Mercurial > repos > bgruening > stacking_ensemble_models
comparison search_model_validation.py @ 2:38c4f8a98038 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 10:07:37 +0000 |
parents | c1b0c8232816 |
children | 0a1812986bc3 |
comparison
equal
deleted
inserted
replaced
1:c1b0c8232816 | 2:38c4f8a98038 |
---|---|
2 import collections | 2 import collections |
3 import imblearn | 3 import imblearn |
4 import joblib | 4 import joblib |
5 import json | 5 import json |
6 import numpy as np | 6 import numpy as np |
7 import os | |
7 import pandas as pd | 8 import pandas as pd |
8 import pickle | 9 import pickle |
9 import skrebate | 10 import skrebate |
10 import sklearn | |
11 import sys | 11 import sys |
12 import xgboost | |
13 import warnings | 12 import warnings |
14 from imblearn import under_sampling, over_sampling, combine | |
15 from scipy.io import mmread | 13 from scipy.io import mmread |
16 from mlxtend import classifier, regressor | 14 from sklearn import (cluster, decomposition, feature_selection, |
17 from sklearn.base import clone | 15 kernel_approximation, model_selection, preprocessing) |
18 from sklearn import (cluster, compose, decomposition, ensemble, | |
19 feature_extraction, feature_selection, | |
20 gaussian_process, kernel_approximation, metrics, | |
21 model_selection, naive_bayes, neighbors, | |
22 pipeline, preprocessing, svm, linear_model, | |
23 tree, discriminant_analysis) | |
24 from sklearn.exceptions import FitFailedWarning | 16 from sklearn.exceptions import FitFailedWarning |
25 from sklearn.model_selection._validation import _score, cross_validate | 17 from sklearn.model_selection._validation import _score, cross_validate |
26 from sklearn.model_selection import _search, _validation | 18 from sklearn.model_selection import _search, _validation |
19 from sklearn.pipeline import Pipeline | |
27 | 20 |
28 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | 21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, |
29 read_columns, try_get_attr, get_module) | 22 read_columns, try_get_attr, get_module, |
23 clean_params, get_main_estimator) | |
30 | 24 |
31 | 25 |
32 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') |
33 setattr(_search, '_fit_and_score', _fit_and_score) | 27 setattr(_search, '_fit_and_score', _fit_and_score) |
34 setattr(_validation, '_fit_and_score', _fit_and_score) | 28 setattr(_validation, '_fit_and_score', _fit_and_score) |
35 | 29 |
36 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) |
37 CACHE_DIR = './cached' | 31 # handle disk cache |
32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
33 del os | |
38 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', |
39 'nthread', 'callbacks') | 35 'nthread', 'callbacks') |
40 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
41 'CSVLogger', 'None') | |
42 | 36 |
43 | 37 |
44 def _eval_search_params(params_builder): | 38 def _eval_search_params(params_builder): |
45 search_params = {} | 39 search_params = {} |
46 | 40 |
162 search_params[param_name] = newlist | 156 search_params[param_name] = newlist |
163 | 157 |
164 return search_params | 158 return search_params |
165 | 159 |
166 | 160 |
167 def main(inputs, infile_estimator, infile1, infile2, | 161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, |
168 outfile_result, outfile_object=None, | 162 ref_seq=None, intervals=None, targets=None, |
169 outfile_weights=None, groups=None, | 163 fasta_path=None): |
170 ref_seq=None, intervals=None, targets=None, | 164 """read inputs |
171 fasta_path=None): | 165 |
172 """ | 166 Params |
173 Parameter | 167 ------- |
174 --------- | 168 estimator : estimator object |
175 inputs : str | 169 params : dict |
176 File path to galaxy tool parameter | 170 Galaxy tool parameter inputs |
177 | |
178 infile_estimator : str | |
179 File path to estimator | |
180 | |
181 infile1 : str | 171 infile1 : str |
182 File path to dataset containing features | 172 File path to dataset containing features |
183 | |
184 infile2 : str | 173 infile2 : str |
185 File path to dataset containing target values | 174 File path to dataset containing target values |
186 | 175 loaded_df : dict |
187 outfile_result : str | 176 Contains loaded DataFrame objects with file path as keys |
188 File path to save the results, either cv_results or test result | |
189 | |
190 outfile_object : str, optional | |
191 File path to save searchCV object | |
192 | |
193 outfile_weights : str, optional | |
194 File path to save model weights | |
195 | |
196 groups : str | |
197 File path to dataset containing groups labels | |
198 | |
199 ref_seq : str | 177 ref_seq : str |
200 File path to dataset containing genome sequence file | 178 File path to dataset containing genome sequence file |
201 | 179 interval : str |
202 intervals : str | |
203 File path to dataset containing interval file | 180 File path to dataset containing interval file |
204 | |
205 targets : str | 181 targets : str |
206 File path to dataset compressed target bed file | 182 File path to dataset compressed target bed file |
207 | |
208 fasta_path : str | 183 fasta_path : str |
209 File path to dataset containing fasta file | 184 File path to dataset containing fasta file |
185 | |
186 | |
187 Returns | |
188 ------- | |
189 estimator : estimator object after setting new attributes | |
190 X : numpy array | |
191 y : numpy array | |
210 """ | 192 """ |
211 warnings.simplefilter('ignore') | |
212 | |
213 with open(inputs, 'r') as param_handler: | |
214 params = json.load(param_handler) | |
215 | |
216 params_builder = params['search_schemes']['search_params_builder'] | |
217 | |
218 with open(infile_estimator, 'rb') as estimator_handler: | |
219 estimator = load_model(estimator_handler) | |
220 estimator_params = estimator.get_params() | 193 estimator_params = estimator.get_params() |
221 | |
222 # store read dataframe object | |
223 loaded_df = {} | |
224 | 194 |
225 input_type = params['input_options']['selected_input'] | 195 input_type = params['input_options']['selected_input'] |
226 # tabular input | 196 # tabular input |
227 if input_type == 'tabular': | 197 if input_type == 'tabular': |
228 header = 'infer' if params['input_options']['header1'] else None | 198 header = 'infer' if params['input_options']['header1'] else None |
233 c = params['input_options']['column_selector_options_1']['col1'] | 203 c = params['input_options']['column_selector_options_1']['col1'] |
234 else: | 204 else: |
235 c = None | 205 c = None |
236 | 206 |
237 df_key = infile1 + repr(header) | 207 df_key = infile1 + repr(header) |
208 | |
209 if df_key in loaded_df: | |
210 infile1 = loaded_df[df_key] | |
211 | |
238 df = pd.read_csv(infile1, sep='\t', header=header, | 212 df = pd.read_csv(infile1, sep='\t', header=header, |
239 parse_dates=True) | 213 parse_dates=True) |
240 loaded_df[df_key] = df | 214 loaded_df[df_key] = df |
241 | 215 |
242 X = read_columns(df, c=c, c_option=column_option).astype(float) | 216 X = read_columns(df, c=c, c_option=column_option).astype(float) |
305 estimator.set_params( | 279 estimator.set_params( |
306 data_batch_generator__features=y.ravel().tolist()) | 280 data_batch_generator__features=y.ravel().tolist()) |
307 y = None | 281 y = None |
308 # end y | 282 # end y |
309 | 283 |
284 return estimator, X, y | |
285 | |
286 | |
287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', | |
288 outfile=None): | |
289 """Do outer cross-validation for nested CV | |
290 | |
291 Parameters | |
292 ---------- | |
293 searcher : object | |
294 SearchCV object | |
295 X : numpy array | |
296 Containing features | |
297 y : numpy array | |
298 Target values or labels | |
299 outer_cv : int or CV splitter | |
300 Control the cv splitting | |
301 scoring : object | |
302 Scorer | |
303 error_score: str, float or numpy float | |
304 Whether to raise fit error or return an value | |
305 outfile : str | |
306 File path to store the restuls | |
307 """ | |
308 if error_score == 'raise': | |
309 rval = cross_validate( | |
310 searcher, X, y, scoring=scoring, | |
311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
312 error_score=error_score) | |
313 else: | |
314 warnings.simplefilter('always', FitFailedWarning) | |
315 with warnings.catch_warnings(record=True) as w: | |
316 try: | |
317 rval = cross_validate( | |
318 searcher, X, y, | |
319 scoring=scoring, | |
320 cv=outer_cv, n_jobs=N_JOBS, | |
321 verbose=0, | |
322 error_score=error_score) | |
323 except ValueError: | |
324 pass | |
325 for warning in w: | |
326 print(repr(warning.message)) | |
327 | |
328 keys = list(rval.keys()) | |
329 for k in keys: | |
330 if k.startswith('test'): | |
331 rval['mean_' + k] = np.mean(rval[k]) | |
332 rval['std_' + k] = np.std(rval[k]) | |
333 if k.endswith('time'): | |
334 rval.pop(k) | |
335 rval = pd.DataFrame(rval) | |
336 rval = rval[sorted(rval.columns)] | |
337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) | |
338 | |
339 | |
340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', | |
341 primary_scoring=None, groups=None, | |
342 outfile=None): | |
343 """ do train test split, searchCV validates on the train and then use | |
344 the best_estimator_ to evaluate on the test | |
345 | |
346 Returns | |
347 -------- | |
348 Fitted SearchCV object | |
349 """ | |
350 train_test_split = try_get_attr( | |
351 'galaxy_ml.model_validations', 'train_test_split') | |
352 split_options = params['outer_split'] | |
353 | |
354 # splits | |
355 if split_options['shuffle'] == 'stratified': | |
356 split_options['labels'] = y | |
357 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
358 elif split_options['shuffle'] == 'group': | |
359 if groups is None: | |
360 raise ValueError("No group based CV option was choosen for " | |
361 "group shuffle!") | |
362 split_options['labels'] = groups | |
363 if y is None: | |
364 X, X_test, groups, _ =\ | |
365 train_test_split(X, groups, **split_options) | |
366 else: | |
367 X, X_test, y, y_test, groups, _ =\ | |
368 train_test_split(X, y, groups, **split_options) | |
369 else: | |
370 if split_options['shuffle'] == 'None': | |
371 split_options['shuffle'] = None | |
372 X, X_test, y, y_test =\ | |
373 train_test_split(X, y, **split_options) | |
374 | |
375 if error_score == 'raise': | |
376 searcher.fit(X, y, groups=groups) | |
377 else: | |
378 warnings.simplefilter('always', FitFailedWarning) | |
379 with warnings.catch_warnings(record=True) as w: | |
380 try: | |
381 searcher.fit(X, y, groups=groups) | |
382 except ValueError: | |
383 pass | |
384 for warning in w: | |
385 print(repr(warning.message)) | |
386 | |
387 scorer_ = searcher.scorer_ | |
388 if isinstance(scorer_, collections.Mapping): | |
389 is_multimetric = True | |
390 else: | |
391 is_multimetric = False | |
392 | |
393 best_estimator_ = getattr(searcher, 'best_estimator_') | |
394 | |
395 # TODO Solve deep learning models in pipeline | |
396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier': | |
397 test_score = best_estimator_.evaluate( | |
398 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
399 else: | |
400 test_score = _score(best_estimator_, X_test, | |
401 y_test, scorer_, | |
402 is_multimetric=is_multimetric) | |
403 | |
404 if not is_multimetric: | |
405 test_score = {primary_scoring: test_score} | |
406 for key, value in test_score.items(): | |
407 test_score[key] = [value] | |
408 result_df = pd.DataFrame(test_score) | |
409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, | |
410 index=False) | |
411 | |
412 return searcher | |
413 | |
414 | |
415 def main(inputs, infile_estimator, infile1, infile2, | |
416 outfile_result, outfile_object=None, | |
417 outfile_weights=None, groups=None, | |
418 ref_seq=None, intervals=None, targets=None, | |
419 fasta_path=None): | |
420 """ | |
421 Parameter | |
422 --------- | |
423 inputs : str | |
424 File path to galaxy tool parameter | |
425 | |
426 infile_estimator : str | |
427 File path to estimator | |
428 | |
429 infile1 : str | |
430 File path to dataset containing features | |
431 | |
432 infile2 : str | |
433 File path to dataset containing target values | |
434 | |
435 outfile_result : str | |
436 File path to save the results, either cv_results or test result | |
437 | |
438 outfile_object : str, optional | |
439 File path to save searchCV object | |
440 | |
441 outfile_weights : str, optional | |
442 File path to save model weights | |
443 | |
444 groups : str | |
445 File path to dataset containing groups labels | |
446 | |
447 ref_seq : str | |
448 File path to dataset containing genome sequence file | |
449 | |
450 intervals : str | |
451 File path to dataset containing interval file | |
452 | |
453 targets : str | |
454 File path to dataset compressed target bed file | |
455 | |
456 fasta_path : str | |
457 File path to dataset containing fasta file | |
458 """ | |
459 warnings.simplefilter('ignore') | |
460 | |
461 # store read dataframe object | |
462 loaded_df = {} | |
463 | |
464 with open(inputs, 'r') as param_handler: | |
465 params = json.load(param_handler) | |
466 | |
467 # Override the refit parameter | |
468 params['search_schemes']['options']['refit'] = True \ | |
469 if params['save'] != 'nope' else False | |
470 | |
471 with open(infile_estimator, 'rb') as estimator_handler: | |
472 estimator = load_model(estimator_handler) | |
473 | |
310 optimizer = params['search_schemes']['selected_search_scheme'] | 474 optimizer = params['search_schemes']['selected_search_scheme'] |
311 optimizer = getattr(model_selection, optimizer) | 475 optimizer = getattr(model_selection, optimizer) |
312 | 476 |
313 # handle gridsearchcv options | 477 # handle gridsearchcv options |
314 options = params['search_schemes']['options'] | 478 options = params['search_schemes']['options'] |
325 ['column_selector_options_g']['col_g']) | 489 ['column_selector_options_g']['col_g']) |
326 else: | 490 else: |
327 c = None | 491 c = None |
328 | 492 |
329 df_key = groups + repr(header) | 493 df_key = groups + repr(header) |
330 if df_key in loaded_df: | 494 |
331 groups = loaded_df[df_key] | 495 groups = pd.read_csv(groups, sep='\t', header=header, |
496 parse_dates=True) | |
497 loaded_df[df_key] = groups | |
332 | 498 |
333 groups = read_columns( | 499 groups = read_columns( |
334 groups, | 500 groups, |
335 c=c, | 501 c=c, |
336 c_option=column_option, | 502 c_option=column_option, |
340 groups = groups.ravel() | 506 groups = groups.ravel() |
341 options['cv_selector']['groups_selector'] = groups | 507 options['cv_selector']['groups_selector'] = groups |
342 | 508 |
343 splitter, groups = get_cv(options.pop('cv_selector')) | 509 splitter, groups = get_cv(options.pop('cv_selector')) |
344 options['cv'] = splitter | 510 options['cv'] = splitter |
345 options['n_jobs'] = N_JOBS | |
346 primary_scoring = options['scoring']['primary_scoring'] | 511 primary_scoring = options['scoring']['primary_scoring'] |
347 options['scoring'] = get_scoring(options['scoring']) | 512 options['scoring'] = get_scoring(options['scoring']) |
348 if options['error_score']: | 513 if options['error_score']: |
349 options['error_score'] = 'raise' | 514 options['error_score'] = 'raise' |
350 else: | 515 else: |
352 if options['refit'] and isinstance(options['scoring'], dict): | 517 if options['refit'] and isinstance(options['scoring'], dict): |
353 options['refit'] = primary_scoring | 518 options['refit'] = primary_scoring |
354 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': |
355 options['pre_dispatch'] = None | 520 options['pre_dispatch'] = None |
356 | 521 |
357 # del loaded_df | 522 params_builder = params['search_schemes']['search_params_builder'] |
358 del loaded_df | 523 param_grid = _eval_search_params(params_builder) |
359 | 524 |
360 # handle memory | 525 estimator = clean_params(estimator) |
526 | |
527 # save the SearchCV object without fit | |
528 if params['save'] == 'save_no_fit': | |
529 searcher = optimizer(estimator, param_grid, **options) | |
530 print(searcher) | |
531 with open(outfile_object, 'wb') as output_handler: | |
532 pickle.dump(searcher, output_handler, | |
533 pickle.HIGHEST_PROTOCOL) | |
534 return 0 | |
535 | |
536 # read inputs and loads new attributes, like paths | |
537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, | |
538 loaded_df=loaded_df, ref_seq=ref_seq, | |
539 intervals=intervals, targets=targets, | |
540 fasta_path=fasta_path) | |
541 | |
542 # cache iraps_core fits could increase search speed significantly | |
361 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
362 # cache iraps_core fits could increase search speed significantly | 544 main_est = get_main_estimator(estimator) |
363 if estimator.__class__.__name__ == 'IRAPSClassifier': | 545 if main_est.__class__.__name__ == 'IRAPSClassifier': |
364 estimator.set_params(memory=memory) | 546 main_est.set_params(memory=memory) |
365 else: | 547 |
366 # For iraps buried in pipeline | |
367 for p, v in estimator_params.items(): | |
368 if p.endswith('memory'): | |
369 # for case of `__irapsclassifier__memory` | |
370 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
371 # cache iraps_core fits could increase search | |
372 # speed significantly | |
373 new_params = {p: memory} | |
374 estimator.set_params(**new_params) | |
375 # security reason, we don't want memory being | |
376 # modified unexpectedly | |
377 elif v: | |
378 new_params = {p, None} | |
379 estimator.set_params(**new_params) | |
380 # For now, 1 CPU is suggested for iprasclassifier | |
381 elif p.endswith('n_jobs'): | |
382 new_params = {p: 1} | |
383 estimator.set_params(**new_params) | |
384 # for security reason, types of callbacks are limited | |
385 elif p.endswith('callbacks'): | |
386 for cb in v: | |
387 cb_type = cb['callback_selection']['callback_type'] | |
388 if cb_type not in ALLOWED_CALLBACKS: | |
389 raise ValueError( | |
390 "Prohibited callback type: %s!" % cb_type) | |
391 | |
392 param_grid = _eval_search_params(params_builder) | |
393 searcher = optimizer(estimator, param_grid, **options) | 548 searcher = optimizer(estimator, param_grid, **options) |
394 | 549 |
395 # do nested split | |
396 split_mode = params['outer_split'].pop('split_mode') | 550 split_mode = params['outer_split'].pop('split_mode') |
397 # nested CV, outer cv using cross_validate | 551 |
398 if split_mode == 'nested_cv': | 552 if split_mode == 'nested_cv': |
553 # make sure refit is choosen | |
554 # this could be True for sklearn models, but not the case for | |
555 # deep learning models | |
556 if not options['refit'] and \ | |
557 not all(hasattr(estimator, attr) | |
558 for attr in ('config', 'model_type')): | |
559 warnings.warn("Refit is change to `True` for nested validation!") | |
560 setattr(searcher, 'refit', True) | |
561 | |
399 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | 562 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) |
400 | 563 # nested CV, outer cv using cross_validate |
401 if options['error_score'] == 'raise': | 564 if options['error_score'] == 'raise': |
402 rval = cross_validate( | 565 rval = cross_validate( |
403 searcher, X, y, scoring=options['scoring'], | 566 searcher, X, y, scoring=options['scoring'], |
404 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | 567 cv=outer_cv, n_jobs=N_JOBS, |
405 error_score=options['error_score']) | 568 verbose=options['verbose'], |
569 return_estimator=(params['save'] == 'save_estimator'), | |
570 error_score=options['error_score'], | |
571 return_train_score=True) | |
406 else: | 572 else: |
407 warnings.simplefilter('always', FitFailedWarning) | 573 warnings.simplefilter('always', FitFailedWarning) |
408 with warnings.catch_warnings(record=True) as w: | 574 with warnings.catch_warnings(record=True) as w: |
409 try: | 575 try: |
410 rval = cross_validate( | 576 rval = cross_validate( |
411 searcher, X, y, | 577 searcher, X, y, |
412 scoring=options['scoring'], | 578 scoring=options['scoring'], |
413 cv=outer_cv, n_jobs=N_JOBS, | 579 cv=outer_cv, n_jobs=N_JOBS, |
414 verbose=0, | 580 verbose=options['verbose'], |
415 error_score=options['error_score']) | 581 return_estimator=(params['save'] == 'save_estimator'), |
582 error_score=options['error_score'], | |
583 return_train_score=True) | |
416 except ValueError: | 584 except ValueError: |
417 pass | 585 pass |
418 for warning in w: | 586 for warning in w: |
419 print(repr(warning.message)) | 587 print(repr(warning.message)) |
588 | |
589 fitted_searchers = rval.pop('estimator', []) | |
590 if fitted_searchers: | |
591 import os | |
592 pwd = os.getcwd() | |
593 save_dir = os.path.join(pwd, 'cv_results_in_folds') | |
594 try: | |
595 os.mkdir(save_dir) | |
596 for idx, obj in enumerate(fitted_searchers): | |
597 target_name = 'cv_results_' + '_' + 'split%d' % idx | |
598 target_path = os.path.join(pwd, save_dir, target_name) | |
599 cv_results_ = getattr(obj, 'cv_results_', None) | |
600 if not cv_results_: | |
601 print("%s is not available" % target_name) | |
602 continue | |
603 cv_results_ = pd.DataFrame(cv_results_) | |
604 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
605 cv_results_.to_csv(target_path, sep='\t', header=True, | |
606 index=False) | |
607 except Exception as e: | |
608 print(e) | |
609 finally: | |
610 del os | |
420 | 611 |
421 keys = list(rval.keys()) | 612 keys = list(rval.keys()) |
422 for k in keys: | 613 for k in keys: |
423 if k.startswith('test'): | 614 if k.startswith('test'): |
424 rval['mean_' + k] = np.mean(rval[k]) | 615 rval['mean_' + k] = np.mean(rval[k]) |
425 rval['std_' + k] = np.std(rval[k]) | 616 rval['std_' + k] = np.std(rval[k]) |
426 if k.endswith('time'): | 617 if k.endswith('time'): |
427 rval.pop(k) | 618 rval.pop(k) |
428 rval = pd.DataFrame(rval) | 619 rval = pd.DataFrame(rval) |
429 rval = rval[sorted(rval.columns)] | 620 rval = rval[sorted(rval.columns)] |
430 rval.to_csv(path_or_buf=outfile_result, sep='\t', | 621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, |
431 header=True, index=False) | 622 index=False) |
432 else: | 623 |
433 if split_mode == 'train_test_split': | 624 return 0 |
434 train_test_split = try_get_attr( | 625 |
435 'galaxy_ml.model_validations', 'train_test_split') | 626 # deprecate train test split mode |
436 # make sure refit is choosen | 627 """searcher = _do_train_test_split_val( |
437 # this could be True for sklearn models, but not the case for | 628 searcher, X, y, params, |
438 # deep learning models | 629 primary_scoring=primary_scoring, |
439 if not options['refit'] and \ | 630 error_score=options['error_score'], |
440 not all(hasattr(estimator, attr) | 631 groups=groups, |
441 for attr in ('config', 'model_type')): | 632 outfile=outfile_result)""" |
442 warnings.warn("Refit is change to `True` for nested " | 633 |
443 "validation!") | 634 # no outer split |
444 setattr(searcher, 'refit', True) | 635 else: |
445 split_options = params['outer_split'] | 636 searcher.set_params(n_jobs=N_JOBS) |
446 | |
447 # splits | |
448 if split_options['shuffle'] == 'stratified': | |
449 split_options['labels'] = y | |
450 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
451 elif split_options['shuffle'] == 'group': | |
452 if groups is None: | |
453 raise ValueError("No group based CV option was " | |
454 "choosen for group shuffle!") | |
455 split_options['labels'] = groups | |
456 if y is None: | |
457 X, X_test, groups, _ =\ | |
458 train_test_split(X, groups, **split_options) | |
459 else: | |
460 X, X_test, y, y_test, groups, _ =\ | |
461 train_test_split(X, y, groups, **split_options) | |
462 else: | |
463 if split_options['shuffle'] == 'None': | |
464 split_options['shuffle'] = None | |
465 X, X_test, y, y_test =\ | |
466 train_test_split(X, y, **split_options) | |
467 # end train_test_split | |
468 | |
469 # shared by both train_test_split and non-split | |
470 if options['error_score'] == 'raise': | 637 if options['error_score'] == 'raise': |
471 searcher.fit(X, y, groups=groups) | 638 searcher.fit(X, y, groups=groups) |
472 else: | 639 else: |
473 warnings.simplefilter('always', FitFailedWarning) | 640 warnings.simplefilter('always', FitFailedWarning) |
474 with warnings.catch_warnings(record=True) as w: | 641 with warnings.catch_warnings(record=True) as w: |
477 except ValueError: | 644 except ValueError: |
478 pass | 645 pass |
479 for warning in w: | 646 for warning in w: |
480 print(repr(warning.message)) | 647 print(repr(warning.message)) |
481 | 648 |
482 # no outer split | 649 cv_results = pd.DataFrame(searcher.cv_results_) |
483 if split_mode == 'no': | 650 cv_results = cv_results[sorted(cv_results.columns)] |
484 # save results | 651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', |
485 cv_results = pd.DataFrame(searcher.cv_results_) | 652 header=True, index=False) |
486 cv_results = cv_results[sorted(cv_results.columns)] | |
487 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
488 header=True, index=False) | |
489 | |
490 # train_test_split, output test result using best_estimator_ | |
491 # or rebuild the trained estimator using weights if applicable. | |
492 else: | |
493 scorer_ = searcher.scorer_ | |
494 if isinstance(scorer_, collections.Mapping): | |
495 is_multimetric = True | |
496 else: | |
497 is_multimetric = False | |
498 | |
499 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
500 if not best_estimator_: | |
501 raise ValueError("GridSearchCV object has no " | |
502 "`best_estimator_` when `refit`=False!") | |
503 | |
504 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ | |
505 and hasattr(estimator.data_batch_generator, 'target_path'): | |
506 test_score = best_estimator_.evaluate( | |
507 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
508 else: | |
509 test_score = _score(best_estimator_, X_test, | |
510 y_test, scorer_, | |
511 is_multimetric=is_multimetric) | |
512 | |
513 if not is_multimetric: | |
514 test_score = {primary_scoring: test_score} | |
515 for key, value in test_score.items(): | |
516 test_score[key] = [value] | |
517 result_df = pd.DataFrame(test_score) | |
518 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
519 header=True, index=False) | |
520 | 653 |
521 memory.clear(warn=False) | 654 memory.clear(warn=False) |
522 | 655 |
656 # output best estimator, and weights if applicable | |
523 if outfile_object: | 657 if outfile_object: |
524 best_estimator_ = getattr(searcher, 'best_estimator_', None) | 658 best_estimator_ = getattr(searcher, 'best_estimator_', None) |
525 if not best_estimator_: | 659 if not best_estimator_: |
526 warnings.warn("GridSearchCV object has no attribute " | 660 warnings.warn("GridSearchCV object has no attribute " |
527 "'best_estimator_', because either it's " | 661 "'best_estimator_', because either it's " |
528 "nested gridsearch or `refit` is False!") | 662 "nested gridsearch or `refit` is False!") |
529 return | 663 return |
530 | 664 |
531 main_est = best_estimator_ | 665 # clean prams |
532 if isinstance(best_estimator_, pipeline.Pipeline): | 666 best_estimator_ = clean_params(best_estimator_) |
533 main_est = best_estimator_.steps[-1][-1] | 667 |
668 main_est = get_main_estimator(best_estimator_) | |
534 | 669 |
535 if hasattr(main_est, 'model_') \ | 670 if hasattr(main_est, 'model_') \ |
536 and hasattr(main_est, 'save_weights'): | 671 and hasattr(main_est, 'save_weights'): |
537 if outfile_weights: | 672 if outfile_weights: |
538 main_est.save_weights(outfile_weights) | 673 main_est.save_weights(outfile_weights) |
540 del main_est.fit_params | 675 del main_est.fit_params |
541 del main_est.model_class_ | 676 del main_est.model_class_ |
542 del main_est.validation_data | 677 del main_est.validation_data |
543 if getattr(main_est, 'data_generator_', None): | 678 if getattr(main_est, 'data_generator_', None): |
544 del main_est.data_generator_ | 679 del main_est.data_generator_ |
545 del main_est.data_batch_generator | |
546 | 680 |
547 with open(outfile_object, 'wb') as output_handler: | 681 with open(outfile_object, 'wb') as output_handler: |
682 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
548 pickle.dump(best_estimator_, output_handler, | 683 pickle.dump(best_estimator_, output_handler, |
549 pickle.HIGHEST_PROTOCOL) | 684 pickle.HIGHEST_PROTOCOL) |
550 | 685 |
551 | 686 |
552 if __name__ == '__main__': | 687 if __name__ == '__main__': |