Mercurial > repos > bgruening > stacking_ensemble_models
diff keras_train_and_eval.py @ 3:0a1812986bc3 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 11:10:37 +0000 |
parents | 38c4f8a98038 |
children | ba7fb6b33cd0 |
line wrap: on
line diff
--- a/keras_train_and_eval.py Mon Dec 16 10:07:37 2019 +0000 +++ b/keras_train_and_eval.py Wed Aug 09 11:10:37 2023 +0000 @@ -1,56 +1,69 @@ import argparse -import joblib import json -import numpy as np import os -import pandas as pd -import pickle import warnings from itertools import chain -from scipy.io import mmread -from sklearn.pipeline import Pipeline -from sklearn.metrics.scorer import _check_multimetric_scoring -from sklearn import model_selection -from sklearn.model_selection._validation import _score -from sklearn.model_selection import _search, _validation -from sklearn.utils import indexable, safe_indexing -from galaxy_ml.externals.selene_sdk.utils import compute_score +import joblib +import numpy as np +import pandas as pd +from galaxy_ml.keras_galaxy_models import ( + _predict_generator, + KerasGBatchClassifier, +) +from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 from galaxy_ml.model_validations import train_test_split -from galaxy_ml.keras_galaxy_models import _predict_generator -from galaxy_ml.utils import (SafeEval, get_scoring, load_model, - read_columns, try_get_attr, get_module, - clean_params, get_main_estimator) - +from galaxy_ml.utils import ( + clean_params, + gen_compute_scores, + get_main_estimator, + get_module, + get_scoring, + read_columns, + SafeEval +) +from scipy.io import mmread +from sklearn.metrics._scorer import _check_multimetric_scoring +from sklearn.model_selection._validation import _score +from sklearn.utils import _safe_indexing, indexable -_fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') -setattr(_search, '_fit_and_score', _fit_and_score) -setattr(_validation, '_fit_and_score', _fit_and_score) - -N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) -CACHE_DIR = os.path.join(os.getcwd(), 'cached') -del os -NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', - 'nthread', 'callbacks') -ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', - 'CSVLogger', 'None') +N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) +CACHE_DIR = os.path.join(os.getcwd(), "cached") +NON_SEARCHABLE = ( + "n_jobs", + "pre_dispatch", + "memory", + "_path", + "_dir", + "nthread", + "callbacks", +) +ALLOWED_CALLBACKS = ( + "EarlyStopping", + "TerminateOnNaN", + "ReduceLROnPlateau", + "CSVLogger", + "None", +) def _eval_swap_params(params_builder): swap_params = {} - for p in params_builder['param_set']: - swap_value = p['sp_value'].strip() - if swap_value == '': + for p in params_builder["param_set"]: + swap_value = p["sp_value"].strip() + if swap_value == "": continue - param_name = p['sp_name'] + param_name = p["sp_name"] if param_name.lower().endswith(NON_SEARCHABLE): - warnings.warn("Warning: `%s` is not eligible for search and was " - "omitted!" % param_name) + warnings.warn( + "Warning: `%s` is not eligible for search and was " + "omitted!" % param_name + ) continue - if not swap_value.startswith(':'): + if not swap_value.startswith(":"): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(swap_value) else: @@ -77,23 +90,24 @@ else: new_arrays.append(arr) - if kwargs['shuffle'] == 'None': - kwargs['shuffle'] = None + if kwargs["shuffle"] == "None": + kwargs["shuffle"] = None - group_names = kwargs.pop('group_names', None) + group_names = kwargs.pop("group_names", None) if group_names is not None and group_names.strip(): - group_names = [name.strip() for name in - group_names.split(',')] + group_names = [name.strip() for name in group_names.split(",")] new_arrays = indexable(*new_arrays) - groups = kwargs['labels'] + groups = kwargs["labels"] n_samples = new_arrays[0].shape[0] index_arr = np.arange(n_samples) test = index_arr[np.isin(groups, group_names)] train = index_arr[~np.isin(groups, group_names)] - rval = list(chain.from_iterable( - (safe_indexing(a, train), - safe_indexing(a, test)) for a in new_arrays)) + rval = list( + chain.from_iterable( + (_safe_indexing(a, train), _safe_indexing(a, test)) for a in new_arrays + ) + ) else: rval = train_test_split(*new_arrays, **kwargs) @@ -103,125 +117,140 @@ return rval -def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): - """ output scores based on input scorer +def _evaluate_keras_and_sklearn_scores( + estimator, + data_generator, + X, + y=None, + sk_scoring=None, + steps=None, + batch_size=32, + return_predictions=False, +): + """output scores for bother keras and sklearn metrics Parameters - ---------- - y_true : array - True label or target values - pred_probas : array - Prediction values, probability for classification problem - scorer : dict - dict of `sklearn.metrics.scorer.SCORER` - is_multimetric : bool, default is True + ----------- + estimator : object + Fitted `galaxy_ml.keras_galaxy_models.KerasGBatchClassifier`. + data_generator : object + From `galaxy_ml.preprocessors.ImageDataFrameBatchGenerator`. + X : 2-D array + Contains indecies of images that need to be evaluated. + y : None + Target value. + sk_scoring : dict + Galaxy tool input parameters. + steps : integer or None + Evaluation/prediction steps before stop. + batch_size : integer + Number of samples in a batch + return_predictions : bool, default is False + Whether to return predictions and true labels. """ - if y_true.ndim == 1 or y_true.shape[-1] == 1: - pred_probas = pred_probas.ravel() - pred_labels = (pred_probas > 0.5).astype('int32') - targets = y_true.ravel().astype('int32') - if not is_multimetric: - preds = pred_labels if scorer.__class__.__name__ == \ - '_PredictScorer' else pred_probas - score = scorer._score_func(targets, preds, **scorer._kwargs) + scores = {} - return score - else: - scores = {} - for name, one_scorer in scorer.items(): - preds = pred_labels if one_scorer.__class__.__name__\ - == '_PredictScorer' else pred_probas - score = one_scorer._score_func(targets, preds, - **one_scorer._kwargs) - scores[name] = score - - # TODO: multi-class metrics - # multi-label + generator = data_generator.flow(X, y=y, batch_size=batch_size) + # keras metrics evaluation + # handle scorer, convert to scorer dict + generator.reset() + score_results = estimator.model_.evaluate_generator(generator, steps=steps) + metrics_names = estimator.model_.metrics_names + if not isinstance(metrics_names, list): + scores[metrics_names] = score_results else: - pred_labels = (pred_probas > 0.5).astype('int32') - targets = y_true.astype('int32') - if not is_multimetric: - preds = pred_labels if scorer.__class__.__name__ == \ - '_PredictScorer' else pred_probas - score, _ = compute_score(preds, targets, - scorer._score_func) - return score - else: - scores = {} - for name, one_scorer in scorer.items(): - preds = pred_labels if one_scorer.__class__.__name__\ - == '_PredictScorer' else pred_probas - score, _ = compute_score(preds, targets, - one_scorer._score_func) - scores[name] = score + scores = dict(zip(metrics_names, score_results)) + + if sk_scoring["primary_scoring"] == "default" and not return_predictions: + return scores + + generator.reset() + predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) - return scores + # for sklearn metrics + if sk_scoring["primary_scoring"] != "default": + scorer = get_scoring(sk_scoring) + if not isinstance(scorer, (dict, list)): + scorer = [sk_scoring["primary_scoring"]] + scorer = _check_multimetric_scoring(estimator, scoring=scorer) + sk_scores = gen_compute_scores(y_true, predictions, scorer) + scores.update(sk_scores) + + if return_predictions: + return scores, predictions, y_true + else: + return scores, None, None -def main(inputs, infile_estimator, infile1, infile2, - outfile_result, outfile_object=None, - outfile_weights=None, outfile_y_true=None, - outfile_y_preds=None, groups=None, - ref_seq=None, intervals=None, targets=None, - fasta_path=None): +def main( + inputs, + infile_estimator, + infile1, + infile2, + outfile_result, + outfile_object=None, + outfile_y_true=None, + outfile_y_preds=None, + groups=None, + ref_seq=None, + intervals=None, + targets=None, + fasta_path=None, +): """ Parameter --------- inputs : str - File path to galaxy tool parameter + File path to galaxy tool parameter. infile_estimator : str - File path to estimator + File path to estimator. infile1 : str - File path to dataset containing features + File path to dataset containing features. infile2 : str - File path to dataset containing target values + File path to dataset containing target values. outfile_result : str - File path to save the results, either cv_results or test result + File path to save the results, either cv_results or test result. outfile_object : str, optional - File path to save searchCV object - - outfile_weights : str, optional - File path to save deep learning model weights + File path to save searchCV object. outfile_y_true : str, optional - File path to target values for prediction + File path to target values for prediction. outfile_y_preds : str, optional - File path to save deep learning model weights + File path to save predictions. groups : str - File path to dataset containing groups labels + File path to dataset containing groups labels. ref_seq : str - File path to dataset containing genome sequence file + File path to dataset containing genome sequence file. intervals : str - File path to dataset containing interval file + File path to dataset containing interval file. targets : str - File path to dataset compressed target bed file + File path to dataset compressed target bed file. fasta_path : str - File path to dataset containing fasta file + File path to dataset containing fasta file. """ - warnings.simplefilter('ignore') + warnings.simplefilter("ignore") - with open(inputs, 'r') as param_handler: + with open(inputs, "r") as param_handler: params = json.load(param_handler) # load estimator - with open(infile_estimator, 'rb') as estimator_handler: - estimator = load_model(estimator_handler) + estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) # swap hyperparameter - swapping = params['experiment_schemes']['hyperparams_swapping'] + swapping = params["experiment_schemes"]["hyperparams_swapping"] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) @@ -230,38 +259,41 @@ # store read dataframe object loaded_df = {} - input_type = params['input_options']['selected_input'] + input_type = params["input_options"]["selected_input"] # tabular input - if input_type == 'tabular': - header = 'infer' if params['input_options']['header1'] else None - column_option = (params['input_options']['column_selector_options_1'] - ['selected_column_selector_option']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = params['input_options']['column_selector_options_1']['col1'] + if input_type == "tabular": + header = "infer" if params["input_options"]["header1"] else None + column_option = params["input_options"]["column_selector_options_1"][ + "selected_column_selector_option" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) - df = pd.read_csv(infile1, sep='\t', header=header, - parse_dates=True) + df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input - elif input_type == 'sparse': - X = mmread(open(infile1, 'r')) + elif input_type == "sparse": + X = mmread(open(infile1, "r")) # fasta_file input - elif input_type == 'seq_fasta': - pyfaidx = get_module('pyfaidx') + elif input_type == "seq_fasta": + pyfaidx = get_module("pyfaidx") sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): - if param.endswith('fasta_path'): - estimator.set_params( - **{param: fasta_path}) + if param.endswith("fasta_path"): + estimator.set_params(**{param: fasta_path}) break else: raise ValueError( @@ -270,25 +302,31 @@ "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " - "in pipeline!") + "in pipeline!" + ) - elif input_type == 'refseq_and_interval': + elif input_type == "refseq_and_interval": path_params = { - 'data_batch_generator__ref_genome_path': ref_seq, - 'data_batch_generator__intervals_path': intervals, - 'data_batch_generator__target_path': targets + "data_batch_generator__ref_genome_path": ref_seq, + "data_batch_generator__intervals_path": intervals, + "data_batch_generator__target_path": targets, } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y - header = 'infer' if params['input_options']['header2'] else None - column_option = (params['input_options']['column_selector_options_2'] - ['selected_column_selector_option2']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = params['input_options']['column_selector_options_2']['col2'] + header = "infer" if params["input_options"]["header2"] else None + column_option = params["input_options"]["column_selector_options_2"][ + "selected_column_selector_option2" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None @@ -296,37 +334,41 @@ if df_key in loaded_df: infile2 = loaded_df[df_key] else: - infile2 = pd.read_csv(infile2, sep='\t', - header=header, parse_dates=True) + infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( - infile2, - c=c, - c_option=column_option, - sep='\t', - header=header, - parse_dates=True) + infile2, + c=c, + c_option=column_option, + sep="\t", + header=header, + parse_dates=True, + ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() - if input_type == 'refseq_and_interval': - estimator.set_params( - data_batch_generator__features=y.ravel().tolist()) + if input_type == "refseq_and_interval": + estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: - groups_selector = (params['experiment_schemes']['test_split'] - ['split_algos']).pop('groups_selector') + groups_selector = ( + params["experiment_schemes"]["test_split"]["split_algos"] + ).pop("groups_selector") - header = 'infer' if groups_selector['header_g'] else None - column_option = \ - (groups_selector['column_selector_options_g'] - ['selected_column_selector_option_g']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = groups_selector['column_selector_options_g']['col_g'] + header = "infer" if groups_selector["header_g"] else None + column_option = groups_selector["column_selector_options_g"][ + "selected_column_selector_option_g" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = groups_selector["column_selector_options_g"]["col_g"] else: c = None @@ -335,12 +377,13 @@ groups = loaded_df[df_key] groups = read_columns( - groups, - c=c, - c_option=column_option, - sep='\t', - header=header, - parse_dates=True) + groups, + c=c, + c_option=column_option, + sep="\t", + header=header, + parse_dates=True, + ) groups = groups.ravel() # del loaded_df @@ -349,121 +392,134 @@ # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) - if main_est.__class__.__name__ == 'IRAPSClassifier': + if main_est.__class__.__name__ == "IRAPSClassifier": main_est.set_params(memory=memory) # handle scorer, convert to scorer dict - scoring = params['experiment_schemes']['metrics']['scoring'] + scoring = params["experiment_schemes"]["metrics"]["scoring"] scorer = get_scoring(scoring) - scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) + if not isinstance(scorer, (dict, list)): + scorer = [scoring["primary_scoring"]] + scorer = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split - test_split_options = (params['experiment_schemes'] - ['test_split']['split_algos']) + test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] - if test_split_options['shuffle'] == 'group': - test_split_options['labels'] = groups - if test_split_options['shuffle'] == 'stratified': + if test_split_options["shuffle"] == "group": + test_split_options["labels"] = groups + if test_split_options["shuffle"] == "stratified": if y is not None: - test_split_options['labels'] = y + test_split_options["labels"] = y else: - raise ValueError("Stratified shuffle split is not " - "applicable on empty target values!") + raise ValueError( + "Stratified shuffle split is not " "applicable on empty target values!" + ) - X_train, X_test, y_train, y_test, groups_train, groups_test = \ - train_test_split_none(X, y, groups, **test_split_options) + X_train, X_test, y_train, y_test, groups_train, groups_test = train_test_split_none( + X, y, groups, **test_split_options + ) - exp_scheme = params['experiment_schemes']['selected_exp_scheme'] + exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] # handle validation (second) split - if exp_scheme == 'train_val_test': - val_split_options = (params['experiment_schemes'] - ['val_split']['split_algos']) + if exp_scheme == "train_val_test": + val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] - if val_split_options['shuffle'] == 'group': - val_split_options['labels'] = groups_train - if val_split_options['shuffle'] == 'stratified': + if val_split_options["shuffle"] == "group": + val_split_options["labels"] = groups_train + if val_split_options["shuffle"] == "stratified": if y_train is not None: - val_split_options['labels'] = y_train + val_split_options["labels"] = y_train else: - raise ValueError("Stratified shuffle split is not " - "applicable on empty target values!") + raise ValueError( + "Stratified shuffle split is not " + "applicable on empty target values!" + ) - X_train, X_val, y_train, y_val, groups_train, groups_val = \ - train_test_split_none(X_train, y_train, groups_train, - **val_split_options) + ( + X_train, + X_val, + y_train, + y_val, + groups_train, + groups_val, + ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval - if hasattr(estimator, 'validation_data'): - if exp_scheme == 'train_val_test': - estimator.fit(X_train, y_train, - validation_data=(X_val, y_val)) + if hasattr(estimator, "config") and hasattr(estimator, "model_type"): + if exp_scheme == "train_val_test": + estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: - estimator.fit(X_train, y_train, - validation_data=(X_test, y_test)) + estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: estimator.fit(X_train, y_train) - if hasattr(estimator, 'evaluate'): + if isinstance(estimator, KerasGBatchClassifier): + scores = {} steps = estimator.prediction_steps batch_size = estimator.batch_size - generator = estimator.data_generator_.flow(X_test, y=y_test, - batch_size=batch_size) - predictions, y_true = _predict_generator(estimator.model_, generator, - steps=steps) - scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) + data_generator = estimator.data_generator_ + + scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( + estimator, + data_generator, + X_test, + y=y_test, + sk_scoring=scoring, + steps=steps, + batch_size=batch_size, + return_predictions=bool(outfile_y_true), + ) else: - if hasattr(estimator, 'predict_proba'): + scores = {} + if hasattr(estimator, "model_") and hasattr(estimator.model_, "metrics_names"): + batch_size = estimator.batch_size + score_results = estimator.model_.evaluate( + X_test, y=y_test, batch_size=batch_size, verbose=0 + ) + metrics_names = estimator.model_.metrics_names + if not isinstance(metrics_names, list): + scores[metrics_names] = score_results + else: + scores = dict(zip(metrics_names, score_results)) + + if hasattr(estimator, "predict_proba"): predictions = estimator.predict_proba(X_test) else: predictions = estimator.predict(X_test) y_true = y_test - scores = _score(estimator, X_test, y_test, scorer, - is_multimetric=True) + sk_scores = _score(estimator, X_test, y_test, scorer) + scores.update(sk_scores) + + # handle output if outfile_y_true: try: - pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', - index=False) + pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( - outfile_y_preds, sep='\t', index=False, - float_format='%g', chunksize=10000) + outfile_y_preds, + sep="\t", + index=False, + float_format="%g", + chunksize=10000, + ) except Exception as e: print("Error in saving predictions: %s" % e) - # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] - df.to_csv(path_or_buf=outfile_result, sep='\t', - header=True, index=False) + df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) memory.clear(warn=False) if outfile_object: - main_est = estimator - if isinstance(estimator, Pipeline): - main_est = estimator.steps[-1][-1] - - if hasattr(main_est, 'model_') \ - and hasattr(main_est, 'save_weights'): - if outfile_weights: - main_est.save_weights(outfile_weights) - del main_est.model_ - del main_est.fit_params - del main_est.model_class_ - del main_est.validation_data - if getattr(main_est, 'data_generator_', None): - del main_est.data_generator_ - - with open(outfile_object, 'wb') as output_handler: - pickle.dump(estimator, output_handler, - pickle.HIGHEST_PROTOCOL) + dump_model_to_h5(estimator, outfile_object) -if __name__ == '__main__': +if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") @@ -471,7 +527,6 @@ aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") - aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") aparser.add_argument("-g", "--groups", dest="groups") @@ -481,11 +536,18 @@ aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() - main(args.inputs, args.infile_estimator, args.infile1, args.infile2, - args.outfile_result, outfile_object=args.outfile_object, - outfile_weights=args.outfile_weights, - outfile_y_true=args.outfile_y_true, - outfile_y_preds=args.outfile_y_preds, - groups=args.groups, - ref_seq=args.ref_seq, intervals=args.intervals, - targets=args.targets, fasta_path=args.fasta_path) + main( + args.inputs, + args.infile_estimator, + args.infile1, + args.infile2, + args.outfile_result, + outfile_object=args.outfile_object, + outfile_y_true=args.outfile_y_true, + outfile_y_preds=args.outfile_y_preds, + groups=args.groups, + ref_seq=args.ref_seq, + intervals=args.intervals, + targets=args.targets, + fasta_path=args.fasta_path, + )