comparison search_model_validation.py @ 3:0a1812986bc3 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author bgruening
date Wed, 09 Aug 2023 11:10:37 +0000
parents 38c4f8a98038
children
comparison
equal deleted inserted replaced
2:38c4f8a98038 3:0a1812986bc3
1 import argparse 1 import argparse
2 import collections 2 import json
3 import os
4 import sys
5 import warnings
6 from distutils.version import LooseVersion as Version
7
3 import imblearn 8 import imblearn
4 import joblib 9 import joblib
5 import json
6 import numpy as np 10 import numpy as np
7 import os
8 import pandas as pd 11 import pandas as pd
9 import pickle
10 import skrebate 12 import skrebate
11 import sys 13 from galaxy_ml import __version__ as galaxy_ml_version
12 import warnings 14 from galaxy_ml.binarize_target import IRAPSClassifier
15 from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5
16 from galaxy_ml.utils import (
17 clean_params,
18 get_cv,
19 get_main_estimator,
20 get_module,
21 get_scoring,
22 read_columns,
23 SafeEval,
24 try_get_attr
25 )
13 from scipy.io import mmread 26 from scipy.io import mmread
14 from sklearn import (cluster, decomposition, feature_selection, 27 from sklearn import (
15 kernel_approximation, model_selection, preprocessing) 28 cluster,
29 decomposition,
30 feature_selection,
31 kernel_approximation,
32 model_selection,
33 preprocessing,
34 )
16 from sklearn.exceptions import FitFailedWarning 35 from sklearn.exceptions import FitFailedWarning
36 from sklearn.model_selection import _search, _validation
17 from sklearn.model_selection._validation import _score, cross_validate 37 from sklearn.model_selection._validation import _score, cross_validate
18 from sklearn.model_selection import _search, _validation 38 from sklearn.preprocessing import LabelEncoder
19 from sklearn.pipeline import Pipeline 39 from skopt import BayesSearchCV
20 40
21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, 41 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1))
22 read_columns, try_get_attr, get_module,
23 clean_params, get_main_estimator)
24
25
26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score')
27 setattr(_search, '_fit_and_score', _fit_and_score)
28 setattr(_validation, '_fit_and_score', _fit_and_score)
29
30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1))
31 # handle disk cache 42 # handle disk cache
32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') 43 CACHE_DIR = os.path.join(os.getcwd(), "cached")
33 del os 44 NON_SEARCHABLE = (
34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', 45 "n_jobs",
35 'nthread', 'callbacks') 46 "pre_dispatch",
47 "memory",
48 "_path",
49 "_dir",
50 "nthread",
51 "callbacks",
52 )
36 53
37 54
38 def _eval_search_params(params_builder): 55 def _eval_search_params(params_builder):
39 search_params = {} 56 search_params = {}
40 57
41 for p in params_builder['param_set']: 58 for p in params_builder["param_set"]:
42 search_list = p['sp_list'].strip() 59 search_list = p["sp_list"].strip()
43 if search_list == '': 60 if search_list == "":
44 continue 61 continue
45 62
46 param_name = p['sp_name'] 63 param_name = p["sp_name"]
47 if param_name.lower().endswith(NON_SEARCHABLE): 64 if param_name.lower().endswith(NON_SEARCHABLE):
48 print("Warning: `%s` is not eligible for search and was " 65 print(
49 "omitted!" % param_name) 66 "Warning: `%s` is not eligible for search and was "
67 "omitted!" % param_name
68 )
50 continue 69 continue
51 70
52 if not search_list.startswith(':'): 71 if not search_list.startswith(":"):
53 safe_eval = SafeEval(load_scipy=True, load_numpy=True) 72 safe_eval = SafeEval(load_scipy=True, load_numpy=True)
54 ev = safe_eval(search_list) 73 ev = safe_eval(search_list)
55 search_params[param_name] = ev 74 search_params[param_name] = ev
56 else: 75 else:
57 # Have `:` before search list, asks for estimator evaluatio 76 # Have `:` before search list, asks for estimator evaluatio
58 safe_eval_es = SafeEval(load_estimators=True) 77 safe_eval_es = SafeEval(load_estimators=True)
59 search_list = search_list[1:].strip() 78 search_list = search_list[1:].strip()
60 # TODO maybe add regular express check 79 # TODO maybe add regular express check
61 ev = safe_eval_es(search_list) 80 ev = safe_eval_es(search_list)
62 preprocessings = ( 81 preprocessings = (
63 preprocessing.StandardScaler(), preprocessing.Binarizer(), 82 preprocessing.StandardScaler(),
83 preprocessing.Binarizer(),
64 preprocessing.MaxAbsScaler(), 84 preprocessing.MaxAbsScaler(),
65 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), 85 preprocessing.Normalizer(),
86 preprocessing.MinMaxScaler(),
66 preprocessing.PolynomialFeatures(), 87 preprocessing.PolynomialFeatures(),
67 preprocessing.RobustScaler(), feature_selection.SelectKBest(), 88 preprocessing.RobustScaler(),
89 feature_selection.SelectKBest(),
68 feature_selection.GenericUnivariateSelect(), 90 feature_selection.GenericUnivariateSelect(),
69 feature_selection.SelectPercentile(), 91 feature_selection.SelectPercentile(),
70 feature_selection.SelectFpr(), feature_selection.SelectFdr(), 92 feature_selection.SelectFpr(),
93 feature_selection.SelectFdr(),
71 feature_selection.SelectFwe(), 94 feature_selection.SelectFwe(),
72 feature_selection.VarianceThreshold(), 95 feature_selection.VarianceThreshold(),
73 decomposition.FactorAnalysis(random_state=0), 96 decomposition.FactorAnalysis(random_state=0),
74 decomposition.FastICA(random_state=0), 97 decomposition.FastICA(random_state=0),
75 decomposition.IncrementalPCA(), 98 decomposition.IncrementalPCA(),
76 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), 99 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS),
77 decomposition.LatentDirichletAllocation( 100 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS),
78 random_state=0, n_jobs=N_JOBS),
79 decomposition.MiniBatchDictionaryLearning( 101 decomposition.MiniBatchDictionaryLearning(
80 random_state=0, n_jobs=N_JOBS), 102 random_state=0, n_jobs=N_JOBS
81 decomposition.MiniBatchSparsePCA( 103 ),
82 random_state=0, n_jobs=N_JOBS), 104 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS),
83 decomposition.NMF(random_state=0), 105 decomposition.NMF(random_state=0),
84 decomposition.PCA(random_state=0), 106 decomposition.PCA(random_state=0),
85 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), 107 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS),
86 decomposition.TruncatedSVD(random_state=0), 108 decomposition.TruncatedSVD(random_state=0),
87 kernel_approximation.Nystroem(random_state=0), 109 kernel_approximation.Nystroem(random_state=0),
92 skrebate.ReliefF(n_jobs=N_JOBS), 114 skrebate.ReliefF(n_jobs=N_JOBS),
93 skrebate.SURF(n_jobs=N_JOBS), 115 skrebate.SURF(n_jobs=N_JOBS),
94 skrebate.SURFstar(n_jobs=N_JOBS), 116 skrebate.SURFstar(n_jobs=N_JOBS),
95 skrebate.MultiSURF(n_jobs=N_JOBS), 117 skrebate.MultiSURF(n_jobs=N_JOBS),
96 skrebate.MultiSURFstar(n_jobs=N_JOBS), 118 skrebate.MultiSURFstar(n_jobs=N_JOBS),
97 imblearn.under_sampling.ClusterCentroids( 119 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS),
98 random_state=0, n_jobs=N_JOBS),
99 imblearn.under_sampling.CondensedNearestNeighbour( 120 imblearn.under_sampling.CondensedNearestNeighbour(
100 random_state=0, n_jobs=N_JOBS), 121 random_state=0, n_jobs=N_JOBS
101 imblearn.under_sampling.EditedNearestNeighbours( 122 ),
102 random_state=0, n_jobs=N_JOBS), 123 imblearn.under_sampling.EditedNearestNeighbours(n_jobs=N_JOBS),
103 imblearn.under_sampling.RepeatedEditedNearestNeighbours( 124 imblearn.under_sampling.RepeatedEditedNearestNeighbours(n_jobs=N_JOBS),
104 random_state=0, n_jobs=N_JOBS), 125 imblearn.under_sampling.AllKNN(n_jobs=N_JOBS),
105 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS),
106 imblearn.under_sampling.InstanceHardnessThreshold( 126 imblearn.under_sampling.InstanceHardnessThreshold(
107 random_state=0, n_jobs=N_JOBS), 127 random_state=0, n_jobs=N_JOBS
108 imblearn.under_sampling.NearMiss( 128 ),
109 random_state=0, n_jobs=N_JOBS), 129 imblearn.under_sampling.NearMiss(n_jobs=N_JOBS),
110 imblearn.under_sampling.NeighbourhoodCleaningRule( 130 imblearn.under_sampling.NeighbourhoodCleaningRule(n_jobs=N_JOBS),
111 random_state=0, n_jobs=N_JOBS),
112 imblearn.under_sampling.OneSidedSelection( 131 imblearn.under_sampling.OneSidedSelection(
113 random_state=0, n_jobs=N_JOBS), 132 random_state=0, n_jobs=N_JOBS
114 imblearn.under_sampling.RandomUnderSampler( 133 ),
115 random_state=0), 134 imblearn.under_sampling.RandomUnderSampler(random_state=0),
116 imblearn.under_sampling.TomekLinks( 135 imblearn.under_sampling.TomekLinks(n_jobs=N_JOBS),
117 random_state=0, n_jobs=N_JOBS),
118 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), 136 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS),
137 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS),
138 imblearn.over_sampling.KMeansSMOTE(random_state=0, n_jobs=N_JOBS),
119 imblearn.over_sampling.RandomOverSampler(random_state=0), 139 imblearn.over_sampling.RandomOverSampler(random_state=0),
120 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), 140 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS),
141 imblearn.over_sampling.SMOTEN(random_state=0, n_jobs=N_JOBS),
142 imblearn.over_sampling.SMOTENC(
143 categorical_features=[], random_state=0, n_jobs=N_JOBS
144 ),
121 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), 145 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS),
122 imblearn.over_sampling.BorderlineSMOTE(
123 random_state=0, n_jobs=N_JOBS),
124 imblearn.over_sampling.SMOTENC(
125 categorical_features=[], random_state=0, n_jobs=N_JOBS),
126 imblearn.combine.SMOTEENN(random_state=0), 146 imblearn.combine.SMOTEENN(random_state=0),
127 imblearn.combine.SMOTETomek(random_state=0)) 147 imblearn.combine.SMOTETomek(random_state=0),
148 )
128 newlist = [] 149 newlist = []
129 for obj in ev: 150 for obj in ev:
130 if obj is None: 151 if obj is None:
131 newlist.append(None) 152 newlist.append(None)
132 elif obj == 'all_0': 153 elif obj == "all_0":
133 newlist.extend(preprocessings[0:35]) 154 newlist.extend(preprocessings[0:35])
134 elif obj == 'sk_prep_all': # no KernalCenter() 155 elif obj == "sk_prep_all": # no KernalCenter()
135 newlist.extend(preprocessings[0:7]) 156 newlist.extend(preprocessings[0:7])
136 elif obj == 'fs_all': 157 elif obj == "fs_all":
137 newlist.extend(preprocessings[7:14]) 158 newlist.extend(preprocessings[7:14])
138 elif obj == 'decomp_all': 159 elif obj == "decomp_all":
139 newlist.extend(preprocessings[14:25]) 160 newlist.extend(preprocessings[14:25])
140 elif obj == 'k_appr_all': 161 elif obj == "k_appr_all":
141 newlist.extend(preprocessings[25:29]) 162 newlist.extend(preprocessings[25:29])
142 elif obj == 'reb_all': 163 elif obj == "reb_all":
143 newlist.extend(preprocessings[30:35]) 164 newlist.extend(preprocessings[30:35])
144 elif obj == 'imb_all': 165 elif obj == "imb_all":
145 newlist.extend(preprocessings[35:54]) 166 newlist.extend(preprocessings[35:54])
146 elif type(obj) is int and -1 < obj < len(preprocessings): 167 elif type(obj) is int and -1 < obj < len(preprocessings):
147 newlist.append(preprocessings[obj]) 168 newlist.append(preprocessings[obj])
148 elif hasattr(obj, 'get_params'): # user uploaded object 169 elif hasattr(obj, "get_params"): # user uploaded object
149 if 'n_jobs' in obj.get_params(): 170 if "n_jobs" in obj.get_params():
150 newlist.append(obj.set_params(n_jobs=N_JOBS)) 171 newlist.append(obj.set_params(n_jobs=N_JOBS))
151 else: 172 else:
152 newlist.append(obj) 173 newlist.append(obj)
153 else: 174 else:
154 sys.exit("Unsupported estimator type: %r" % (obj)) 175 sys.exit("Unsupported estimator type: %r" % (obj))
156 search_params[param_name] = newlist 177 search_params[param_name] = newlist
157 178
158 return search_params 179 return search_params
159 180
160 181
161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, 182 def _handle_X_y(
162 ref_seq=None, intervals=None, targets=None, 183 estimator,
163 fasta_path=None): 184 params,
185 infile1,
186 infile2,
187 loaded_df={},
188 ref_seq=None,
189 intervals=None,
190 targets=None,
191 fasta_path=None,
192 ):
164 """read inputs 193 """read inputs
165 194
166 Params 195 Params
167 ------- 196 -------
168 estimator : estimator object 197 estimator : estimator object
190 X : numpy array 219 X : numpy array
191 y : numpy array 220 y : numpy array
192 """ 221 """
193 estimator_params = estimator.get_params() 222 estimator_params = estimator.get_params()
194 223
195 input_type = params['input_options']['selected_input'] 224 input_type = params["input_options"]["selected_input"]
196 # tabular input 225 # tabular input
197 if input_type == 'tabular': 226 if input_type == "tabular":
198 header = 'infer' if params['input_options']['header1'] else None 227 header = "infer" if params["input_options"]["header1"] else None
199 column_option = (params['input_options']['column_selector_options_1'] 228 column_option = params["input_options"]["column_selector_options_1"][
200 ['selected_column_selector_option']) 229 "selected_column_selector_option"
201 if column_option in ['by_index_number', 'all_but_by_index_number', 230 ]
202 'by_header_name', 'all_but_by_header_name']: 231 if column_option in [
203 c = params['input_options']['column_selector_options_1']['col1'] 232 "by_index_number",
233 "all_but_by_index_number",
234 "by_header_name",
235 "all_but_by_header_name",
236 ]:
237 c = params["input_options"]["column_selector_options_1"]["col1"]
204 else: 238 else:
205 c = None 239 c = None
206 240
207 df_key = infile1 + repr(header) 241 df_key = infile1 + repr(header)
208 242
209 if df_key in loaded_df: 243 if df_key in loaded_df:
210 infile1 = loaded_df[df_key] 244 infile1 = loaded_df[df_key]
211 245
212 df = pd.read_csv(infile1, sep='\t', header=header, 246 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True)
213 parse_dates=True)
214 loaded_df[df_key] = df 247 loaded_df[df_key] = df
215 248
216 X = read_columns(df, c=c, c_option=column_option).astype(float) 249 X = read_columns(df, c=c, c_option=column_option).astype(float)
217 # sparse input 250 # sparse input
218 elif input_type == 'sparse': 251 elif input_type == "sparse":
219 X = mmread(open(infile1, 'r')) 252 X = mmread(open(infile1, "r"))
220 253
221 # fasta_file input 254 # fasta_file input
222 elif input_type == 'seq_fasta': 255 elif input_type == "seq_fasta":
223 pyfaidx = get_module('pyfaidx') 256 pyfaidx = get_module("pyfaidx")
224 sequences = pyfaidx.Fasta(fasta_path) 257 sequences = pyfaidx.Fasta(fasta_path)
225 n_seqs = len(sequences.keys()) 258 n_seqs = len(sequences.keys())
226 X = np.arange(n_seqs)[:, np.newaxis] 259 X = np.arange(n_seqs)[:, np.newaxis]
227 for param in estimator_params.keys(): 260 for param in estimator_params.keys():
228 if param.endswith('fasta_path'): 261 if param.endswith("fasta_path"):
229 estimator.set_params( 262 estimator.set_params(**{param: fasta_path})
230 **{param: fasta_path})
231 break 263 break
232 else: 264 else:
233 raise ValueError( 265 raise ValueError(
234 "The selected estimator doesn't support " 266 "The selected estimator doesn't support "
235 "fasta file input! Please consider using " 267 "fasta file input! Please consider using "
236 "KerasGBatchClassifier with " 268 "KerasGBatchClassifier with "
237 "FastaDNABatchGenerator/FastaProteinBatchGenerator " 269 "FastaDNABatchGenerator/FastaProteinBatchGenerator "
238 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " 270 "or having GenomeOneHotEncoder/ProteinOneHotEncoder "
239 "in pipeline!") 271 "in pipeline!"
240 272 )
241 elif input_type == 'refseq_and_interval': 273
274 elif input_type == "refseq_and_interval":
242 path_params = { 275 path_params = {
243 'data_batch_generator__ref_genome_path': ref_seq, 276 "data_batch_generator__ref_genome_path": ref_seq,
244 'data_batch_generator__intervals_path': intervals, 277 "data_batch_generator__intervals_path": intervals,
245 'data_batch_generator__target_path': targets 278 "data_batch_generator__target_path": targets,
246 } 279 }
247 estimator.set_params(**path_params) 280 estimator.set_params(**path_params)
248 n_intervals = sum(1 for line in open(intervals)) 281 n_intervals = sum(1 for line in open(intervals))
249 X = np.arange(n_intervals)[:, np.newaxis] 282 X = np.arange(n_intervals)[:, np.newaxis]
250 283
251 # Get target y 284 # Get target y
252 header = 'infer' if params['input_options']['header2'] else None 285 header = "infer" if params["input_options"]["header2"] else None
253 column_option = (params['input_options']['column_selector_options_2'] 286 column_option = params["input_options"]["column_selector_options_2"][
254 ['selected_column_selector_option2']) 287 "selected_column_selector_option2"
255 if column_option in ['by_index_number', 'all_but_by_index_number', 288 ]
256 'by_header_name', 'all_but_by_header_name']: 289 if column_option in [
257 c = params['input_options']['column_selector_options_2']['col2'] 290 "by_index_number",
291 "all_but_by_index_number",
292 "by_header_name",
293 "all_but_by_header_name",
294 ]:
295 c = params["input_options"]["column_selector_options_2"]["col2"]
258 else: 296 else:
259 c = None 297 c = None
260 298
261 df_key = infile2 + repr(header) 299 df_key = infile2 + repr(header)
262 if df_key in loaded_df: 300 if df_key in loaded_df:
263 infile2 = loaded_df[df_key] 301 infile2 = loaded_df[df_key]
264 else: 302 else:
265 infile2 = pd.read_csv(infile2, sep='\t', 303 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True)
266 header=header, parse_dates=True)
267 loaded_df[df_key] = infile2 304 loaded_df[df_key] = infile2
268 305
269 y = read_columns( 306 y = read_columns(
270 infile2, 307 infile2,
271 c=c, 308 c=c,
272 c_option=column_option, 309 c_option=column_option,
273 sep='\t', 310 sep="\t",
274 header=header, 311 header=header,
275 parse_dates=True) 312 parse_dates=True,
313 )
276 if len(y.shape) == 2 and y.shape[1] == 1: 314 if len(y.shape) == 2 and y.shape[1] == 1:
277 y = y.ravel() 315 y = y.ravel()
278 if input_type == 'refseq_and_interval': 316 if input_type == "refseq_and_interval":
279 estimator.set_params( 317 estimator.set_params(data_batch_generator__features=y.ravel().tolist())
280 data_batch_generator__features=y.ravel().tolist())
281 y = None 318 y = None
282 # end y 319 # end y
283 320
284 return estimator, X, y 321 return estimator, X, y
285 322
286 323
287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', 324 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None):
288 outfile=None):
289 """Do outer cross-validation for nested CV 325 """Do outer cross-validation for nested CV
290 326
291 Parameters 327 Parameters
292 ---------- 328 ----------
293 searcher : object 329 searcher : object
303 error_score: str, float or numpy float 339 error_score: str, float or numpy float
304 Whether to raise fit error or return an value 340 Whether to raise fit error or return an value
305 outfile : str 341 outfile : str
306 File path to store the restuls 342 File path to store the restuls
307 """ 343 """
308 if error_score == 'raise': 344 if error_score == "raise":
309 rval = cross_validate( 345 rval = cross_validate(
310 searcher, X, y, scoring=scoring, 346 searcher,
311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, 347 X,
312 error_score=error_score) 348 y,
349 scoring=scoring,
350 cv=outer_cv,
351 n_jobs=N_JOBS,
352 verbose=0,
353 error_score=error_score,
354 )
313 else: 355 else:
314 warnings.simplefilter('always', FitFailedWarning) 356 warnings.simplefilter("always", FitFailedWarning)
315 with warnings.catch_warnings(record=True) as w: 357 with warnings.catch_warnings(record=True) as w:
316 try: 358 try:
317 rval = cross_validate( 359 rval = cross_validate(
318 searcher, X, y, 360 searcher,
361 X,
362 y,
319 scoring=scoring, 363 scoring=scoring,
320 cv=outer_cv, n_jobs=N_JOBS, 364 cv=outer_cv,
365 n_jobs=N_JOBS,
321 verbose=0, 366 verbose=0,
322 error_score=error_score) 367 error_score=error_score,
368 )
323 except ValueError: 369 except ValueError:
324 pass 370 pass
325 for warning in w: 371 for warning in w:
326 print(repr(warning.message)) 372 print(repr(warning.message))
327 373
328 keys = list(rval.keys()) 374 keys = list(rval.keys())
329 for k in keys: 375 for k in keys:
330 if k.startswith('test'): 376 if k.startswith("test"):
331 rval['mean_' + k] = np.mean(rval[k]) 377 rval["mean_" + k] = np.mean(rval[k])
332 rval['std_' + k] = np.std(rval[k]) 378 rval["std_" + k] = np.std(rval[k])
333 if k.endswith('time'): 379 if k.endswith("time"):
334 rval.pop(k) 380 rval.pop(k)
335 rval = pd.DataFrame(rval) 381 rval = pd.DataFrame(rval)
336 rval = rval[sorted(rval.columns)] 382 rval = rval[sorted(rval.columns)]
337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) 383 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False)
338 384
339 385
340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', 386 def _do_train_test_split_val(
341 primary_scoring=None, groups=None, 387 searcher,
342 outfile=None): 388 X,
343 """ do train test split, searchCV validates on the train and then use 389 y,
390 params,
391 error_score="raise",
392 primary_scoring=None,
393 groups=None,
394 outfile=None,
395 ):
396 """do train test split, searchCV validates on the train and then use
344 the best_estimator_ to evaluate on the test 397 the best_estimator_ to evaluate on the test
345 398
346 Returns 399 Returns
347 -------- 400 --------
348 Fitted SearchCV object 401 Fitted SearchCV object
349 """ 402 """
350 train_test_split = try_get_attr( 403 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split")
351 'galaxy_ml.model_validations', 'train_test_split') 404 split_options = params["outer_split"]
352 split_options = params['outer_split']
353 405
354 # splits 406 # splits
355 if split_options['shuffle'] == 'stratified': 407 if split_options["shuffle"] == "stratified":
356 split_options['labels'] = y 408 split_options["labels"] = y
357 X, X_test, y, y_test = train_test_split(X, y, **split_options) 409 X, X_test, y, y_test = train_test_split(X, y, **split_options)
358 elif split_options['shuffle'] == 'group': 410 elif split_options["shuffle"] == "group":
359 if groups is None: 411 if groups is None:
360 raise ValueError("No group based CV option was choosen for " 412 raise ValueError(
361 "group shuffle!") 413 "No group based CV option was choosen for " "group shuffle!"
362 split_options['labels'] = groups 414 )
415 split_options["labels"] = groups
363 if y is None: 416 if y is None:
364 X, X_test, groups, _ =\ 417 X, X_test, groups, _ = train_test_split(X, groups, **split_options)
365 train_test_split(X, groups, **split_options)
366 else: 418 else:
367 X, X_test, y, y_test, groups, _ =\ 419 X, X_test, y, y_test, groups, _ = train_test_split(
368 train_test_split(X, y, groups, **split_options) 420 X, y, groups, **split_options
421 )
369 else: 422 else:
370 if split_options['shuffle'] == 'None': 423 if split_options["shuffle"] == "None":
371 split_options['shuffle'] = None 424 split_options["shuffle"] = None
372 X, X_test, y, y_test =\ 425 X, X_test, y, y_test = train_test_split(X, y, **split_options)
373 train_test_split(X, y, **split_options) 426
374 427 if error_score == "raise":
375 if error_score == 'raise':
376 searcher.fit(X, y, groups=groups) 428 searcher.fit(X, y, groups=groups)
377 else: 429 else:
378 warnings.simplefilter('always', FitFailedWarning) 430 warnings.simplefilter("always", FitFailedWarning)
379 with warnings.catch_warnings(record=True) as w: 431 with warnings.catch_warnings(record=True) as w:
380 try: 432 try:
381 searcher.fit(X, y, groups=groups) 433 searcher.fit(X, y, groups=groups)
382 except ValueError: 434 except ValueError:
383 pass 435 pass
384 for warning in w: 436 for warning in w:
385 print(repr(warning.message)) 437 print(repr(warning.message))
386 438
387 scorer_ = searcher.scorer_ 439 scorer_ = searcher.scorer_
388 if isinstance(scorer_, collections.Mapping): 440
389 is_multimetric = True 441 best_estimator_ = getattr(searcher, "best_estimator_")
442
443 # TODO Solve deep learning models in pipeline
444 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier":
445 test_score = best_estimator_.evaluate(
446 X_test,
447 scorer=scorer_,
448 )
390 else: 449 else:
391 is_multimetric = False 450 test_score = _score(best_estimator_, X_test, y_test, scorer_)
392 451
393 best_estimator_ = getattr(searcher, 'best_estimator_') 452 if not isinstance(scorer_, dict):
394
395 # TODO Solve deep learning models in pipeline
396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier':
397 test_score = best_estimator_.evaluate(
398 X_test, scorer=scorer_, is_multimetric=is_multimetric)
399 else:
400 test_score = _score(best_estimator_, X_test,
401 y_test, scorer_,
402 is_multimetric=is_multimetric)
403
404 if not is_multimetric:
405 test_score = {primary_scoring: test_score} 453 test_score = {primary_scoring: test_score}
406 for key, value in test_score.items(): 454 for key, value in test_score.items():
407 test_score[key] = [value] 455 test_score[key] = [value]
408 result_df = pd.DataFrame(test_score) 456 result_df = pd.DataFrame(test_score)
409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, 457 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False)
410 index=False)
411 458
412 return searcher 459 return searcher
413 460
414 461
415 def main(inputs, infile_estimator, infile1, infile2, 462 def _set_memory(estimator, memory):
416 outfile_result, outfile_object=None, 463 """set memeory cache
417 outfile_weights=None, groups=None, 464
418 ref_seq=None, intervals=None, targets=None, 465 Parameters
419 fasta_path=None): 466 ----------
467 estimator : python object
468 memory : joblib.Memory object
469
470 Returns
471 -------
472 estimator : estimator object after setting new attributes
473 """
474 if isinstance(estimator, IRAPSClassifier):
475 estimator.set_params(memory=memory)
476 return estimator
477
478 estimator_params = estimator.get_params()
479
480 new_params = {}
481 for k in estimator_params.keys():
482 if k.endswith("irapsclassifier__memory"):
483 new_params[k] = memory
484
485 estimator.set_params(**new_params)
486
487 return estimator
488
489
490 def main(
491 inputs,
492 infile_estimator,
493 infile1,
494 infile2,
495 outfile_result,
496 outfile_object=None,
497 groups=None,
498 ref_seq=None,
499 intervals=None,
500 targets=None,
501 fasta_path=None,
502 ):
420 """ 503 """
421 Parameter 504 Parameter
422 --------- 505 ---------
423 inputs : str 506 inputs : str
424 File path to galaxy tool parameter 507 File path to galaxy tool parameter.
425 508
426 infile_estimator : str 509 infile_estimator : str
427 File path to estimator 510 File path to estimator.
428 511
429 infile1 : str 512 infile1 : str
430 File path to dataset containing features 513 File path to dataset containing features
431 514
432 infile2 : str 515 infile2 : str
435 outfile_result : str 518 outfile_result : str
436 File path to save the results, either cv_results or test result 519 File path to save the results, either cv_results or test result
437 520
438 outfile_object : str, optional 521 outfile_object : str, optional
439 File path to save searchCV object 522 File path to save searchCV object
440
441 outfile_weights : str, optional
442 File path to save model weights
443 523
444 groups : str 524 groups : str
445 File path to dataset containing groups labels 525 File path to dataset containing groups labels
446 526
447 ref_seq : str 527 ref_seq : str
454 File path to dataset compressed target bed file 534 File path to dataset compressed target bed file
455 535
456 fasta_path : str 536 fasta_path : str
457 File path to dataset containing fasta file 537 File path to dataset containing fasta file
458 """ 538 """
459 warnings.simplefilter('ignore') 539 warnings.simplefilter("ignore")
460 540
461 # store read dataframe object 541 # store read dataframe object
462 loaded_df = {} 542 loaded_df = {}
463 543
464 with open(inputs, 'r') as param_handler: 544 with open(inputs, "r") as param_handler:
465 params = json.load(param_handler) 545 params = json.load(param_handler)
466 546
467 # Override the refit parameter 547 # Override the refit parameter
468 params['search_schemes']['options']['refit'] = True \ 548 params["options"]["refit"] = (
469 if params['save'] != 'nope' else False 549 True
470 550 if (
471 with open(infile_estimator, 'rb') as estimator_handler: 551 params["save"] != "nope"
472 estimator = load_model(estimator_handler) 552 or params["outer_split"]["split_mode"] == "nested_cv"
473 553 )
474 optimizer = params['search_schemes']['selected_search_scheme'] 554 else False
475 optimizer = getattr(model_selection, optimizer) 555 )
556
557 estimator = load_model_from_h5(infile_estimator)
558
559 estimator = clean_params(estimator)
560
561 if estimator.__class__.__name__ == "KerasGBatchClassifier":
562 _fit_and_score = try_get_attr(
563 "galaxy_ml.model_validations",
564 "_fit_and_score",
565 )
566
567 setattr(_search, "_fit_and_score", _fit_and_score)
568 setattr(_validation, "_fit_and_score", _fit_and_score)
569
570 search_algos_and_options = params["search_algos"]
571 optimizer = search_algos_and_options.pop("selected_search_algo")
572 if optimizer == "skopt.BayesSearchCV":
573 optimizer = BayesSearchCV
574 else:
575 optimizer = getattr(model_selection, optimizer)
476 576
477 # handle gridsearchcv options 577 # handle gridsearchcv options
478 options = params['search_schemes']['options'] 578 options = params["options"]
579 options.update(search_algos_and_options)
479 580
480 if groups: 581 if groups:
481 header = 'infer' if (options['cv_selector']['groups_selector'] 582 header = (
482 ['header_g']) else None 583 "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None
483 column_option = (options['cv_selector']['groups_selector'] 584 )
484 ['column_selector_options_g'] 585 column_option = options["cv_selector"]["groups_selector"][
485 ['selected_column_selector_option_g']) 586 "column_selector_options_g"
486 if column_option in ['by_index_number', 'all_but_by_index_number', 587 ]["selected_column_selector_option_g"]
487 'by_header_name', 'all_but_by_header_name']: 588 if column_option in [
488 c = (options['cv_selector']['groups_selector'] 589 "by_index_number",
489 ['column_selector_options_g']['col_g']) 590 "all_but_by_index_number",
591 "by_header_name",
592 "all_but_by_header_name",
593 ]:
594 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][
595 "col_g"
596 ]
490 else: 597 else:
491 c = None 598 c = None
492 599
493 df_key = groups + repr(header) 600 df_key = groups + repr(header)
494 601
495 groups = pd.read_csv(groups, sep='\t', header=header, 602 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True)
496 parse_dates=True)
497 loaded_df[df_key] = groups 603 loaded_df[df_key] = groups
498 604
499 groups = read_columns( 605 groups = read_columns(
500 groups, 606 groups,
501 c=c, 607 c=c,
502 c_option=column_option, 608 c_option=column_option,
503 sep='\t', 609 sep="\t",
504 header=header, 610 header=header,
505 parse_dates=True) 611 parse_dates=True,
612 )
506 groups = groups.ravel() 613 groups = groups.ravel()
507 options['cv_selector']['groups_selector'] = groups 614 options["cv_selector"]["groups_selector"] = groups
508 615
509 splitter, groups = get_cv(options.pop('cv_selector')) 616 cv_selector = options.pop("cv_selector")
510 options['cv'] = splitter 617 if Version(galaxy_ml_version) < Version("0.8.3"):
511 primary_scoring = options['scoring']['primary_scoring'] 618 cv_selector.pop("n_stratification_bins", None)
512 options['scoring'] = get_scoring(options['scoring']) 619 splitter, groups = get_cv(cv_selector)
513 if options['error_score']: 620 options["cv"] = splitter
514 options['error_score'] = 'raise' 621 primary_scoring = options["scoring"]["primary_scoring"]
622 options["scoring"] = get_scoring(options["scoring"])
623 # TODO make BayesSearchCV support multiple scoring
624 if optimizer == "skopt.BayesSearchCV" and isinstance(options["scoring"], dict):
625 options["scoring"] = options["scoring"][primary_scoring]
626 warnings.warn(
627 "BayesSearchCV doesn't support multiple "
628 "scorings! Primary scoring is used."
629 )
630 if options["error_score"]:
631 options["error_score"] = "raise"
515 else: 632 else:
516 options['error_score'] = np.NaN 633 options["error_score"] = np.NaN
517 if options['refit'] and isinstance(options['scoring'], dict): 634 if options["refit"] and isinstance(options["scoring"], dict):
518 options['refit'] = primary_scoring 635 options["refit"] = primary_scoring
519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': 636 if "pre_dispatch" in options and options["pre_dispatch"] == "":
520 options['pre_dispatch'] = None 637 options["pre_dispatch"] = None
521 638
522 params_builder = params['search_schemes']['search_params_builder'] 639 params_builder = params["search_params_builder"]
523 param_grid = _eval_search_params(params_builder) 640 param_grid = _eval_search_params(params_builder)
524 641
525 estimator = clean_params(estimator)
526
527 # save the SearchCV object without fit 642 # save the SearchCV object without fit
528 if params['save'] == 'save_no_fit': 643 if params["save"] == "save_no_fit":
529 searcher = optimizer(estimator, param_grid, **options) 644 searcher = optimizer(estimator, param_grid, **options)
530 print(searcher) 645 dump_model_to_h5(searcher, outfile_object)
531 with open(outfile_object, 'wb') as output_handler:
532 pickle.dump(searcher, output_handler,
533 pickle.HIGHEST_PROTOCOL)
534 return 0 646 return 0
535 647
536 # read inputs and loads new attributes, like paths 648 # read inputs and loads new attributes, like paths
537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, 649 estimator, X, y = _handle_X_y(
538 loaded_df=loaded_df, ref_seq=ref_seq, 650 estimator,
539 intervals=intervals, targets=targets, 651 params,
540 fasta_path=fasta_path) 652 infile1,
653 infile2,
654 loaded_df=loaded_df,
655 ref_seq=ref_seq,
656 intervals=intervals,
657 targets=targets,
658 fasta_path=fasta_path,
659 )
660
661 label_encoder = LabelEncoder()
662 if get_main_estimator(estimator).__class__.__name__ == "XGBClassifier":
663 y = label_encoder.fit_transform(y)
541 664
542 # cache iraps_core fits could increase search speed significantly 665 # cache iraps_core fits could increase search speed significantly
543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) 666 memory = joblib.Memory(location=CACHE_DIR, verbose=0)
544 main_est = get_main_estimator(estimator) 667 estimator = _set_memory(estimator, memory)
545 if main_est.__class__.__name__ == 'IRAPSClassifier':
546 main_est.set_params(memory=memory)
547 668
548 searcher = optimizer(estimator, param_grid, **options) 669 searcher = optimizer(estimator, param_grid, **options)
549 670
550 split_mode = params['outer_split'].pop('split_mode') 671 split_mode = params["outer_split"].pop("split_mode")
551 672
552 if split_mode == 'nested_cv': 673 # Nested CV
553 # make sure refit is choosen 674 if split_mode == "nested_cv":
554 # this could be True for sklearn models, but not the case for 675 cv_selector = params["outer_split"]["cv_selector"]
555 # deep learning models 676 if Version(galaxy_ml_version) < Version("0.8.3"):
556 if not options['refit'] and \ 677 cv_selector.pop("n_stratification_bins", None)
557 not all(hasattr(estimator, attr) 678 outer_cv, _ = get_cv(cv_selector)
558 for attr in ('config', 'model_type')):
559 warnings.warn("Refit is change to `True` for nested validation!")
560 setattr(searcher, 'refit', True)
561
562 outer_cv, _ = get_cv(params['outer_split']['cv_selector'])
563 # nested CV, outer cv using cross_validate 679 # nested CV, outer cv using cross_validate
564 if options['error_score'] == 'raise': 680 if options["error_score"] == "raise":
565 rval = cross_validate( 681 rval = cross_validate(
566 searcher, X, y, scoring=options['scoring'], 682 searcher,
567 cv=outer_cv, n_jobs=N_JOBS, 683 X,
568 verbose=options['verbose'], 684 y,
569 return_estimator=(params['save'] == 'save_estimator'), 685 groups=groups,
570 error_score=options['error_score'], 686 scoring=options["scoring"],
571 return_train_score=True) 687 cv=outer_cv,
688 n_jobs=N_JOBS,
689 verbose=options["verbose"],
690 fit_params={"groups": groups},
691 return_estimator=(params["save"] == "save_estimator"),
692 error_score=options["error_score"],
693 return_train_score=True,
694 )
572 else: 695 else:
573 warnings.simplefilter('always', FitFailedWarning) 696 warnings.simplefilter("always", FitFailedWarning)
574 with warnings.catch_warnings(record=True) as w: 697 with warnings.catch_warnings(record=True) as w:
575 try: 698 try:
576 rval = cross_validate( 699 rval = cross_validate(
577 searcher, X, y, 700 searcher,
578 scoring=options['scoring'], 701 X,
579 cv=outer_cv, n_jobs=N_JOBS, 702 y,
580 verbose=options['verbose'], 703 groups=groups,
581 return_estimator=(params['save'] == 'save_estimator'), 704 scoring=options["scoring"],
582 error_score=options['error_score'], 705 cv=outer_cv,
583 return_train_score=True) 706 n_jobs=N_JOBS,
707 verbose=options["verbose"],
708 fit_params={"groups": groups},
709 return_estimator=(params["save"] == "save_estimator"),
710 error_score=options["error_score"],
711 return_train_score=True,
712 )
584 except ValueError: 713 except ValueError:
585 pass 714 pass
586 for warning in w: 715 for warning in w:
587 print(repr(warning.message)) 716 print(repr(warning.message))
588 717
589 fitted_searchers = rval.pop('estimator', []) 718 fitted_searchers = rval.pop("estimator", [])
590 if fitted_searchers: 719 if fitted_searchers:
591 import os 720 import os
721
592 pwd = os.getcwd() 722 pwd = os.getcwd()
593 save_dir = os.path.join(pwd, 'cv_results_in_folds') 723 save_dir = os.path.join(pwd, "cv_results_in_folds")
594 try: 724 try:
595 os.mkdir(save_dir) 725 os.mkdir(save_dir)
596 for idx, obj in enumerate(fitted_searchers): 726 for idx, obj in enumerate(fitted_searchers):
597 target_name = 'cv_results_' + '_' + 'split%d' % idx 727 target_name = "cv_results_" + "_" + "split%d" % idx
598 target_path = os.path.join(pwd, save_dir, target_name) 728 target_path = os.path.join(pwd, save_dir, target_name)
599 cv_results_ = getattr(obj, 'cv_results_', None) 729 cv_results_ = getattr(obj, "cv_results_", None)
600 if not cv_results_: 730 if not cv_results_:
601 print("%s is not available" % target_name) 731 print("%s is not available" % target_name)
602 continue 732 continue
603 cv_results_ = pd.DataFrame(cv_results_) 733 cv_results_ = pd.DataFrame(cv_results_)
604 cv_results_ = cv_results_[sorted(cv_results_.columns)] 734 cv_results_ = cv_results_[sorted(cv_results_.columns)]
605 cv_results_.to_csv(target_path, sep='\t', header=True, 735 cv_results_.to_csv(target_path, sep="\t", header=True, index=False)
606 index=False)
607 except Exception as e: 736 except Exception as e:
608 print(e) 737 print(e)
609 finally:
610 del os
611 738
612 keys = list(rval.keys()) 739 keys = list(rval.keys())
613 for k in keys: 740 for k in keys:
614 if k.startswith('test'): 741 if k.startswith("test"):
615 rval['mean_' + k] = np.mean(rval[k]) 742 rval["mean_" + k] = np.mean(rval[k])
616 rval['std_' + k] = np.std(rval[k]) 743 rval["std_" + k] = np.std(rval[k])
617 if k.endswith('time'): 744 if k.endswith("time"):
618 rval.pop(k) 745 rval.pop(k)
619 rval = pd.DataFrame(rval) 746 rval = pd.DataFrame(rval)
620 rval = rval[sorted(rval.columns)] 747 rval = rval[sorted(rval.columns)]
621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, 748 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False)
622 index=False)
623 749
624 return 0 750 return 0
625 751
626 # deprecate train test split mode 752 # deprecate train test split mode
627 """searcher = _do_train_test_split_val( 753 """searcher = _do_train_test_split_val(
632 outfile=outfile_result)""" 758 outfile=outfile_result)"""
633 759
634 # no outer split 760 # no outer split
635 else: 761 else:
636 searcher.set_params(n_jobs=N_JOBS) 762 searcher.set_params(n_jobs=N_JOBS)
637 if options['error_score'] == 'raise': 763 if options["error_score"] == "raise":
638 searcher.fit(X, y, groups=groups) 764 searcher.fit(X, y, groups=groups)
639 else: 765 else:
640 warnings.simplefilter('always', FitFailedWarning) 766 warnings.simplefilter("always", FitFailedWarning)
641 with warnings.catch_warnings(record=True) as w: 767 with warnings.catch_warnings(record=True) as w:
642 try: 768 try:
643 searcher.fit(X, y, groups=groups) 769 searcher.fit(X, y, groups=groups)
644 except ValueError: 770 except ValueError:
645 pass 771 pass
646 for warning in w: 772 for warning in w:
647 print(repr(warning.message)) 773 print(repr(warning.message))
648 774
649 cv_results = pd.DataFrame(searcher.cv_results_) 775 cv_results = pd.DataFrame(searcher.cv_results_)
650 cv_results = cv_results[sorted(cv_results.columns)] 776 cv_results = cv_results[sorted(cv_results.columns)]
651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', 777 cv_results.to_csv(
652 header=True, index=False) 778 path_or_buf=outfile_result, sep="\t", header=True, index=False
779 )
653 780
654 memory.clear(warn=False) 781 memory.clear(warn=False)
655 782
656 # output best estimator, and weights if applicable 783 # output best estimator, and weights if applicable
657 if outfile_object: 784 if outfile_object:
658 best_estimator_ = getattr(searcher, 'best_estimator_', None) 785 best_estimator_ = getattr(searcher, "best_estimator_", None)
659 if not best_estimator_: 786 if not best_estimator_:
660 warnings.warn("GridSearchCV object has no attribute " 787 warnings.warn(
661 "'best_estimator_', because either it's " 788 "GridSearchCV object has no attribute "
662 "nested gridsearch or `refit` is False!") 789 "'best_estimator_', because either it's "
790 "nested gridsearch or `refit` is False!"
791 )
663 return 792 return
664 793
665 # clean prams 794 dump_model_to_h5(best_estimator_, outfile_object)
666 best_estimator_ = clean_params(best_estimator_) 795
667 796
668 main_est = get_main_estimator(best_estimator_) 797 if __name__ == "__main__":
669
670 if hasattr(main_est, 'model_') \
671 and hasattr(main_est, 'save_weights'):
672 if outfile_weights:
673 main_est.save_weights(outfile_weights)
674 del main_est.model_
675 del main_est.fit_params
676 del main_est.model_class_
677 del main_est.validation_data
678 if getattr(main_est, 'data_generator_', None):
679 del main_est.data_generator_
680
681 with open(outfile_object, 'wb') as output_handler:
682 print("Best estimator is saved: %s " % repr(best_estimator_))
683 pickle.dump(best_estimator_, output_handler,
684 pickle.HIGHEST_PROTOCOL)
685
686
687 if __name__ == '__main__':
688 aparser = argparse.ArgumentParser() 798 aparser = argparse.ArgumentParser()
689 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) 799 aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
690 aparser.add_argument("-e", "--estimator", dest="infile_estimator") 800 aparser.add_argument("-e", "--estimator", dest="infile_estimator")
691 aparser.add_argument("-X", "--infile1", dest="infile1") 801 aparser.add_argument("-X", "--infile1", dest="infile1")
692 aparser.add_argument("-y", "--infile2", dest="infile2") 802 aparser.add_argument("-y", "--infile2", dest="infile2")
693 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") 803 aparser.add_argument("-O", "--outfile_result", dest="outfile_result")
694 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") 804 aparser.add_argument("-o", "--outfile_object", dest="outfile_object")
695 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights")
696 aparser.add_argument("-g", "--groups", dest="groups") 805 aparser.add_argument("-g", "--groups", dest="groups")
697 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") 806 aparser.add_argument("-r", "--ref_seq", dest="ref_seq")
698 aparser.add_argument("-b", "--intervals", dest="intervals") 807 aparser.add_argument("-b", "--intervals", dest="intervals")
699 aparser.add_argument("-t", "--targets", dest="targets") 808 aparser.add_argument("-t", "--targets", dest="targets")
700 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") 809 aparser.add_argument("-f", "--fasta_path", dest="fasta_path")
701 args = aparser.parse_args() 810 args = aparser.parse_args()
702 811
703 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, 812 main(**vars(args))
704 args.outfile_result, outfile_object=args.outfile_object,
705 outfile_weights=args.outfile_weights, groups=args.groups,
706 ref_seq=args.ref_seq, intervals=args.intervals,
707 targets=args.targets, fasta_path=args.fasta_path)