="@DEFAULT_VALUE@" optional="true" label="Enable verbose output" help="@HELP@" />
   </xml>
 
   <xml name="learning_rate" token_default_value="1.0" token_help=" ">
-    <param argument="learning_rate" type="float" optional="true" value="@DEFAULT_VALUE@" label="Learning rate" help="@HELP@"/>
+    <param argument="learning_rate" type="float" optional="true" value="@DEFAULT_VALUE@" label="Learning rate" help="@HELP@" />
   </xml>
 
   <xml name="subsample" token_help=" ">
-    <param argument="subsample" type="float" value="1.0" optional="true" label="The fraction of samples to be used for fitting the individual base learners" help="@HELP@"/>
+    <param argument="subsample" type="float" value="1.0" optional="true" label="The fraction of samples to be used for fitting the individual base learners" help="@HELP@" />
   </xml>
 
   <xml name="presort">
@@ -219,93 +221,114 @@
       <option value="false">false</option>
     </param>
   </xml>
+  
+  <!-- LightGBM -->
+    <xml name="feature_fraction" token_help="LightGBM will randomly select part of the features for each iteration (tree) if feature_fraction is smaller than 1.0. For example, if you set it to 0.8, LightGBM will select 80% of features before training each tree.">
+        <param argument="feature_fraction" type="float" value="1.0" label="Proportion of features to train each tree" help="@HELP@" />
+    </xml>
+
+    <xml name="lambda_l1" token_help=" ">
+        <param argument="lambda_l1" type="float" value="0.0" label="L1 regularization" help="@HELP@" />
+    </xml>
+
+    <xml name="lambda_l2" token_help=" ">
+        <param argument="lambda_l2" type="float" value="0.0" label="L1 regularization" help="@HELP@" />
+    </xml>
+
+    <xml name="min_gain_to_split" token_help=" ">
+        <param argument="min_gain_to_split" type="float" value="0.0" label="Minimal gain to perform split" help="@HELP@" />
+    </xml>
+
+    <xml name="min_child_weight" token_help="Minimal sum hessian in one leaf. It can be used to deal with over-fitting.">
+        <param argument="min_child_weight" type="float" value="0.0" label="Minimal sum hessian in one leaf" help="@HELP@" />
+    </xml>
 
   <!--Parameters-->
   <xml name="tol" token_default_value="0.0" token_help_text="Early stopping heuristics based on the relative center changes. Set to default (0.0) to disable this convergence detection.">
-        <param argument="tol" type="float" optional="true" value="@DEFAULT_VALUE@" label="Tolerance" help="@HELP_TEXT@"/>
+        <param argument="tol" type="float" optional="true" value="@DEFAULT_VALUE@" label="Tolerance" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="n_clusters" token_default_value="8">
-    <param argument="n_clusters" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of clusters" help=" "/>
+    <param argument="n_clusters" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of clusters" help=" " />
   </xml>
 
   <xml name="fit_intercept" token_checked="true">
-    <param argument="fit_intercept" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Estimate the intercept" help="If false, the data is assumed to be already centered."/>
+    <param argument="fit_intercept" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Estimate the intercept" help="If false, the data is assumed to be already centered." />
   </xml>
 
   <xml name="n_iter_no_change" token_default_value="5" token_help_text="Number of iterations with no improvement to wait before early stopping. ">
-    <param argument="n_iter_no_change" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of iterations" help="@HELP_TEXT@"/>
+    <param argument="n_iter_no_change" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of iterations" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="shuffle" token_checked="true" token_help_text=" " token_label="Shuffle data after each iteration">
-    <param argument="shuffle" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="@LABEL@" help="@HELP_TEXT@"/>
+    <param argument="shuffle" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="@LABEL@" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="random_state" token_default_value="" token_help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data. A fixed seed allows reproducible results. default=None.">
-    <param argument="random_state" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Random seed number" help="@HELP_TEXT@"/>
+    <param argument="random_state" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Random seed number" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="warm_start" token_checked="true" token_help_text="When set to True, reuse the solution of the previous call to fit as initialization,otherwise, just erase the previous solution.">
-    <param argument="warm_start" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Perform warm start" help="@HELP_TEXT@"/>
+    <param argument="warm_start" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Perform warm start" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="C" token_default_value="1.0" token_help_text="Penalty parameter C of the error term.">
-    <param argument="C" type="float" optional="true" value="@DEFAULT_VALUE@" label="Penalty parameter" help="@HELP_TEXT@"/>
+    <param argument="C" type="float" optional="true" value="@DEFAULT_VALUE@" label="Penalty parameter" help="@HELP_TEXT@" />
   </xml>
 
   <!--xml name="class_weight" token_default_value="" token_help_text="">
-    <param argument="class_weight" type="" optional="true" value="@DEFAULT_VALUE@" label="" help="@HELP_TEXT@"/>
+    <param argument="class_weight" type="" optional="true" value="@DEFAULT_VALUE@" label="" help="@HELP_TEXT@" />
   </xml-->
 
   <xml name="alpha" token_default_value="0.0001" token_help_text="Constant that multiplies the regularization term if regularization is used. ">
-    <param argument="alpha" type="float" optional="true" value="@DEFAULT_VALUE@" label="Regularization coefficient" help="@HELP_TEXT@"/>
+    <param argument="alpha" type="float" optional="true" value="@DEFAULT_VALUE@" label="Regularization coefficient" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="n_samples" token_default_value="100" token_help_text="The total number of points equally divided among clusters.">
-    <param argument="n_samples" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of samples" help="@HELP_TEXT@"/>
+    <param argument="n_samples" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of samples" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="n_features" token_default_value="2" token_help_text="Number of different numerical properties produced for each sample.">
-    <param argument="n_features" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of features" help="@HELP_TEXT@"/>
+    <param argument="n_features" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of features" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="noise" token_default_value="0.0" token_help_text="Floating point number. ">
-    <param argument="noise" type="float" optional="true" value="@DEFAULT_VALUE@" label="Standard deviation of the Gaussian noise added to the data" help="@HELP_TEXT@"/>
+    <param argument="noise" type="float" optional="true" value="@DEFAULT_VALUE@" label="Standard deviation of the Gaussian noise added to the data" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="C" token_default_value="1.0" token_help_text="Penalty parameter C of the error term. ">
-      <param argument="C" type="float" optional="true" value="@DEFAULT_VALUE@" label="Penalty parameter" help="@HELP_TEXT@"/>
+    <param argument="C" type="float" optional="true" value="@DEFAULT_VALUE@" label="Penalty parameter" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="max_iter" token_default_value="300" token_label="Maximum number of iterations per single run" token_help_text=" ">
-      <param argument="max_iter" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@"/>
+    <param argument="max_iter" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="n_init" token_default_value="10" >
-      <param argument="n_init" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of runs with different centroid seeds" help=" "/>
+    <param argument="n_init" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of runs with different centroid seeds" help=" " />
   </xml>
 
   <xml name="init">
-      <param argument="init" type="select" label="Centroid initialization method"  help="''k-means++'' selects initial cluster centers that speed up convergence. ''random'' chooses k observations (rows) at random from data as initial centroids.">
-          <option value="k-means++">k-means++</option>
-          <option value="random">random</option>
-      </param>
+    <param argument="init" type="select" label="Centroid initialization method"  help="''k-means++'' selects initial cluster centers that speed up convergence. ''random'' chooses k observations (rows) at random from data as initial centroids.">
+      <option value="k-means++">k-means++</option>
+      <option value="random">random</option>
+    </param>
   </xml>
 
   <xml name="gamma" token_default_value="1.0" token_label="Scaling parameter" token_help_text=" ">
-    <param argument="gamma" type="float" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@"/>
+    <param argument="gamma" type="float" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="degree" token_default_value="3" token_label="Degree of the polynomial" token_help_text=" ">
-    <param argument="degree" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@"/>
+    <param argument="degree" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="coef0" token_default_value="1" token_label="Zero coefficient" token_help_text=" ">
-    <param argument="coef0" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@"/>
+    <param argument="coef0" type="integer" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP_TEXT@" />
   </xml>
 
   <xml name="pos_label" token_default_value="">
-    <param argument="pos_label" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Label of the positive class" help=" "/>
+    <param argument="pos_label" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Label of the positive class" help=" " />
   </xml>
 
   <xml name="average">
@@ -315,29 +338,29 @@
       <option value="macro">Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. (macro)</option>
       <option value="weighted">Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. (weighted)</option>
       <option value="None">None</option>
-      <yield/>
+      <yield />
     </param>
   </xml>
 
   <xml name="beta">
-    <param argument="beta" type="float" value="1.0" label="The strength of recall versus precision in the F-score" help=" "/>
+    <param argument="beta" type="float" value="1.0" label="The strength of recall versus precision in the F-score" help=" " />
   </xml>
 
 
   <!--Data interface-->
 
   <xml name="samples_tabular" token_label1="Training samples dataset:" token_multiple1="false" token_multiple2="false">
-    <param name="infile1" type="data" format="tabular" label="@LABEL1@"/>
+    <param name="infile1" type="data" format="tabular" label="@LABEL1@" />
     <param name="header1" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_1">
-      <expand macro="samples_column_selector_options" multiple="@MULTIPLE1@"/>
+      <expand macro="samples_column_selector_options" multiple="@MULTIPLE1@" />
     </conditional>
-    <param name="infile2" type="data" format="tabular" label="Dataset containing class labels or target values:"/>
+    <param name="infile2" type="data" format="tabular" label="Dataset containing class labels or target values:" />
     <param name="header2" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_2">
-      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="@MULTIPLE2@" infile="infile2"/>
+      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="@MULTIPLE2@" infile="infile2" />
     </conditional>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="samples_column_selector_options" token_column_option="selected_column_selector_option" token_col_name="col1" token_multiple="False" token_infile="infile1">
@@ -349,16 +372,16 @@
       <option value="all_columns">All columns</option>
     </param>
     <when value="by_index_number">
-      <param name="@COL_NAME@" multiple="@MULTIPLE@" type="data_column" use_header_names="true" data_ref="@INFILE@" label="Select target column(s):"/>
+      <param name="@COL_NAME@" multiple="@MULTIPLE@" type="data_column" use_header_names="true" data_ref="@INFILE@" label="Select target column(s):" />
     </when>
     <when value="all_but_by_index_number">
-      <param name="@COL_NAME@" multiple="@MULTIPLE@" type="data_column" use_header_names="true" data_ref="@INFILE@" label="Select target column(s):"/>
+      <param name="@COL_NAME@" multiple="@MULTIPLE@" type="data_column" use_header_names="true" data_ref="@INFILE@" label="Select target column(s):" />
     </when>
     <when value="by_header_name">
-      <param name="@COL_NAME@" type="text" value="" label="Type header name(s):" help="Comma-separated string. For example: target1,target2"/>
+      <param name="@COL_NAME@" type="text" value="" label="Type header name(s):" help="Comma-separated string. For example: target1,target2" />
     </when>
     <when value="all_but_by_header_name">
-      <param name="@COL_NAME@" type="text" value="" label="Type header name(s):" help="Comma-separated string. For example: target1,target2"/>
+      <param name="@COL_NAME@" type="text" value="" label="Type header name(s):" help="Comma-separated string. For example: target1,target2" />
     </when>
     <when value="all_columns">
     </when>
@@ -367,137 +390,137 @@
   <xml name="clf_inputs_extended" token_label1=" " token_label2=" " token_multiple="False">
     <conditional name="true_columns">
       <param name="selected_input1" type="select" label="Select the input type of true labels dataset:">
-          <option value="tabular" selected="true">Tabular</option>
-          <option value="sparse">Sparse</option>
+        <option value="tabular" selected="true">Tabular</option>
+        <option value="sparse">Sparse</option>
       </param>
       <when value="tabular">
-        <param name="infile1" type="data" label="@LABEL1@"/>
-        <param name="col1" type="data_column" data_ref="infile1" label="Select the target column:"/>
+        <param name="infile1" type="data" label="@LABEL1@" />
+        <param name="col1" type="data_column" data_ref="infile1" label="Select the target column:" />
       </when>
       <when value="sparse">
-          <param name="infile1" type="data" format="txt" label="@LABEL1@"/>
+        <param name="infile1" type="data" format="txt" label="@LABEL1@" />
       </when>
     </conditional>
     <conditional name="predicted_columns">
       <param name="selected_input2" type="select" label="Select the input type of predicted labels dataset:">
-          <option value="tabular" selected="true">Tabular</option>
-          <option value="sparse">Sparse</option>
+        <option value="tabular" selected="true">Tabular</option>
+        <option value="sparse">Sparse</option>
       </param>
       <when value="tabular">
-        <param name="infile2" type="data" label="@LABEL2@"/>
-        <param name="col2" multiple="@MULTIPLE@" type="data_column" data_ref="infile2" label="Select target column(s):"/>
+        <param name="infile2" type="data" label="@LABEL2@" />
+        <param name="col2" multiple="@MULTIPLE@" type="data_column" data_ref="infile2" label="Select target column(s):" />
       </when>
       <when value="sparse">
-          <param name="infile2" type="data" format="txt" label="@LABEL1@"/>
+        <param name="infile2" type="data" format="txt" label="@LABEL1@" />
       </when>
     </conditional>
   </xml>
 
   <xml name="clf_inputs" token_label1="Dataset containing true labels (tabular):" token_label2="Dataset containing predicted values (tabular):" token_multiple1="False" token_multiple="False">
-    <param name="infile1" type="data" format="tabular" label="@LABEL1@"/>
+    <param name="infile1" type="data" format="tabular" label="@LABEL1@" />
     <param name="header1" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_1">
-      <expand macro="samples_column_selector_options" multiple="@MULTIPLE1@"/>
+      <expand macro="samples_column_selector_options" multiple="@MULTIPLE1@" />
     </conditional>
-    <param name="infile2" type="data" format="tabular" label="@LABEL2@"/>
+    <param name="infile2" type="data" format="tabular" label="@LABEL2@" />
     <param name="header2" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_2">
-      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="@MULTIPLE@" infile="infile2"/>
+      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="@MULTIPLE@" infile="infile2" />
     </conditional>
   </xml>
 
   <xml name="multiple_input" token_name="input_files" token_max_num="10" token_format="txt" token_label="Sparse matrix file (.mtx, .txt)" token_help_text="Specify a sparse matrix file in .txt format.">
     <repeat name="@NAME@" min="1" max="@MAX_NUM@" title="Select input file(s):">
-        <param name="input" type="data" format="@FORMAT@" label="@LABEL@" help="@HELP_TEXT@"/>
+      <param name="input" type="data" format="@FORMAT@" label="@LABEL@" help="@HELP_TEXT@" />
     </repeat>
   </xml>
 
   <xml name="sparse_target" token_label1="Select a sparse matrix:" token_label2="Select the tabular containing true labels:" token_multiple="False" token_format1="txt" token_format2="tabular" token_help1="" token_help2="">
-    <param name="infile1" type="data" format="@FORMAT1@" label="@LABEL1@" help="@HELP1@"/>
-    <expand macro="input_tabular_target"/>
+    <param name="infile1" type="data" format="@FORMAT1@" label="@LABEL1@" help="@HELP1@" />
+    <expand macro="input_tabular_target" />
   </xml>
 
   <xml name="sl_mixed_input">
     <conditional name="input_options">
-        <expand macro="data_input_options"/>
-        <expand macro="data_input_whens"/>
+      <expand macro="data_input_options" />
+      <expand macro="data_input_whens" />
     </conditional>
   </xml>
 
   <xml name="sl_mixed_input_plus_sequence">
     <conditional name="input_options">
-        <expand macro="data_input_options">
-            <option value="seq_fasta">sequnences in a fasta file</option>
-            <option value="refseq_and_interval">reference genome and intervals</option>
-        </expand>
-        <expand macro="data_input_whens">
-            <when value="seq_fasta">
-                <expand macro="inputs_seq_fasta"/>
-            </when>
-            <when value="refseq_and_interval">
-                <expand macro="inputs_refseq_and_interval"/>
-            </when>
-        </expand>
+      <expand macro="data_input_options">
+        <option value="seq_fasta">sequnences in a fasta file</option>
+        <option value="refseq_and_interval">reference genome and intervals</option>
+      </expand>
+      <expand macro="data_input_whens">
+        <when value="seq_fasta">
+          <expand macro="inputs_seq_fasta" />
+        </when>
+        <when value="refseq_and_interval">
+          <expand macro="inputs_refseq_and_interval" />
+        </when>
+      </expand>
     </conditional>
   </xml>
 
   <xml name="data_input_options">
     <param name="selected_input" type="select" label="Select input type:">
-        <option value="tabular" selected="true">tabular data</option>
-        <option value="sparse">sparse matrix</option>
-        <yield/>
+      <option value="tabular" selected="true">tabular data</option>
+      <option value="sparse">sparse matrix</option>
+      <yield />
     </param>
   </xml>
 
   <xml name="data_input_whens">
     <when value="tabular">
-        <expand macro="samples_tabular" multiple1="true" multiple2="false"/>
+      <expand macro="samples_tabular" multiple1="true" multiple2="false" />
     </when>
     <when value="sparse">
-        <expand macro="sparse_target"/>
+      <expand macro="sparse_target" />
     </when>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="input_tabular_target">
-    <param name="infile2" type="data" format="tabular" label="Dataset containing class labels or target values:"/>
+    <param name="infile2" type="data" format="tabular" label="Dataset containing class labels or target values:" />
     <param name="header2" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_2">
-      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="false" infile="infile2"/>
+      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="false" infile="infile2" />
     </conditional>
   </xml>
 
   <xml name="inputs_seq_fasta">
-    <param name="fasta_path" type="data" format="fasta" label="Dataset containing fasta genomic/protein sequences" help="Sequences will be one-hot encoded to arrays."/>
-    <expand macro="input_tabular_target"/>
+    <param name="fasta_path" type="data" format="fasta" label="Dataset containing fasta genomic/protein sequences" help="Sequences will be one-hot encoded to arrays." />
+    <expand macro="input_tabular_target" />
   </xml>
 
   <xml name="inputs_refseq_and_interval">
-    <param name="ref_genome_file" type="data" format="fasta" label="Dataset containing reference genomic sequence"/>
-    <param name="interval_file" type="data" format="interval" label="Dataset containing sequence intervals for training" help="interval. Sequences will be retrieved from the reference genome and one-hot encoded to training arrays."/>
-    <param name="target_file" type="data" format="bed" label="Dataset containing positions and features for target values." help="bed. The file will be compressed with `bgzip` and then indexed using `tabix`."/>
-    <param name="infile2" type="data" format="tabular" label="Dataset containing the feature list for prediction"/>
+    <param name="ref_genome_file" type="data" format="fasta" label="Dataset containing reference genomic sequence" />
+    <param name="interval_file" type="data" format="interval" label="Dataset containing sequence intervals for training" help="interval. Sequences will be retrieved from the reference genome and one-hot encoded to training arrays." />
+    <param name="target_file" type="data" format="bed" label="Dataset containing positions and features for target values." help="bed. The file will be compressed with `bgzip` and then indexed using `tabix`." />
+    <param name="infile2" type="data" format="tabular" label="Dataset containing the feature list for prediction" />
     <param name="header2" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Does the dataset contain header:" />
     <conditional name="column_selector_options_2">
-      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="true" infile="infile2"/>
+      <expand macro="samples_column_selector_options" column_option="selected_column_selector_option2" col_name="col2" multiple="true" infile="infile2" />
     </conditional>
   </xml>
 
   <!--Advanced options-->
   <xml name="nn_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-      <yield/>
+      <yield />
       <param argument="weights" type="select" label="Weight function" help="Used in prediction.">
-          <option value="uniform" selected="true">Uniform weights. All points in each neighborhood are weighted equally. (Uniform)</option>
-          <option value="distance">Weight points by the inverse of their distance. (Distance)</option>
+        <option value="uniform" selected="true">Uniform weights. All points in each neighborhood are weighted equally. (Uniform)</option>
+        <option value="distance">Weight points by the inverse of their distance. (Distance)</option>
       </param>
       <param argument="algorithm" type="select" label="Neighbor selection algorithm" help=" ">
-          <option value="auto" selected="true">Auto</option>
-          <option value="ball_tree">BallTree</option>
-          <option value="kd_tree">KDTree</option>
-          <option value="brute">Brute-force</option>
+        <option value="auto" selected="true">Auto</option>
+        <option value="ball_tree">BallTree</option>
+        <option value="kd_tree">KDTree</option>
+        <option value="brute">Brute-force</option>
       </param>
-      <param argument="leaf_size" type="integer" value="30" label="Leaf size" help="Used with BallTree and KDTree. Affects the time and memory usage of the constructed tree."/>
+      <param argument="leaf_size" type="integer" value="30" label="Leaf size" help="Used with BallTree and KDTree. Affects the time and memory usage of the constructed tree." />
       <!--param name="metric"-->
       <!--param name="p"-->
       <!--param name="metric_params"-->
@@ -506,91 +529,91 @@
 
   <xml name="svc_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-        <yield/>
-        <param argument="kernel" type="select" optional="true" label="Kernel type" help="Kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used.">
-            <option value="rbf" selected="true">rbf</option>
-            <option value="linear">linear</option>
-            <option value="poly">poly</option>
-            <option value="sigmoid">sigmoid</option>
-            <option value="precomputed">precomputed</option>
-        </param>
-        <param argument="degree" type="integer" optional="true" value="3" label="Degree of the polynomial (polynomial kernel only)" help="Ignored by other kernels. dafault : 3 "/>
-        <!--TODO: param argument="gamma" float, optional (default=’auto’) -->
-        <param argument="coef0" type="float" optional="true" value="0.0" label="Zero coefficient (polynomial and sigmoid kernels only)"
-            help="Independent term in kernel function. dafault: 0.0 "/>
-        <param argument="shrinking" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Use the shrinking heuristic" help=" "/>
-        <param argument="probability" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false"
-            label="Enable probability estimates. " help="This must be enabled prior to calling fit, and will slow down that method."/>
-        <!-- param argument="cache_size"-->
-        <!--expand macro="class_weight"/-->
-        <expand macro="tol" default_value="0.001" help_text="Tolerance for stopping criterion. "/>
-        <expand macro="max_iter" default_value="-1" label="Solver maximum number of iterations" help_text="Hard limit on iterations within solver, or -1 for no limit."/>
-        <!--param argument="decision_function_shape"-->
-        <expand macro="random_state" help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data for probability estimation. A fixed seed allows reproducible results."/>
+      <yield />
+      <param argument="kernel" type="select" optional="true" label="Kernel type" help="Kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used.">
+        <option value="rbf" selected="true">rbf</option>
+        <option value="linear">linear</option>
+        <option value="poly">poly</option>
+        <option value="sigmoid">sigmoid</option>
+        <option value="precomputed">precomputed</option>
+      </param>
+      <param argument="degree" type="integer" optional="true" value="3" label="Degree of the polynomial (polynomial kernel only)" help="Ignored by other kernels. dafault : 3 " />
+      <!--TODO: param argument="gamma" float, optional (default=’auto’) -->
+      <param argument="coef0" type="float" optional="true" value="0.0" label="Zero coefficient (polynomial and sigmoid kernels only)"
+          help="Independent term in kernel function. dafault: 0.0 " />
+      <param argument="shrinking" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
+          label="Use the shrinking heuristic" help=" " />
+      <param argument="probability" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false"
+          label="Enable probability estimates. " help="This must be enabled prior to calling fit, and will slow down that method." />
+      <!-- param argument="cache_size"-->
+      <!--expand macro="class_weight"/-->
+      <expand macro="tol" default_value="0.001" help_text="Tolerance for stopping criterion. " />
+      <expand macro="max_iter" default_value="-1" label="Solver maximum number of iterations" help_text="Hard limit on iterations within solver, or -1 for no limit." />
+      <!--param argument="decision_function_shape"-->
+      <expand macro="random_state" help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data for probability estimation. A fixed seed allows reproducible results." />
     </section>
   </xml>
 
   <xml name="spectral_clustering_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-        <expand macro="n_clusters"/>
-        <param argument="eigen_solver" type="select" value="" label="Eigen solver" help="The eigenvalue decomposition strategy to use.">
-            <option value="arpack" selected="true">arpack</option>
-            <option value="lobpcg">lobpcg</option>
-            <option value="amg">amg</option>
-            <!--None-->
-        </param>
-        <expand macro="random_state"/>
-        <expand macro="n_init"/>
-        <param argument="gamma" type="float" optional="true" value="1.0" label="Kernel scaling factor" help="Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for affinity=''nearest_neighbors''."/>
-        <param argument="affinity" type="select" label="Affinity" help="Affinity kernel to use. ">
-            <option value="rbf" selected="true">RBF</option>
-            <option value="precomputed">precomputed</option>
-            <option value="nearest_neighbors">Nearset neighbors</option>
-        </param>
-        <param argument="n_neighbors" type="integer" optional="true" value="10" label="Number of neighbors" help="Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for affinity=''rbf''"/>
-        <!--param argument="eigen_tol"-->
-        <param argument="assign_labels" type="select" label="Assign labels" help="The strategy to use to assign labels in the embedding space.">
-            <option value="kmeans" selected="true">kmeans</option>
-            <option value="discretize">discretize</option>
-        </param>
-        <param argument="degree" type="integer" optional="true" value="3"
-            label="Degree of the polynomial (polynomial kernel only)" help="Ignored by other kernels. dafault : 3 "/>
-        <param argument="coef0" type="integer" optional="true" value="1"
-            label="Zero coefficient (polynomial and sigmoid kernels only)" help="Ignored by other kernels. dafault : 1 "/>
-        <!--param argument="kernel_params"-->
+      <expand macro="n_clusters" />
+      <param argument="eigen_solver" type="select" value="" label="Eigen solver" help="The eigenvalue decomposition strategy to use.">
+        <option value="arpack" selected="true">arpack</option>
+        <option value="lobpcg">lobpcg</option>
+        <option value="amg">amg</option>
+        <!--None-->
+      </param>
+      <expand macro="random_state" />
+      <expand macro="n_init" />
+      <param argument="gamma" type="float" optional="true" value="1.0" label="Kernel scaling factor" help="Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for affinity=''nearest_neighbors''." />
+      <param argument="affinity" type="select" label="Affinity" help="Affinity kernel to use. ">
+        <option value="rbf" selected="true">RBF</option>
+        <option value="precomputed">precomputed</option>
+        <option value="nearest_neighbors">Nearset neighbors</option>
+      </param>
+      <param argument="n_neighbors" type="integer" optional="true" value="10" label="Number of neighbors" help="Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for affinity=''rbf''" />
+      <!--param argument="eigen_tol"-->
+      <param argument="assign_labels" type="select" label="Assign labels" help="The strategy to use to assign labels in the embedding space.">
+        <option value="kmeans" selected="true">kmeans</option>
+        <option value="discretize">discretize</option>
+      </param>
+      <param argument="degree" type="integer" optional="true" value="3"
+          label="Degree of the polynomial (polynomial kernel only)" help="Ignored by other kernels. dafault : 3 " />
+      <param argument="coef0" type="integer" optional="true" value="1"
+          label="Zero coefficient (polynomial and sigmoid kernels only)" help="Ignored by other kernels. dafault : 1 " />
+      <!--param argument="kernel_params"-->
     </section>
   </xml>
 
   <xml name="minibatch_kmeans_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-        <expand macro="n_clusters"/>
-        <expand macro="init"/>
-        <expand macro="n_init" default_value="3"/>
-        <expand macro="max_iter" default_value="100"/>
-        <expand macro="tol" help_text="Early stopping heuristics based on normalized center change. To disable set to 0.0 ."/>
-        <expand macro="random_state"/>
-        <param argument="batch_size" type="integer" optional="true" value="100" label="Batch size" help="Size of the mini batches."/>
-        <!--param argument="compute_labels"-->
-        <param argument="max_no_improvement" type="integer" optional="true" value="10" label="Maximum number of improvement attempts" help="
-        Convergence detection based on inertia (the consecutive number of mini batches that doe not yield an improvement on the smoothed inertia).
-        To disable, set max_no_improvement to None. "/>
-        <param argument="init_size" type="integer" optional="true" value="" label="Number of random initialization samples" help="Number of samples to randomly sample for speeding up the initialization . ( default: 3 * batch_size )"/>
-        <param argument="reassignment_ratio" type="float" optional="true" value="0.01" label="Re-assignment ratio" help="Controls the fraction of the maximum number of counts for a center to be reassigned. Higher values yield better clustering results."/>
+      <expand macro="n_clusters" />
+      <expand macro="init" />
+      <expand macro="n_init" default_value="3" />
+      <expand macro="max_iter" default_value="100" />
+      <expand macro="tol" help_text="Early stopping heuristics based on normalized center change. To disable set to 0.0 ." />
+      <expand macro="random_state" />
+      <param argument="batch_size" type="integer" optional="true" value="100" label="Batch size" help="Size of the mini batches." />
+      <!--param argument="compute_labels"-->
+      <param argument="max_no_improvement" type="integer" optional="true" value="10" label="Maximum number of improvement attempts" help="
+      Convergence detection based on inertia (the consecutive number of mini batches that doe not yield an improvement on the smoothed inertia).
+      To disable, set max_no_improvement to None. " />
+      <param argument="init_size" type="integer" optional="true" value="" label="Number of random initialization samples" help="Number of samples to randomly sample for speeding up the initialization . ( default: 3 * batch_size )" />
+      <param argument="reassignment_ratio" type="float" optional="true" value="0.01" label="Re-assignment ratio" help="Controls the fraction of the maximum number of counts for a center to be reassigned. Higher values yield better clustering results." />
     </section>
   </xml>
 
   <xml name="kmeans_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-      <expand macro="n_clusters"/>
-      <expand macro="init"/>
-      <expand macro="n_init"/>
-      <expand macro="max_iter"/>
-      <expand macro="tol" default_value="0.0001" help_text="Relative tolerance with regards to inertia to declare convergence."/>
+      <expand macro="n_clusters" />
+      <expand macro="init" />
+      <expand macro="n_init" />
+      <expand macro="max_iter" />
+      <expand macro="tol" default_value="0.0001" help_text="Relative tolerance with regards to inertia to declare convergence." />
       <!--param argument="precompute_distances"/-->
-      <expand macro="random_state"/>
-      <param argument="copy_x" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Use a copy of data for precomputing distances" help="Mofifying the original data introduces small numerical differences caused by subtracting and then adding the data mean."/>
-      <expand macro="kmeans_algorithm"/>
+      <expand macro="random_state" />
+      <param argument="copy_x" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Use a copy of data for precomputing distances" help="Mofifying the original data introduces small numerical differences caused by subtracting and then adding the data mean." />
+      <expand macro="kmeans_algorithm" />
     </section>
   </xml>
 
@@ -604,51 +627,51 @@
 
   <xml name="birch_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-      <param argument="threshold" type="float" optional="true" value="0.5" label="Subcluster radius threshold" help="The radius of the subcluster obtained by merging a new sample; the closest subcluster should be less than the threshold to avoid a new subcluster."/>
-      <param argument="branching_factor" type="integer" optional="true" value="50" label="Maximum number of subclusters per branch" help="Maximum number of CF subclusters in each node."/>
-      <expand macro="n_clusters" default_value="3"/>
+      <param argument="threshold" type="float" optional="true" value="0.5" label="Subcluster radius threshold" help="The radius of the subcluster obtained by merging a new sample; the closest subcluster should be less than the threshold to avoid a new subcluster." />
+      <param argument="branching_factor" type="integer" optional="true" value="50" label="Maximum number of subclusters per branch" help="Maximum number of CF subclusters in each node." />
+      <expand macro="n_clusters" default_value="3" />
       <!--param argument="compute_labels"/-->
     </section>
   </xml>
 
   <xml name="dbscan_advanced_options">
     <section name="options" title="Advanced Options" expanded="False">
-      <param argument="eps" type="float" optional="true" value="0.5" label="Maximum neighborhood distance" help="The maximum distance between two samples for them to be considered as in the same neighborhood."/>
-      <param argument="min_samples" type="integer" optional="true" value="5" label="Minimal core point density" help="The number of samples (or total weight) in a neighborhood for a point (including the point itself) to be considered as a core point."/>
-      <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array."/>
+      <param argument="eps" type="float" optional="true" value="0.5" label="Maximum neighborhood distance" help="The maximum distance between two samples for them to be considered as in the same neighborhood." />
+      <param argument="min_samples" type="integer" optional="true" value="5" label="Minimal core point density" help="The number of samples (or total weight) in a neighborhood for a point (including the point itself) to be considered as a core point." />
+      <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array." />
       <param argument="algorithm" type="select" label="Pointwise distance computation algorithm" help="The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors.">
-          <option value="auto" selected="true">auto</option>
-          <option value="ball_tree">ball_tree</option>
-          <option value="kd_tree">kd_tree</option>
-          <option value="brute">brute</option>
+        <option value="auto" selected="true">auto</option>
+        <option value="ball_tree">ball_tree</option>
+        <option value="kd_tree">kd_tree</option>
+        <option value="brute">brute</option>
       </param>
-      <param argument="leaf_size" type="integer" optional="true" value="30" label="Leaf size" help="Leaf size passed to BallTree or cKDTree. Memory and time efficieny factor in tree constrution and querying."/>
+      <param argument="leaf_size" type="integer" optional="true" value="30" label="Leaf size" help="Leaf size passed to BallTree or cKDTree. Memory and time efficieny factor in tree constrution and querying." />
     </section>
   </xml>
 
   <xml name="clustering_algorithms_options">
     <conditional name="algorithm_options">
       <param name="selected_algorithm" type="select" label="Clustering Algorithm">
-          <option value="KMeans" selected="true">KMeans</option>
-          <option value="SpectralClustering">Spectral Clustering</option>
-          <option value="MiniBatchKMeans">Mini Batch KMeans</option>
-          <option value="DBSCAN">DBSCAN</option>
-          <option value="Birch">Birch</option>
+        <option value="KMeans" selected="true">KMeans</option>
+        <option value="SpectralClustering">Spectral Clustering</option>
+        <option value="MiniBatchKMeans">Mini Batch KMeans</option>
+        <option value="DBSCAN">DBSCAN</option>
+        <option value="Birch">Birch</option>
       </param>
       <when value="KMeans">
-          <expand macro="kmeans_advanced_options"/>
+        <expand macro="kmeans_advanced_options" />
       </when>
       <when value="DBSCAN">
-          <expand macro="dbscan_advanced_options"/>
+        <expand macro="dbscan_advanced_options" />
       </when>
       <when value="Birch">
-          <expand macro="birch_advanced_options"/>
+        <expand macro="birch_advanced_options" />
       </when>
       <when value="SpectralClustering">
-          <expand macro="spectral_clustering_advanced_options"/>
+        <expand macro="spectral_clustering_advanced_options" />
       </when>
       <when value="MiniBatchKMeans">
-          <expand macro="minibatch_kmeans_advanced_options"/>
+        <expand macro="minibatch_kmeans_advanced_options" />
       </when>
     </conditional>
   </xml>
@@ -661,7 +684,7 @@
       <option value="l1">l1</option>
       <option value="l2">l2</option>
       <option value="manhattan">manhattan</option>
-      <yield/>
+      <yield />
     </param>
   </xml>
 
@@ -702,7 +725,7 @@
       <option value="euclidean_distances" selected="true">Euclidean distance matrix</option>
       <option value="pairwise_distances">Distance matrix</option>
       <option value="pairwise_distances_argmin">Minimum distances between one point and a set of points</option>
-      <yield/>
+      <yield />
     </param>
   </xml>
 
@@ -720,15 +743,15 @@
   <xml name="sparse_pairwise_condition">
     <when value="pairwise_distances">
       <section name="options" title="Advanced Options" expanded="False">
-          <expand macro="distance_metrics">
-              <yield/>
-          </expand>
+        <expand macro="distance_metrics">
+          <yield />
+        </expand>
       </section>
     </when>
     <when value="euclidean_distances">
       <section name="options" title="Advanced Options" expanded="False">
-          <param argument="squared" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false"
-            label="Return squared Euclidean distances" help=" "/>
+        <param argument="squared" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false"
+          label="Return squared Euclidean distances" help=" " />
       </section>
     </when>
   </xml>
@@ -736,11 +759,11 @@
   <xml name="argmin_distance_condition">
     <when value="pairwise_distances_argmin">
       <section name="options" title="Advanced Options" expanded="False">
-          <param argument="axis" type="integer" optional="true" value="1" label="Axis" help="Axis along which the argmin and distances are to be computed."/>
-          <expand macro="distance_metrics">
-              <yield/>
-          </expand>
-          <param argument="batch_size" type="integer" optional="true" value="500" label="Batch size" help="Number of rows to be processed in each batch run."/>
+        <param argument="axis" type="integer" optional="true" value="1" label="Axis" help="Axis along which the argmin and distances are to be computed." />
+        <expand macro="distance_metrics">
+          <yield />
+        </expand>
+        <param argument="batch_size" type="integer" optional="true" value="500" label="Batch size" help="Number of rows to be processed in each batch run." />
       </section>
     </when>
   </xml>
@@ -751,7 +774,7 @@
       <option value="Binarizer">Binarizer (Binarizes data)</option>
       <option value="MaxAbsScaler">Max Abs Scaler (Scales features by their maximum absolute value)</option>
       <option value="Normalizer">Normalizer (Normalizes samples individually to unit norm)</option>
-      <yield/>
+      <yield />
     </param>
   </xml>
 
@@ -769,28 +792,28 @@
 
   <xml name="sparse_preprocessor_options">
     <when value="Binarizer">
-        <section name="options" title="Advanced Options" expanded="False">
-            <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-                label="Use a copy of data for precomputing binarization" help=" "/>
-            <param argument="threshold" type="float" optional="true" value="0.0"
-                label="Threshold"
-                help="Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. "/>
-        </section>
+      <section name="options" title="Advanced Options" expanded="False">
+        <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
+            label="Use a copy of data for precomputing binarization" help=" " />
+        <param argument="threshold" type="float" optional="true" value="0.0"
+            label="Threshold"
+            help="Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. " />
+      </section>
     </when>
     <when value="StandardScaler">
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Use a copy of data for performing inplace scaling" help=" "/>
+            label="Use a copy of data for performing inplace scaling" help=" " />
         <param argument="with_mean" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Center the data before scaling" help=" "/>
+            label="Center the data before scaling" help=" " />
         <param argument="with_std" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Scale the data to unit variance (or unit standard deviation)" help=" "/>
+            label="Scale the data to unit variance (or unit standard deviation)" help=" " />
       </section>
     </when>
     <when value="MaxAbsScaler">
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Use a copy of data for precomputing scaling" help=" "/>
+            label="Use a copy of data for precomputing scaling" help=" " />
       </section>
     </when>
     <when value="Normalizer">
@@ -801,10 +824,10 @@
           <option value="max">max</option>
         </param>
         <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true"
-            label="Use a copy of data for precomputing row normalization" help=" "/>
+            label="Use a copy of data for precomputing row normalization" help=" " />
       </section>
     </when>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="sparse_preprocessor_options_ext">
@@ -814,65 +837,65 @@
         </section>
       </when>
       <when value="MinMaxScaler">
-          <section name="options" title="Advanced Options" expanded="False">
-              <param argument="feature_range" type="text" value="(0, 1)" optional="true" help="Desired range of transformed data. None or tuple (min, max). None equals to (0, 1)"/>
-              <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
-                  label="Use a copy of data for precomputing normalization" help=" "/>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+          <param argument="feature_range" type="text" value="(0, 1)" optional="true" help="Desired range of transformed data. None or tuple (min, max). None equals to (0, 1)" />
+          <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
+              label="Use a copy of data for precomputing normalization" help=" " />
+        </section>
       </when>
       <when value="PolynomialFeatures">
-          <section name="options" title="Advanced Options" expanded="False">
-              <param argument="degree" type="integer" optional="true" value="2" label="The degree of the polynomial features " help=""/>
-              <param argument="interaction_only" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="false" label="Produce interaction features only" help="(Features that are products of at most degree distinct input features) "/>
-              <param argument="include_bias" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Include a bias column" help="Feature in which all polynomial powers are zero "/>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+          <param argument="degree" type="integer" optional="true" value="2" label="The degree of the polynomial features " help="" />
+          <param argument="interaction_only" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="false" label="Produce interaction features only" help="(Features that are products of at most degree distinct input features) " />
+          <param argument="include_bias" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Include a bias column" help="Feature in which all polynomial powers are zero " />
+        </section>
       </when>
       <when value="RobustScaler">
-          <section name="options" title="Advanced Options" expanded="False">
-              <!--=True, =True, copy=True-->
-              <param argument="with_centering" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
-                  label="Center the data before scaling" help=" "/>
-              <param argument="with_scaling" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
-                  label="Scale the data to interquartile range" help=" "/>
-              <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
-                  label="Use a copy of data for inplace scaling" help=" "/>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+            <!--=True, =True, copy=True-->
+          <param argument="with_centering" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
+              label="Center the data before scaling" help=" " />
+          <param argument="with_scaling" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
+              label="Scale the data to interquartile range" help=" " />
+          <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true"
+              label="Use a copy of data for inplace scaling" help=" " />
+        </section>
       </when>
       <when value="QuantileTransformer">
-          <section name="options" title="Advanced Options" expanded="False">
-              <param name="n_quantiles" type="integer" value="1000" min="0" label="Number of quantiles to be computed" />
-              <param name="output_distribution" type="select" label="Marginal distribution for the transformed data">
-                  <option value="uniform" selected="true">uniform</option>
-                  <option value="normal">normal</option>
-              </param>
-              <param name="ignore_implicit_zeros" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to discard sparse entries" help="Only applies to sparse matrices. If False, sparse entries are treated as zeros"/>
-              <param name="subsample" type="integer" value="100000" label="Maximum number of samples used to estimate the quantiles for computational efficiency" help="Note that the subsampling procedure may differ for value-identical sparse and dense matrices."/>
-              <expand macro="random_state" help_text="This is used by subsampling and smoothing noise"/>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+          <param name="n_quantiles" type="integer" value="1000" min="0" label="Number of quantiles to be computed" />
+          <param name="output_distribution" type="select" label="Marginal distribution for the transformed data">
+            <option value="uniform" selected="true">uniform</option>
+            <option value="normal">normal</option>
+          </param>
+          <param name="ignore_implicit_zeros" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to discard sparse entries" help="Only applies to sparse matrices. If False, sparse entries are treated as zeros" />
+          <param name="subsample" type="integer" value="100000" label="Maximum number of samples used to estimate the quantiles for computational efficiency" help="Note that the subsampling procedure may differ for value-identical sparse and dense matrices." />
+          <expand macro="random_state" help_text="This is used by subsampling and smoothing noise" />
+        </section>
       </when>
       <when value="PowerTransformer">
-          <section name="options" title="Advanced Options" expanded="False">
-              <param name="method" type="select" label="The power transform method">
-                  <option value="yeo-johnson" selected="true">yeo-johnson (works with positive and negative values)</option>
-                  <option value="box-cox">box-cox (might perform better, but only works with strictly positive values)</option>
-              </param>
-              <param name="standardize" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Whether to apply zero-mean, unit-variance normalization to the transformed output."/>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+          <param name="method" type="select" label="The power transform method">
+            <option value="yeo-johnson" selected="true">yeo-johnson (works with positive and negative values)</option>
+            <option value="box-cox">box-cox (might perform better, but only works with strictly positive values)</option>
+          </param>
+          <param name="standardize" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Whether to apply zero-mean, unit-variance normalization to the transformed output." />
+        </section>
       </when>
       <when value="KBinsDiscretizer">
-          <section name="options" title="Advanced Options" expanded="False">
-              <param name="n_bins" type="integer" value="5" min="2" label="The number of bins to produce"/>
-              <param name="encode" type="select" label="Method used to encode the transformed result">
-                  <option value="onehot" selected="true">onehot (encode the transformed result with one-hot encoding and return a sparse matrix)</option>
-                  <option value="onehot-dense">onehot-dense (encode the transformed result with one-hot encoding and return a dense array)</option>
-                  <option value="ordinal">ordinal (return the bin identifier encoded as an integer value)</option>
-              </param>
-              <param name="strategy" type="select" label="Strategy used to define the widths of the bins">
-                  <option value="uniform">uniform (all bins in each feature have identical widths)</option>
-                  <option value="quantile" selected="true">quantile (all bins in each feature have the same number of points)</option>
-                  <option value="kmeans">kmeans (values in each bin have the same nearest center of a 1D k-means cluster)</option>
-              </param>
-          </section>
+        <section name="options" title="Advanced Options" expanded="False">
+          <param name="n_bins" type="integer" value="5" min="2" label="The number of bins to produce" />
+          <param name="encode" type="select" label="Method used to encode the transformed result">
+            <option value="onehot" selected="true">onehot (encode the transformed result with one-hot encoding and return a sparse matrix)</option>
+            <option value="onehot-dense">onehot-dense (encode the transformed result with one-hot encoding and return a dense array)</option>
+            <option value="ordinal">ordinal (return the bin identifier encoded as an integer value)</option>
+          </param>
+          <param name="strategy" type="select" label="Strategy used to define the widths of the bins">
+            <option value="uniform">uniform (all bins in each feature have identical widths)</option>
+            <option value="quantile" selected="true">quantile (all bins in each feature have the same number of points)</option>
+            <option value="kmeans">kmeans (values in each bin have the same nearest center of a 1D k-means cluster)</option>
+          </param>
+        </section>
       </when>
     </expand>
   </xml>
@@ -891,66 +914,68 @@
     <option value="PredefinedSplit">PredefinedSplit</option>
     <option value="OrderedKFold">OrderedKFold</option>
     <option value="RepeatedOrderedKFold">RepeatedOrderedKFold</option>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="cv_splitter_options">
     <when value="default">
-      <expand macro="cv_n_splits"/>
+      <expand macro="cv_n_splits" />
     </when>
     <when value="KFold">
-      <expand macro="cv_n_splits"/>
-      <expand macro="cv_shuffle"/>
-      <expand macro="random_state"/>
+      <expand macro="cv_n_splits" />
+      <expand macro="cv_shuffle" />
+      <expand macro="random_state" />
     </when>
     <when value="StratifiedKFold">
-      <expand macro="cv_n_splits"/>
-      <expand macro="cv_shuffle"/>
-      <expand macro="random_state"/>
+      <expand macro="cv_n_splits" />
+      <expand macro="cv_shuffle" />
+      <expand macro="random_state" />
     </when>
     <when value="LeaveOneOut">
     </when>
     <when value="LeavePOut">
-      <param argument="p" type="integer" value="" label="p" help="Integer. Size of the test sets."/>
+      <param argument="p" type="integer" value="" label="p" help="Integer. Size of the test sets." />
     </when>
     <when value="RepeatedKFold">
-      <expand macro="cv_n_splits" value="5"/>
+      <expand macro="cv_n_splits" value="5" />
       <param argument="n_repeats" type="integer" value="10" label="n_repeats" help="Number of times cross-validator needs to be repeated." />
       <expand macro="random_state" />
     </when>
     <when value="RepeatedStratifiedKFold">
-      <expand macro="cv_n_splits" value="5"/>
+      <expand macro="cv_n_splits" value="5" />
       <param argument="n_repeats" type="integer" value="10" label="n_repeats" help="Number of times cross-validator needs to be repeated." />
       <expand macro="random_state" />
     </when>
     <when value="ShuffleSplit">
-      <expand macro="cv_n_splits" value="10" help="Number of re-shuffling and splitting iterations."/>
+      <expand macro="cv_n_splits" value="10" help="Number of re-shuffling and splitting iterations." />
       <expand macro="cv_test_size" value="0.1" />
-      <expand macro="random_state"/>
+      <expand macro="random_state" />
     </when>
     <when value="StratifiedShuffleSplit">
-      <expand macro="cv_n_splits" value="10" help="Number of re-shuffling and splitting iterations."/>
+      <expand macro="cv_n_splits" value="10" help="Number of re-shuffling and splitting iterations." />
       <expand macro="cv_test_size" value="0.1" />
-      <expand macro="random_state"/>
+      <expand macro="random_state" />
     </when>
     <when value="TimeSeriesSplit">
-      <expand macro="cv_n_splits"/>
+      <expand macro="cv_n_splits" />
       <param argument="max_train_size" type="integer" value="" optional="true" label="Maximum size of the training set" help="Maximum size for a single training set." />
     </when>
     <when value="PredefinedSplit">
-      <param argument="test_fold" type="text" value="" area="true" label="test_fold" help="List, e.g., [0, 1, -1, 1], represents two test sets, [X[0]] and [X[1], X[3]], X[2] is excluded from any test set due to '-1'."/>
+      <param argument="test_fold" type="text" value="" area="true" label="test_fold" help="List, e.g., [0, 1, -1, 1], represents two test sets, [X[0]] and [X[1], X[3]], X[2] is excluded from any test set due to '-1'." />
     </when>
     <when value="OrderedKFold">
-      <expand macro="cv_n_splits"/>
-      <expand macro="cv_shuffle"/>
-      <expand macro="random_state"/>
+      <expand macro="cv_n_splits" />
+      <expand macro="cv_shuffle" />
+      <expand macro="random_state" />
+      <expand macro="cv_n_stratification_bins" />
     </when>
     <when value="RepeatedOrderedKFold">
-      <expand macro="cv_n_splits"/>
-      <param argument="n_repeats" type="integer" value="5"/>
-      <expand macro="random_state"/>
+      <expand macro="cv_n_splits" />
+      <param argument="n_repeats" type="integer" value="5" />
+      <expand macro="random_state" />
+      <expand macro="cv_n_stratification_bins" />
     </when>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="cv">
@@ -965,21 +990,21 @@
       </param>
       <expand macro="cv_splitter_options">
         <when value="GroupKFold">
-          <expand macro="cv_n_splits"/>
+          <expand macro="cv_n_splits" />
           <expand macro="cv_groups" />
         </when>
         <when value="GroupShuffleSplit">
-          <expand macro="cv_n_splits" value="5"/>
-          <expand macro="cv_test_size"/>
-          <expand macro="random_state"/>
-          <expand macro="cv_groups"/>
+          <expand macro="cv_n_splits" value="5" />
+          <expand macro="cv_test_size" />
+          <expand macro="random_state" />
+          <expand macro="cv_groups" />
         </when>
         <when value="LeaveOneGroupOut">
-          <expand macro="cv_groups"/>
+          <expand macro="cv_groups" />
         </when>
         <when value="LeavePGroupsOut">
           <param argument="n_groups" type="integer" value="" label="n_groups" help="Number of groups (p) to leave out in the test split." />
-          <expand macro="cv_groups"/>
+          <expand macro="cv_groups" />
         </when>
       </expand>
     </conditional>
@@ -988,30 +1013,35 @@
   <xml name="cv_reduced" token_label="Select the cv splitter">
     <conditional name="cv_selector">
       <param name="selected_cv" type="select" label="@LABEL@">
-        <expand macro="cv_splitter"/>
+        <expand macro="cv_splitter" />
       </param>
-      <expand macro="cv_splitter_options"/>
+      <expand macro="cv_splitter_options" />
     </conditional>
   </xml>
 
-  <xml name="cv_n_splits" token_value="3" token_help="Number of folds. Must be at least 2.">
-    <param argument="n_splits" type="integer" value="@VALUE@" min="1" label="n_splits" help="@HELP@"/>
+  <xml name="cv_n_splits" token_value="5" token_help="Number of folds. Must be at least 2.">
+    <!--why set min to 1?-->
+    <param argument="n_splits" type="integer" value="@VALUE@" min="1" label="n_splits" help="@HELP@" />
   </xml>
 
   <xml name="cv_shuffle">
     <param argument="shuffle" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to shuffle data before splitting" />
   </xml>
 
+  <xml name="cv_n_stratification_bins">
+    <param argument="n_stratification_bins" type="integer" value="" optional="true" help="Integer. The number of stratification bins. Only relevent when shuffle is True. Valid in [2, `n_samples // n_splits`]. Default value is None, which is same as `n_samples // n_splits`. The higher the value is, the distribution of target values is more approximately the ame across all split folds." />
+  </xml>
+
   <xml name="cv_test_size" token_value="0.2">
-    <param argument="test_size" type="float" value="@VALUE@" min="0.0" label="Portion or number of the test set" help="0.0-1.0, proportion of the dataset to include in the test split; >1, integer only, the absolute number of test samples "/>
+    <param argument="test_size" type="float" value="@VALUE@" min="0.0" label="Portion or number of the test set" help="0.0-1.0, proportion of the dataset to include in the test split; >1, integer only, the absolute number of test samples " />
   </xml>
 
   <xml name="cv_groups" >
     <section name="groups_selector" title="Groups column selector" expanded="true">
-      <param name="infile_g" type="data" format="tabular" label="Choose dataset containing groups info:"/>
+      <param name="infile_g" type="data" format="tabular" label="Choose dataset containing groups info:" />
       <param name="header_g" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" />
       <conditional name="column_selector_options_g">
-        <expand macro="samples_column_selector_options" column_option="selected_column_selector_option_g" col_name="col_g" multiple="False" infile="infile_g"/>
+        <expand macro="samples_column_selector_options" column_option="selected_column_selector_option_g" col_name="col_g" multiple="False" infile="infile_g" />
       </conditional>
     </section>
   </xml>
@@ -1025,29 +1055,29 @@
         <option value="group">GroupShuffleSplit or split by group names</option>
       </param>
       <when value="None">
-        <expand macro="train_test_split_test_size"/>
+        <expand macro="train_test_split_test_size" />
       </when>
       <when value="simple">
-        <expand macro="train_test_split_test_size"/>
-        <expand macro="random_state"/>
+        <expand macro="train_test_split_test_size" />
+        <expand macro="random_state" />
       </when>
       <when value="stratified">
-        <expand macro="train_test_split_test_size"/>
-        <expand macro="random_state"/>
+        <expand macro="train_test_split_test_size" />
+        <expand macro="random_state" />
       </when>
       <when value="group">
-        <expand macro="train_test_split_test_size" optional="true"/>
-        <expand macro="random_state"/>
+        <expand macro="train_test_split_test_size" optional="true" />
+        <expand macro="random_state" />
         <param argument="group_names" type="text" value="" optional="true" label="Type in group names instead"
-        help="For example: chr6, chr7. This parameter is optional. If used, it will override the holdout size and random seed."/>
-        <yield/>
+        help="For example: chr6, chr7. This parameter is optional. If used, it will override the holdout size and random seed." />
+        <yield />
       </when>
     </conditional>
-    <!--param argument="train_size" type="float" optional="True" value="" label="Train size:"/>-->
+    <!--param argument="train_size" type="float" optional="True" value="" label="Train size:" />-->
   </xml>
 
   <xml name="train_test_split_test_size" token_optional="false">
-    <param name="test_size" type="float" value="0.2" optional="@OPTIONAL@" label="Holdout size" help="Leass than 1, for preportion; greater than 1 (integer), for number of samples."/>
+    <param name="test_size" type="float" value="0.2" optional="@OPTIONAL@" label="Holdout size" help="Leass than 1, for preportion; greater than 1 (integer), for number of samples." />
   </xml>
 
   <xml name="feature_selection_algorithms">
@@ -1061,7 +1091,7 @@
     <option value="SelectFromModel">SelectFromModel - Meta-transformer for selecting features based on importance weights</option>
     <option value="RFE">RFE - Feature ranking with recursive feature elimination</option>
     <option value="RFECV">RFECV - Feature ranking with recursive feature elimination and cross-validated selection of the best number of features</option>
-    <yield/>
+    <yield />
   </xml>
 
   <xml name="feature_selection_algorithm_details">
@@ -1093,24 +1123,24 @@
     <when value="SelectFpr">
       <expand macro="feature_selection_score_function" />
       <section name="options" title="Advanced Options" expanded="False">
-        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest p-value for features to be kept."/>
+        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest p-value for features to be kept." />
       </section>
     </when>
     <when value="SelectFdr">
       <expand macro="feature_selection_score_function" />
       <section name="options" title="Advanced Options" expanded="False">
-        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep."/>
+        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep." />
       </section>
     </when>
     <when value="SelectFwe">
       <expand macro="feature_selection_score_function" />
       <section name="options" title="Advanced Options" expanded="False">
-        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep."/>
+        <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep." />
       </section>
     </when>
     <when value="VarianceThreshold">
       <section name="options" title="Options" expanded="False">
-        <param argument="threshold" type="float" value="0.0" optional="True" label="Threshold" help="Features with a training-set variance lower than this threshold will be removed."/>
+        <param argument="threshold" type="float" value="0.0" optional="True" label="Threshold" help="Features with a training-set variance lower than this threshold will be removed." />
       </section>
     </when>
   </xml>
@@ -1123,13 +1153,13 @@
           <option value="prefitted">No. Load a prefitted estimator</option>
         </param>
         <when value="new">
-          <expand macro="estimator_selector_fs"/>
+          <expand macro="estimator_selector_fs" />
         </when>
         <when value="prefitted">
-          <param name="fitted_estimator" type="data" format='zip' label="Load a prefitted estimator" />
+          <param name="fitted_estimator" type="data" format='h5mlm' label="Load a prefitted estimator" />
         </when>
       </conditional>
-      <expand macro="feature_selection_SelectFromModel_options"/>
+      <expand macro="feature_selection_SelectFromModel_options" />
     </when>
   </xml>
 
@@ -1140,10 +1170,10 @@
           <option value="new" selected="true">Yes</option>
         </param>
         <when value="new">
-          <expand macro="estimator_selector_all"/>
+          <expand macro="estimator_selector_all" />
         </when>
       </conditional>
-      <expand macro="feature_selection_SelectFromModel_options"/>
+      <expand macro="feature_selection_SelectFromModel_options" />
     </when>
   </xml>
 
@@ -1151,13 +1181,13 @@
     <section name="options" title="Advanced Options" expanded="False">
       <param argument="threshold" type="text" value="" optional="true" label="threshold" help="The threshold value to use for feature selection. e.g. 'mean', 'median', '1.25*mean'." />
       <param argument="norm_order" type="integer" value="1" label="norm_order" help="Order of the norm used to filter the vectors of coefficients below threshold in the case where the coef_ attribute of the estimator is of dimension 2. " />
-      <param argument="max_features" type="integer" value="" optional="true" label="The maximum number of features selected scoring above threshold" help="To disable threshold and only select based on max_features, set threshold=-np.inf."/>
+      <param argument="max_features" type="integer" value="" optional="true" label="The maximum number of features selected scoring above threshold" help="To disable threshold and only select based on max_features, set threshold=-np.inf." />
     </section>
   </xml>
 
   <xml name="feature_selection_RFE">
     <when value="RFE">
-      <yield/>
+      <yield />
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="n_features_to_select" type="integer" value="" optional="true" label="n_features_to_select" help="The number of features to select. If None, half of the features are selected." />
         <param argument="step" type="float" value="1" label="step" optional="true" help="Default = 1. " />
@@ -1168,12 +1198,12 @@
 
   <xml name="feature_selection_RFECV_fs">
     <when value="RFECV">
-      <yield/>
+      <yield />
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="step" type="float" value="1" label="step" optional="true" help="Default = 1. " />
-        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected"/>
-        <expand macro="cv"/>
-        <expand macro="scoring_selection"/>
+        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected" />
+        <expand macro="cv" />
+        <expand macro="scoring_selection" />
         <param argument="verbose" type="integer" value="0" label="verbose" help="Controls verbosity of output." />
       </section>
     </when>
@@ -1181,13 +1211,13 @@
 
   <xml name="feature_selection_RFECV_pipeline">
     <when value="RFECV">
-      <yield/>
+      <yield />
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="step" type="float" value="1" label="step" optional="true" help="Default = 1. " />
-        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected"/>
-        <expand macro="cv_reduced"/>
+        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected" />
+        <expand macro="cv_reduced" />
         <!-- TODO: group splitter support-->
-        <expand macro="scoring_selection"/>
+        <expand macro="scoring_selection" />
         <param argument="verbose" type="integer" value="0" label="verbose" help="Controls verbosity of output." />
       </section>
     </when>
@@ -1195,19 +1225,19 @@
 
   <xml name="feature_selection_DyRFECV_fs">
     <when value="DyRFECV">
-      <yield/>
+      <yield />
       <section name="options" title="Advanced Options" expanded="False">
         <param argument="step" type="text" size="30" value="1" label="step" optional="true" help="Default = 1. Support float, int and list." >
           <sanitizer>
             <valid initial="default">
-              <add value="["/>
-              <add value="]"/>
+              <add value="[" />
+              <add value="]" />
             </valid>
           </sanitizer>
         </param>
-        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected"/>
-        <expand macro="cv"/>
-        <expand macro="scoring_selection"/>
+        <param argument="min_features_to_select" type="integer" value="1" optional="true" label="The minimum number of features to be selected" />
+        <expand macro="cv" />
+        <expand macro="scoring_selection" />
         <param argument="verbose" type="integer" value="0" label="verbose" help="Controls verbosity of output." />
       </section>
     </when>
@@ -1217,15 +1247,15 @@
     <!--compare to `feature_selection_fs`, no fitted estimator for SelectFromModel and no custom estimator for RFE and RFECV-->
     <conditional name="fs_algorithm_selector">
       <param name="selected_algorithm" type="select" label="Select a feature selection algorithm">
-        <expand macro="feature_selection_algorithms"/>
+        <expand macro="feature_selection_algorithms" />
       </param>
-      <expand macro="feature_selection_algorithm_details"/>
-      <expand macro="feature_selection_SelectFromModel_no_prefitted"/>
+      <expand macro="feature_selection_algorithm_details" />
+      <expand macro="feature_selection_SelectFromModel_no_prefitted" />
       <expand macro="feature_selection_RFE">
-        <expand macro="estimator_selector_all"/>
+        <expand macro="estimator_selector_all" />
       </expand>  
       <expand macro="feature_selection_RFECV_pipeline">
-        <expand macro="estimator_selector_all"/>
+        <expand macro="estimator_selector_all" />
       </expand>
       <!-- TODO: add DyRFECV to pipeline-->
     </conditional>
@@ -1238,16 +1268,16 @@
           <option value="DyRFECV">DyRFECV - Extended RFECV with changeable steps</option>
         </expand>
       </param>
-      <expand macro="feature_selection_algorithm_details"/>
-      <expand macro="feature_selection_SelectFromModel"/>
+      <expand macro="feature_selection_algorithm_details" />
+      <expand macro="feature_selection_SelectFromModel" />
       <expand macro="feature_selection_RFE">
-        <expand macro="estimator_selector_fs"/>
+        <expand macro="estimator_selector_fs" />
       </expand>  
       <expand macro="feature_selection_RFECV_fs">
-        <expand macro="estimator_selector_fs"/>
+        <expand macro="estimator_selector_fs" />
       </expand>
       <expand macro="feature_selection_DyRFECV_fs">
-        <expand macro="estimator_selector_fs"/>
+        <expand macro="estimator_selector_fs" />
       </expand>
     </conditional>
   </xml>
@@ -1263,78 +1293,84 @@
   </xml>
 
   <xml name="model_validation_common_options">
-    <expand macro="cv"/>
-    <expand macro="verbose"/>
-    <yield/>
+    <expand macro="cv" />
+    <expand macro="verbose" />
+    <yield />
   </xml>
 
-  <xml name="scoring_selection">
+  <xml name="scoring_selection" token_help="Metric to refit the best estimator.">
     <conditional name="scoring">
-      <param name="primary_scoring" type="select" multiple="false" label="Select the primary metric (scoring):" help="Metric to refit the best estimator.">
+      <param name="primary_scoring" type="select" multiple="false" label="Select the primary metric (scoring):" help="@HELP@">
         <option value="default" selected="true">default with estimator</option>
-        <option value="accuracy">Classification -- 'accuracy'</option>
-        <option value="balanced_accuracy">Classification -- 'balanced_accuracy'</option>
-        <option value="average_precision">Classification -- 'average_precision'</option>
-        <option value="f1">Classification -- 'f1'</option>
-        <option value="f1_micro">Classification -- 'f1_micro'</option>
-        <option value="f1_macro">Classification -- 'f1_macro'</option>
-        <option value="f1_weighted">Classification -- 'f1_weighted'</option>
-        <option value="f1_samples">Classification -- 'f1_samples'</option>
-        <option value="neg_log_loss">Classification -- 'neg_log_loss'</option>
-        <option value="precision">Classification -- 'precision'</option>
-        <option value="precision_micro">Classification -- 'precision_micro'</option>
-        <option value="precision_macro">Classification -- 'precision_macro'</option>
-        <option value="precision_wighted">Classification -- 'precision_wighted'</option>
-        <option value="precision_samples">Classification -- 'precision_samples'</option>
-        <option value="recall">Classification -- 'recall'</option>
-        <option value="recall_micro">Classification -- 'recall_micro'</option>
-        <option value="recall_macro">Classification -- 'recall_macro'</option>
-        <option value="recall_wighted">Classification -- 'recall_wighted'</option>
-        <option value="recall_samples">Classification -- 'recall_samples'</option>
-        <option value="roc_auc">Classification -- 'roc_auc'</option>
-        <option value="explained_variance">Regression -- 'explained_variance'</option>
-        <option value="neg_mean_absolute_error">Regression -- 'neg_mean_absolute_error'</option>
-        <option value="neg_mean_squared_error">Regression -- 'neg_mean_squared_error'</option>
-        <option value="neg_mean_squared_log_error">Regression -- 'neg_mean_squared_log_error'</option>
-        <option value="neg_median_absolute_error">Regression -- 'neg_median_absolute_error'</option>
-        <option value="r2">Regression -- 'r2'</option>
-        <option value="max_error">Regression -- 'max_error'</option>
-        <option value="binarize_auc_scorer">anomaly detection -- binarize_auc_scorer</option>
-        <option value="binarize_average_precision_scorer">anomaly detection -- binarize_average_precision_scorer</option>
+        <expand macro="scoring_selection_options" />
       </param>
-      <when value="default"/>
-      <when value="accuracy"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="balanced_accuracy"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="average_precision"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="f1"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="f1_micro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="f1_macro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="f1_weighted"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="f1_samples"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="neg_log_loss"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="precision"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="precision_micro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="precision_macro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="precision_wighted"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="precision_samples"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="recall"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="recall_micro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="recall_macro"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="recall_wighted"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="recall_samples"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="roc_auc"><expand macro="secondary_scoring_selection_classification"/></when>
-      <when value="explained_variance"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="neg_mean_absolute_error"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="neg_mean_squared_error"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="neg_mean_squared_log_error"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="neg_median_absolute_error"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="r2"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="max_error"><expand macro="secondary_scoring_selection_regression"/></when>
-      <when value="binarize_auc_scorer"><expand macro="secondary_scoring_selection_anormaly"/></when>
-      <when value="binarize_average_precision_scorer"><expand macro="secondary_scoring_selection_anormaly"/></when>
+      <when value="default" />
+      <when value="accuracy"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="balanced_accuracy"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="average_precision"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="f1"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="f1_micro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="f1_macro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="f1_weighted"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="f1_samples"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="neg_log_loss"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="precision"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="precision_micro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="precision_macro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="precision_wighted"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="precision_samples"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="recall"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="recall_micro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="recall_macro"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="recall_wighted"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="recall_samples"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="roc_auc"><expand macro="secondary_scoring_selection_classification" /></when>
+      <when value="explained_variance"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="neg_mean_absolute_error"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="neg_mean_squared_error"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="neg_mean_squared_log_error"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="neg_median_absolute_error"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="r2"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="max_error"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="spearman_correlation"><expand macro="secondary_scoring_selection_regression" /></when>
+      <when value="binarize_auc_scorer"><expand macro="secondary_scoring_selection_anormaly" /></when>
+      <when value="binarize_average_precision_scorer"><expand macro="secondary_scoring_selection_anormaly" /></when>
     </conditional>
   </xml>
 
+  <xml name="scoring_selection_options">
+      <option value="accuracy">Classification -- 'accuracy'</option>
+      <option value="balanced_accuracy">Classification -- 'balanced_accuracy'</option>
+      <option value="average_precision">Classification -- 'average_precision'</option>
+      <option value="f1">Classification -- 'f1'</option>
+      <option value="f1_micro">Classification -- 'f1_micro'</option>
+      <option value="f1_macro">Classification -- 'f1_macro'</option>
+      <option value="f1_weighted">Classification -- 'f1_weighted'</option>
+      <option value="f1_samples">Classification -- 'f1_samples'</option>
+      <option value="neg_log_loss">Classification -- 'neg_log_loss'</option>
+      <option value="precision">Classification -- 'precision'</option>
+      <option value="precision_micro">Classification -- 'precision_micro'</option>
+      <option value="precision_macro">Classification -- 'precision_macro'</option>
+      <option value="precision_wighted">Classification -- 'precision_wighted'</option>
+      <option value="precision_samples">Classification -- 'precision_samples'</option>
+      <option value="recall">Classification -- 'recall'</option>
+      <option value="recall_micro">Classification -- 'recall_micro'</option>
+      <option value="recall_macro">Classification -- 'recall_macro'</option>
+      <option value="recall_wighted">Classification -- 'recall_wighted'</option>
+      <option value="recall_samples">Classification -- 'recall_samples'</option>
+      <option value="roc_auc">Classification -- 'roc_auc'</option>
+      <option value="explained_variance">Regression -- 'explained_variance'</option>
+      <option value="neg_mean_absolute_error">Regression -- 'neg_mean_absolute_error'</option>
+      <option value="neg_mean_squared_error">Regression -- 'neg_mean_squared_error'</option>
+      <option value="neg_mean_squared_log_error">Regression -- 'neg_mean_squared_log_error'</option>
+      <option value="neg_median_absolute_error">Regression -- 'neg_median_absolute_error'</option>
+      <option value="r2">Regression -- 'r2'</option>
+      <option value="max_error">Regression -- 'max_error'</option>
+      <option value="spearman_correlation">Regression -- Spearman's rank correlation coefficient</option>
+      <option value="binarize_auc_scorer">anomaly detection -- binarize_auc_scorer</option>
+      <option value="binarize_average_precision_scorer">anomaly detection -- binarize_average_precision_scorer</option>
+  </xml>
+
   <xml name="secondary_scoring_selection_classification">
     <param name="secondary_scoring" type="select" multiple="true" label="Additional scoring used in multi-metric mode:" help="If the same metric with the primary is chosen, the metric will be ignored.">
       <option value="accuracy">Classification -- 'accuracy'</option>
@@ -1369,37 +1405,36 @@
       <option value="neg_median_absolute_error">Regression -- 'neg_median_absolute_error'</option>
       <option value="r2">Regression -- 'r2'</option>
       <option value="max_error">Regression -- 'max_error'</option>
+      <option value="spearman_correlation">Regression -- Spearman's rank correlation coefficient</option>
     </param>
   </xml>
 
   <xml name="secondary_scoring_selection_anormaly">
     <param name="secondary_scoring" type="select" multiple="true" label="Additional scoring used in multi-metric mode:" help="If the same metric with the primary is chosen, the metric will be ignored.">
-      <option value="binarize_auc_scorer">anomaly detection -- binarize_auc_scorer</option>
-      <option value="binarize_average_precision_scorer">anomaly detection -- binarize_average_precision_scorer</option>
+      <expand macro="scoring_selection_options" />
     </param>
   </xml>
 
   <xml name="pre_dispatch" token_type="hidden" token_default_value="all" token_help="Number of predispatched jobs for parallel execution">
-    <param argument="pre_dispatch" type="@TYPE@" value="@DEFAULT_VALUE@" optional="true" label="pre_dispatch" help="@HELP@"/>
+    <param argument="pre_dispatch" type="@TYPE@" value="@DEFAULT_VALUE@" optional="true" label="pre_dispatch" help="@HELP@" />
   </xml>
 
   <xml name="estimator_and_hyperparameter">
-    <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object"/>
+    <param name="infile_estimator" type="data" format="h5mlm" label="Choose the dataset containing pipeline/estimator object" />
     <section name="hyperparams_swapping" title="Hyperparameter Swapping" expanded="false">
-      <param name="infile_params" type="data" format="tabular" optional="true" label="Choose the dataset containing hyperparameters for the pipeline/estimator above" help="This dataset could be the output of `get_params` in the `Estimator Attributes` tool."/>
       <repeat name="param_set" min="1" max="30" title="New hyperparameter setting">
           <param name="sp_name" type="select" optional="true" label="Choose a parameter name (with current value)">
-            <options from_dataset="infile_params" startswith="@">
-              <column name="name" index="2"/>
-              <column name="value" index="1"/>
-              <filter type="unique_value" name="unique_param" column="1"/>
+            <options from_dataset="infile_estimator" meta_file_key="hyper_params" startswith="@">
+              <column name="name" index="2" />
+              <column name="value" index="1" />
+              <filter type="unique_value" name="unique_param" column="1" />
             </options>
           </param>
           <param name="sp_value" type="text" value="" optional="true" label="New value" help="Supports int, float, boolean, single quoted string, and selected object constructor. Similar to the `Parameter settings for search` section in `searchcv` tool except that only single value is expected here.">
             <sanitizer>
               <valid initial="default">
-                <add value="&apos;"/>
-                <add value="&quot;"/>
+                <add value="&apos;" />
+                <add value="&quot;" />
               </valid>
             </sanitizer>
           </param>
@@ -1408,13 +1443,13 @@
   </xml>
 
   <xml name="search_cv_options">
-      <expand macro="scoring_selection"/>
-      <expand macro="model_validation_common_options"/>
+      <expand macro="scoring_selection" />
+      <expand macro="model_validation_common_options" />
       <!--expand macro="pre_dispatch" default_value="2*n_jobs" help="Controls the number of jobs that get dispatched during parallel execution"/-->
-      <param argument="iid" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="iid" help="If True, data is identically distributed across the folds"/>
-      <!--param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="refit" help="Refit an estimator using the best found parameters on the whole dataset. Be aware that `refit=True` invokes extra computation, but it's REQUIRED for outputting the best estimator!"/> -->
-      <param argument="error_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Raise fit error:" help="If false, the metric score is assigned to NaN if an error occurs in estimator fitting and FitFailedWarning is raised."/>
-      <param argument="return_train_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="return_train_score" help=""/>
+      <!--param argument="iid" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="iid" help="If True, data is identically distributed across the folds" />-->
+      <!--param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="refit" help="Refit an estimator using the best found parameters on the whole dataset. Be aware that `refit=True` invokes extra computation, but it's REQUIRED for outputting the best estimator!" /> -->
+      <param argument="error_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Raise fit error:" help="If false, the metric score is assigned to NaN if an error occurs in estimator fitting and FitFailedWarning is raised." />
+      <param argument="return_train_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="return_train_score" help="" />
   </xml>
 
   <xml name="estimator_module_options">
@@ -1425,7 +1460,7 @@
       <option value="tree">sklearn.tree</option>
       <option value="neighbors">sklearn.neighbors</option>
       <option value="xgboost">xgboost</option>
-      <yield/>
+      <yield />
   </xml>
 
   <xml name="estimator_suboptions">
@@ -1439,7 +1474,7 @@
           <option value="SVC">SVC</option>
           <option value="SVR">SVR</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="linear_model">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
@@ -1476,7 +1511,7 @@
           <option value="SGDRegressor">SGDRegressor</option>
           <option value="TheilSenRegressor">TheilSenRegressor</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="ensemble">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
@@ -1496,7 +1531,7 @@
           <option value="RandomTreesEmbedding">RandomTreesEmbedding</option>
           <!--option value="VotingClassifier">VotingClassifier</option-->
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="naive_bayes">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
@@ -1504,7 +1539,7 @@
           <option value="GaussianNB">GaussianNB</option>
           <option value="MultinomialNB">MultinomialNB</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="tree">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
@@ -1513,7 +1548,7 @@
           <option value="ExtraTreeClassifier">ExtraTreeClassifier</option>
           <option value="ExtraTreeRegressor">ExtraTreeRegressor</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="neighbors">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
@@ -1528,24 +1563,24 @@
           <option value="NearestCentroid">NearestCentroid</option>
           <option value="NearestNeighbors">NearestNeighbors</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
       <when value="xgboost">
         <param name="selected_estimator" type="select" label="Choose estimator class:">
           <option value="XGBRegressor" selected="true">XGBRegressor</option>
           <option value="XGBClassifier">XGBClassifier</option>
         </param>
-        <expand macro="estimator_params_text"/>
+        <expand macro="estimator_params_text" />
       </when>
-      <yield/>
+      <yield />
   </xml>
 
   <xml name="estimator_selector_all">
     <conditional name="estimator_selector">
       <param name="selected_module" type="select" label="Choose the module that contains target estimator:" >
-        <expand macro="estimator_module_options"/>
+        <expand macro="estimator_module_options" />
       </param>
-      <expand macro="estimator_suboptions"/>
+      <expand macro="estimator_suboptions" />
     </conditional>
   </xml>
 
@@ -1553,12 +1588,12 @@
     <conditional name="estimator_selector">
       <param name="selected_module" type="select" label="Choose the module that contains target estimator:" >
         <expand macro="estimator_module_options">
-            <option value="custom_estimator">Load a custom estimator</option>
+          <option value="custom_estimator">Load a custom estimator</option>
         </expand>
       </param>
       <expand macro="estimator_suboptions">
         <when value="custom_estimator">
-            <param name="c_estimator" type="data" format="zip" label="Choose the dataset containing the custom estimator or pipeline:"/>
+          <param name="c_estimator" type="data" format="h5mlm" label="Choose the dataset containing the custom estimator or pipeline:" />
         </when>
       </expand>
     </conditional>
@@ -1569,7 +1604,7 @@
     <param name="text_params" type="text" value="@DEFAULT_VALUE@" optional="true" label="@LABEL@" help="@HELP@">
       <sanitizer>
         <valid initial="default">
-          <add value="&apos;"/>
+          <add value="&apos;" />
         </valid>
       </sanitizer>
     </param>
@@ -1585,19 +1620,19 @@
       </param>
       <when value="Nystroem">
         <expand macro="estimator_params_text"
-              help="Default(=blank): coef0=None, degree=None, gamma=None, kernel='rbf', kernel_params=None, n_components=100, random_state=None. No double quotes"/>
+              help="Default(=blank): coef0=None, degree=None, gamma=None, kernel='rbf', kernel_params=None, n_components=100, random_state=None. No double quotes" />
       </when>
       <when value="RBFSampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): gamma=1.0, n_components=100, random_state=None."/>
+              help="Default(=blank): gamma=1.0, n_components=100, random_state=None." />
       </when>
       <when value="AdditiveChi2Sampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sample_interval=None, sample_steps=2."/>
+              help="Default(=blank): sample_interval=None, sample_steps=2." />
       </when>
       <when value="SkewedChi2Sampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): n_components=100, random_state=None, skewedness=1.0."/>
+              help="Default(=blank): n_components=100, random_state=None, skewedness=1.0." />
       </when>
     </conditional>
   </xml>
@@ -1621,51 +1656,51 @@
       </param>
       <when value="DictionaryLearning">
         <expand macro="estimator_params_text"
-              help="Default(=blank): alpha=1, code_init=None, dict_init=None, fit_algorithm='lars', max_iter=1000, n_components=None, random_state=None, split_sign=False, tol=1e-08, transform_algorithm='omp', transform_alpha=None, transform_n_nonzero_coefs=None, verbose=False."/>
+                help="Default(=blank): alpha=1, code_init=None, dict_init=None, fit_algorithm='lars', max_iter=1000, n_components=None, random_state=None, split_sign=False, tol=1e-08, transform_algorithm='omp', transform_alpha=None, transform_n_nonzero_coefs=None, verbose=False." />
       </when>
       <when value="FactorAnalysis">
         <expand macro="estimator_params_text"
-              help="Default(=blank): copy=True, iterated_power=3, max_iter=1000, n_components=None, noise_variance_init=None, random_state=0, svd_method='randomized', tol=0.01."/>
+                help="Default(=blank): copy=True, iterated_power=3, max_iter=1000, n_components=None, noise_variance_init=None, random_state=0, svd_method='randomized', tol=0.01." />
       </when>
       <when value="FastICA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): algorithm='parallel', fun='logcosh', fun_args=None, max_iter=200, n_components=None, random_state=None, tol=0.0001, w_init=None, whiten=True. No double quotes."/>
+                help="Default(=blank): algorithm='parallel', fun='logcosh', fun_args=None, max_iter=200, n_components=None, random_state=None, tol=0.0001, w_init=None, whiten=True. No double quotes." />
       </when>
       <when value="IncrementalPCA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): batch_size=None, copy=True, n_components=None, whiten=False."/>
+                help="Default(=blank): batch_size=None, copy=True, n_components=None, whiten=False." />
       </when>
       <when value="KernelPCA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): alpha=1.0, coef0=1, copy_X=True, degree=3, eigen_solver='auto', fit_inverse_transform=False, gamma=None, kernel='linear', kernel_params=None, max_iter=None, n_components=None, random_state=None, remove_zero_eig=False, tol=0. No double quotes."/>
+                help="Default(=blank): alpha=1.0, coef0=1, copy_X=True, degree=3, eigen_solver='auto', fit_inverse_transform=False, gamma=None, kernel='linear', kernel_params=None, max_iter=None, n_components=None, random_state=None, remove_zero_eig=False, tol=0. No double quotes." />
       </when>
       <when value="LatentDirichletAllocation">
         <expand macro="estimator_params_text"
-              help="Default(=blank): batch_size=128, doc_topic_prior=None, evaluate_every=-1, learning_decay=0.7, learning_method=None, learning_offset=10.0, max_doc_update_iter=100, max_iter=10, mean_change_tol=0.001, n_components=10, n_topics=None, perp_tol=0.1, random_state=None, topic_word_prior=None, total_samples=1000000.0, verbose=0."/>
+                help="Default(=blank): batch_size=128, doc_topic_prior=None, evaluate_every=-1, learning_decay=0.7, learning_method=None, learning_offset=10.0, max_doc_update_iter=100, max_iter=10, mean_change_tol=0.001, n_components=10, n_topics=None, perp_tol=0.1, random_state=None, topic_word_prior=None, total_samples=1000000.0, verbose=0." />
       </when>
       <when value="MiniBatchDictionaryLearning">
         <expand macro="estimator_params_text"
-              help="Default(=blank): alpha=1, batch_size=3, dict_init=None, fit_algorithm='lars', n_components=None, n_iter=1000, random_state=None, shuffle=True, split_sign=False, transform_algorithm='omp', transform_alpha=None, transform_n_nonzero_coefs=None, verbose=False."/>
+                help="Default(=blank): alpha=1, batch_size=3, dict_init=None, fit_algorithm='lars', n_components=None, n_iter=1000, random_state=None, shuffle=True, split_sign=False, transform_algorithm='omp', transform_alpha=None, transform_n_nonzero_coefs=None, verbose=False." />
       </when>
       <when value="MiniBatchSparsePCA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): alpha=1, batch_size=3, callback=None, method='lars', n_components=None, n_iter=100, random_state=None, ridge_alpha=0.01, shuffle=True, verbose=False."/>
+                help="Default(=blank): alpha=1, batch_size=3, callback=None, method='lars', n_components=None, n_iter=100, random_state=None, ridge_alpha=0.01, shuffle=True, verbose=False." />
       </when>
       <when value="NMF">
         <expand macro="estimator_params_text"
-              help="Default(=blank): alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_iter=200, n_components=None, random_state=None, shuffle=False, solver='cd', tol=0.0001, verbose=0."/>
+                help="Default(=blank): alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_iter=200, n_components=None, random_state=None, shuffle=False, solver='cd', tol=0.0001, verbose=0." />
       </when>
       <when value="PCA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False."/>
+                help="Default(=blank): copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False." />
       </when>
       <when value="SparsePCA">
         <expand macro="estimator_params_text"
-              help="Default(=blank): U_init=None, V_init=None, alpha=1, max_iter=1000, method='lars', n_components=None, random_state=None, ridge_alpha=0.01, tol=1e-08, verbose=False."/>
+                help="Default(=blank): U_init=None, V_init=None, alpha=1, max_iter=1000, method='lars', n_components=None, random_state=None, ridge_alpha=0.01, tol=1e-08, verbose=False." />
       </when>
       <when value="TruncatedSVD">
         <expand macro="estimator_params_text"
-              help="Default(=blank): algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0."/>
+                help="Default(=blank): algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0." />
       </when>
     </conditional>
   </xml>
@@ -1677,7 +1712,7 @@
       </param>
       <when value="FeatureAgglomeration">
         <expand macro="estimator_params_text"
-              help="Default(=blank): affinity='euclidean', compute_full_tree='auto', connectivity=None, linkage='ward', memory=None, n_clusters=2, pooling_func=np.mean."/>
+                help="Default(=blank): affinity='euclidean', compute_full_tree='auto', connectivity=None, linkage='ward', memory=None, n_clusters=2, pooling_func=np.mean." />
       </when>
     </conditional>
   </xml>
@@ -1694,27 +1729,27 @@
       </param>
       <when value="ReliefF">
         <expand macro="estimator_params_text"
-              help="Default(=blank): discrete_threshold=10, n_features_to_select=10, n_neighbors=100, verbose=False."/>
+                help="Default(=blank): discrete_threshold=10, n_features_to_select=10, n_neighbors=100, verbose=False." />
       </when>
       <when value="SURF">
         <expand macro="estimator_params_text"
-              help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False."/>
+                help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False." />
       </when>
       <when value="SURFstar">
         <expand macro="estimator_params_text"
-              help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False."/>
+                help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False." />
       </when>
       <when value="MultiSURF">
         <expand macro="estimator_params_text"
-              help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False."/>
+                help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False." />
       </when>
       <when value="MultiSURFstar">
         <expand macro="estimator_params_text"
-              help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False."/>
+                help="Default(=blank): discrete_threshold=10, n_features_to_select=10, verbose=False." />
       </when>
       <!--when value="TuRF">
         <expand macro="estimator_params_text"
-              help="Default(=blank): core_algorithm='ReliefF', discrete_threshold=10, n_features_to_select=10, n_neighbors=100, pct=0.5, verbose=False."/>
+              help="Default(=blank): core_algorithm='ReliefF', discrete_threshold=10, n_features_to_select=10, n_neighbors=100, pct=0.5, verbose=False." />
       </when> -->
     </conditional>
   </xml>
@@ -1745,142 +1780,105 @@
       </param>
       <when value="under_sampling.ClusterCentroids">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, estimator=None, voting='auto'."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, estimator=None, voting='auto'." />
       </when>
       <when value="under_sampling.CondensedNearestNeighbour">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=None, n_seeds_S=1."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=None, n_seeds_S=1." />
       </when>
       <when value="under_sampling.EditedNearestNeighbours">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, max_iter=100, kind_sel='all'."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, max_iter=100, kind_sel='all'." />
       </when>
       <when value="under_sampling.RepeatedEditedNearestNeighbours">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, max_iter=100, kind_sel='all'."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, max_iter=100, kind_sel='all'." />
       </when>
       <when value="under_sampling.AllKNN">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, kind_sel='all', allow_minority=False."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, kind_sel='all', allow_minority=False." />
       </when>
       <when value="under_sampling.InstanceHardnessThreshold">
         <expand macro="estimator_params_text"
-              help="Default(=blank): estimator=None, sampling_strategy='auto', random_state=None, cv=5."/>
+                help="Default(=blank): estimator=None, sampling_strategy='auto', random_state=None, cv=5." />
       </when>
       <when value="under_sampling.NearMiss">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, version=1, n_neighbors=3, n_neighbors_ver3=3."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, version=1, n_neighbors=3, n_neighbors_ver3=3." />
       </when>
       <when value="under_sampling.NeighbourhoodCleaningRule">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, kind_sel='all', threshold_cleaning=0.5."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=3, kind_sel='all', threshold_cleaning=0.5." />
       </when>
       <when value="under_sampling.OneSidedSelection">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=None, n_seeds_S=1."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=None, n_seeds_S=1." />
       </when>
       <when value="under_sampling.RandomUnderSampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, replacement=False."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, replacement=False." />
       </when>
       <when value="under_sampling.TomekLinks">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None." />
       </when>
       <when value="over_sampling.ADASYN">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=5."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, n_neighbors=5." />
       </when>
       <when value="over_sampling.RandomOverSampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None." />
       </when>
       <when value="over_sampling.SMOTE">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, k_neighbors=5."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, k_neighbors=5." />
       </when>
       <when value="over_sampling.SVMSMOTE">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', k_neighbors=5, m_neighbors=10, out_step=0.5, random_state=None, svm_estimator=None."/>
+                help="Default(=blank): sampling_strategy='auto', k_neighbors=5, m_neighbors=10, out_step=0.5, random_state=None, svm_estimator=None." />
       </when>
       <when value="over_sampling.BorderlineSMOTE">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', k_neighbors=5, kind='borderline-1', m_neighbors=10, random_state=None."/>
+                help="Default(=blank): sampling_strategy='auto', k_neighbors=5, kind='borderline-1', m_neighbors=10, random_state=None." />
       </when>
       <when value="over_sampling.SMOTENC">
         <expand macro="estimator_params_text"
-              help="Default: categorical_features=[], sampling_strategy='auto', random_state=None, k_neighbors=5."/>
+                help="Default: categorical_features=[], sampling_strategy='auto', random_state=None, k_neighbors=5." />
       </when>
       <when value="combine.SMOTEENN">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, smote=None, enn=None."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, smote=None, enn=None." />
       </when>
       <when value="combine.SMOTETomek">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, smote=None, tomek=None."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, smote=None, tomek=None." />
       </when>
       <when value="Z_RandomOverSampler">
         <expand macro="estimator_params_text"
-              help="Default(=blank): sampling_strategy='auto', random_state=None, negative_thres=0, positive_thres=-1."/>
+                help="Default(=blank): sampling_strategy='auto', random_state=None, negative_thres=0, positive_thres=-1." />
       </when>
     </conditional>
   </xml>
 
-  <xml name="stacking_ensemble_inputs">
-    <section name="options" title="Advanced Options" expanded="false">
-        <yield/>
-        <param argument="use_features_in_secondary" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false"/>
-        <param argument="store_train_meta_features" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false"/>
-    </section>
-  </xml>
-
-  <xml name="stacking_base_estimator">
-    <conditional name="estimator_selector">
-        <param name="selected_module" type="select" label="Choose the module that contains target estimator:" >
-            <expand macro="estimator_module_options">
-                <option value="custom_estimator">Load a custom estimator</option>
-            </expand>
-        </param>
-        <expand macro="estimator_suboptions">
-            <when value="custom_estimator">
-                <param name="c_estimator" type="data" format="zip" label="Choose the dataset containing the custom estimator or pipeline"/>
-            </when>
-        </expand>
-    </conditional>
-  </xml>
-
-  <xml name="stacking_voting_weights">
-    <section name="options" title="Advanced Options" expanded="false">
-        <param argument="weights" type="text" value="[]" optional="true" help="Sequence of weights (float or int). Uses uniform weights if None (`[]`).">
-          <sanitizer>
-            <valid initial="default">
-              <add value="["/>
-              <add value="]"/>
-            </valid>
-          </sanitizer>
-        </param>
-        <yield/>
-    </section>
-  </xml>
-
   <xml name="preprocessors_sequence_encoders">
     <conditional name="encoder_selection">
-        <param name="encoder_type" type="select" label="Choose the sequence encoder class">
-            <option value="GenomeOneHotEncoder">GenomeOneHotEncoder</option>
-            <option value="ProteinOneHotEncoder">ProteinOneHotEncoder</option>
-        </param>
-        <when value="GenomeOneHotEncoder">
-            <expand macro="preprocessors_sequence_encoder_arguments"/>
-        </when>
-        <when value="ProteinOneHotEncoder">
-            <expand macro="preprocessors_sequence_encoder_arguments"/>
-        </when>
+      <param name="encoder_type" type="select" label="Choose the sequence encoder class">
+        <option value="GenomeOneHotEncoder">GenomeOneHotEncoder</option>
+        <option value="ProteinOneHotEncoder">ProteinOneHotEncoder</option>
+      </param>
+      <when value="GenomeOneHotEncoder">
+        <expand macro="preprocessors_sequence_encoder_arguments" />
+      </when>
+      <when value="ProteinOneHotEncoder">
+        <expand macro="preprocessors_sequence_encoder_arguments" />
+      </when>
     </conditional>
   </xml>
 
   <xml name="preprocessors_sequence_encoder_arguments">
-    <param argument="seq_length" type="integer" value="" min="0" optional="true" help="Integer. Sequence length"/>
-    <param argument="padding" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" help="Whether to pad or truncate sequence to meet the sequence length."/>
+    <param argument="seq_length" type="integer" value="" min="0" optional="true" help="Integer. Sequence length" />
+    <param argument="padding" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" help="Whether to pad or truncate sequence to meet the sequence length." />
   </xml>
 
   <!-- Outputs -->
@@ -1888,10 +1886,10 @@
   <xml name="output">
     <outputs>
       <data format="tabular" name="outfile_predict">
-          <filter>selected_tasks['selected_task'] == 'load'</filter>
+        <filter>selected_tasks['selected_task'] == 'load'</filter>
       </data>
-      <data format="zip" name="outfile_fit" label="${tool.name}.${selected_tasks.selected_algorithms.selected_algorithm}">
-          <filter>selected_tasks['selected_task'] == 'train'</filter>
+      <data format="h5mlm" name="outfile_fit" label="${tool.name}.${selected_tasks.selected_algorithms.selected_algorithm}">
+        <filter>selected_tasks['selected_task'] == 'train'</filter>
       </data>
     </outputs>
   </xml>
@@ -1899,40 +1897,40 @@
   <!--Citations-->
   <xml name="eden_citation">
     <citations>
-        <citation type="doi">10.5281/zenodo.15094</citation>
+      <citation type="doi">10.5281/zenodo.15094</citation>
     </citations>
   </xml>
 
   <xml name="sklearn_citation">
     <citations>
-        <citation type="bibtex">
-          @article{scikit-learn,
-            title={Scikit-learn: Machine Learning in {P}ython},
-            author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
-                    and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
-                    and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
-                    Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
-            journal={Journal of Machine Learning Research},
-            volume={12},
-            pages={2825--2830},
-            year={2011}
-          }
-        </citation>
-        <yield/>
+      <citation type="bibtex">
+        @article{scikit-learn,
+          title={Scikit-learn: Machine Learning in {P}ython},
+          author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
+                  and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
+                  and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
+                  Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
+          journal={Journal of Machine Learning Research},
+          volume={12},
+          pages={2825--2830},
+          year={2011}
+        }
+      </citation>
+      <yield />
     </citations>
   </xml>
 
   <xml name="scipy_citation">
     <citations>
-        <citation type="bibtex">
-          @Misc{,
-          author =    {Eric Jones and Travis Oliphant and Pearu Peterson and others},
-          title =     {{SciPy}: Open source scientific tools for {Python}},
-          year =      {2001--},
-          url = "http://www.scipy.org/",
-          note = {[Online; accessed 2016-04-09]}
-        }
-        </citation>
+      <citation type="bibtex">
+        @Misc{,
+        author =    {Eric Jones and Travis Oliphant and Pearu Peterson and others},
+        title =     {{SciPy}: Open source scientific tools for {Python}},
+        year =      {2001--},
+        url = "http://www.scipy.org/",
+        note = {[Online; accessed 2016-04-09]}
+      }
+      </citation>
     </citations>
   </xml>