Mercurial > repos > bgruening > stacking_ensemble_models
comparison keras_train_and_eval.py @ 3:0a1812986bc3 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
| author | bgruening |
|---|---|
| date | Wed, 09 Aug 2023 11:10:37 +0000 |
| parents | 38c4f8a98038 |
| children | ba7fb6b33cd0 |
comparison
equal
deleted
inserted
replaced
| 2:38c4f8a98038 | 3:0a1812986bc3 |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 import joblib | |
| 3 import json | 2 import json |
| 4 import numpy as np | |
| 5 import os | 3 import os |
| 6 import pandas as pd | |
| 7 import pickle | |
| 8 import warnings | 4 import warnings |
| 9 from itertools import chain | 5 from itertools import chain |
| 6 | |
| 7 import joblib | |
| 8 import numpy as np | |
| 9 import pandas as pd | |
| 10 from galaxy_ml.keras_galaxy_models import ( | |
| 11 _predict_generator, | |
| 12 KerasGBatchClassifier, | |
| 13 ) | |
| 14 from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 | |
| 15 from galaxy_ml.model_validations import train_test_split | |
| 16 from galaxy_ml.utils import ( | |
| 17 clean_params, | |
| 18 gen_compute_scores, | |
| 19 get_main_estimator, | |
| 20 get_module, | |
| 21 get_scoring, | |
| 22 read_columns, | |
| 23 SafeEval | |
| 24 ) | |
| 10 from scipy.io import mmread | 25 from scipy.io import mmread |
| 11 from sklearn.pipeline import Pipeline | 26 from sklearn.metrics._scorer import _check_multimetric_scoring |
| 12 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 13 from sklearn import model_selection | |
| 14 from sklearn.model_selection._validation import _score | 27 from sklearn.model_selection._validation import _score |
| 15 from sklearn.model_selection import _search, _validation | 28 from sklearn.utils import _safe_indexing, indexable |
| 16 from sklearn.utils import indexable, safe_indexing | 29 |
| 17 | 30 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) |
| 18 from galaxy_ml.externals.selene_sdk.utils import compute_score | 31 CACHE_DIR = os.path.join(os.getcwd(), "cached") |
| 19 from galaxy_ml.model_validations import train_test_split | 32 NON_SEARCHABLE = ( |
| 20 from galaxy_ml.keras_galaxy_models import _predict_generator | 33 "n_jobs", |
| 21 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | 34 "pre_dispatch", |
| 22 read_columns, try_get_attr, get_module, | 35 "memory", |
| 23 clean_params, get_main_estimator) | 36 "_path", |
| 24 | 37 "_dir", |
| 25 | 38 "nthread", |
| 26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 39 "callbacks", |
| 27 setattr(_search, '_fit_and_score', _fit_and_score) | 40 ) |
| 28 setattr(_validation, '_fit_and_score', _fit_and_score) | 41 ALLOWED_CALLBACKS = ( |
| 29 | 42 "EarlyStopping", |
| 30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | 43 "TerminateOnNaN", |
| 31 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | 44 "ReduceLROnPlateau", |
| 32 del os | 45 "CSVLogger", |
| 33 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 46 "None", |
| 34 'nthread', 'callbacks') | 47 ) |
| 35 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
| 36 'CSVLogger', 'None') | |
| 37 | 48 |
| 38 | 49 |
| 39 def _eval_swap_params(params_builder): | 50 def _eval_swap_params(params_builder): |
| 40 swap_params = {} | 51 swap_params = {} |
| 41 | 52 |
| 42 for p in params_builder['param_set']: | 53 for p in params_builder["param_set"]: |
| 43 swap_value = p['sp_value'].strip() | 54 swap_value = p["sp_value"].strip() |
| 44 if swap_value == '': | 55 if swap_value == "": |
| 45 continue | 56 continue |
| 46 | 57 |
| 47 param_name = p['sp_name'] | 58 param_name = p["sp_name"] |
| 48 if param_name.lower().endswith(NON_SEARCHABLE): | 59 if param_name.lower().endswith(NON_SEARCHABLE): |
| 49 warnings.warn("Warning: `%s` is not eligible for search and was " | 60 warnings.warn( |
| 50 "omitted!" % param_name) | 61 "Warning: `%s` is not eligible for search and was " |
| 62 "omitted!" % param_name | |
| 63 ) | |
| 51 continue | 64 continue |
| 52 | 65 |
| 53 if not swap_value.startswith(':'): | 66 if not swap_value.startswith(":"): |
| 54 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 67 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
| 55 ev = safe_eval(swap_value) | 68 ev = safe_eval(swap_value) |
| 56 else: | 69 else: |
| 57 # Have `:` before search list, asks for estimator evaluatio | 70 # Have `:` before search list, asks for estimator evaluatio |
| 58 safe_eval_es = SafeEval(load_estimators=True) | 71 safe_eval_es = SafeEval(load_estimators=True) |
| 75 if arr is None: | 88 if arr is None: |
| 76 nones.append(idx) | 89 nones.append(idx) |
| 77 else: | 90 else: |
| 78 new_arrays.append(arr) | 91 new_arrays.append(arr) |
| 79 | 92 |
| 80 if kwargs['shuffle'] == 'None': | 93 if kwargs["shuffle"] == "None": |
| 81 kwargs['shuffle'] = None | 94 kwargs["shuffle"] = None |
| 82 | 95 |
| 83 group_names = kwargs.pop('group_names', None) | 96 group_names = kwargs.pop("group_names", None) |
| 84 | 97 |
| 85 if group_names is not None and group_names.strip(): | 98 if group_names is not None and group_names.strip(): |
| 86 group_names = [name.strip() for name in | 99 group_names = [name.strip() for name in group_names.split(",")] |
| 87 group_names.split(',')] | |
| 88 new_arrays = indexable(*new_arrays) | 100 new_arrays = indexable(*new_arrays) |
| 89 groups = kwargs['labels'] | 101 groups = kwargs["labels"] |
| 90 n_samples = new_arrays[0].shape[0] | 102 n_samples = new_arrays[0].shape[0] |
| 91 index_arr = np.arange(n_samples) | 103 index_arr = np.arange(n_samples) |
| 92 test = index_arr[np.isin(groups, group_names)] | 104 test = index_arr[np.isin(groups, group_names)] |
| 93 train = index_arr[~np.isin(groups, group_names)] | 105 train = index_arr[~np.isin(groups, group_names)] |
| 94 rval = list(chain.from_iterable( | 106 rval = list( |
| 95 (safe_indexing(a, train), | 107 chain.from_iterable( |
| 96 safe_indexing(a, test)) for a in new_arrays)) | 108 (_safe_indexing(a, train), _safe_indexing(a, test)) for a in new_arrays |
| 109 ) | |
| 110 ) | |
| 97 else: | 111 else: |
| 98 rval = train_test_split(*new_arrays, **kwargs) | 112 rval = train_test_split(*new_arrays, **kwargs) |
| 99 | 113 |
| 100 for pos in nones: | 114 for pos in nones: |
| 101 rval[pos * 2: 2] = [None, None] | 115 rval[pos * 2: 2] = [None, None] |
| 102 | 116 |
| 103 return rval | 117 return rval |
| 104 | 118 |
| 105 | 119 |
| 106 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 120 def _evaluate_keras_and_sklearn_scores( |
| 107 """ output scores based on input scorer | 121 estimator, |
| 122 data_generator, | |
| 123 X, | |
| 124 y=None, | |
| 125 sk_scoring=None, | |
| 126 steps=None, | |
| 127 batch_size=32, | |
| 128 return_predictions=False, | |
| 129 ): | |
| 130 """output scores for bother keras and sklearn metrics | |
| 108 | 131 |
| 109 Parameters | 132 Parameters |
| 110 ---------- | 133 ----------- |
| 111 y_true : array | 134 estimator : object |
| 112 True label or target values | 135 Fitted `galaxy_ml.keras_galaxy_models.KerasGBatchClassifier`. |
| 113 pred_probas : array | 136 data_generator : object |
| 114 Prediction values, probability for classification problem | 137 From `galaxy_ml.preprocessors.ImageDataFrameBatchGenerator`. |
| 115 scorer : dict | 138 X : 2-D array |
| 116 dict of `sklearn.metrics.scorer.SCORER` | 139 Contains indecies of images that need to be evaluated. |
| 117 is_multimetric : bool, default is True | 140 y : None |
| 141 Target value. | |
| 142 sk_scoring : dict | |
| 143 Galaxy tool input parameters. | |
| 144 steps : integer or None | |
| 145 Evaluation/prediction steps before stop. | |
| 146 batch_size : integer | |
| 147 Number of samples in a batch | |
| 148 return_predictions : bool, default is False | |
| 149 Whether to return predictions and true labels. | |
| 118 """ | 150 """ |
| 119 if y_true.ndim == 1 or y_true.shape[-1] == 1: | 151 scores = {} |
| 120 pred_probas = pred_probas.ravel() | 152 |
| 121 pred_labels = (pred_probas > 0.5).astype('int32') | 153 generator = data_generator.flow(X, y=y, batch_size=batch_size) |
| 122 targets = y_true.ravel().astype('int32') | 154 # keras metrics evaluation |
| 123 if not is_multimetric: | 155 # handle scorer, convert to scorer dict |
| 124 preds = pred_labels if scorer.__class__.__name__ == \ | 156 generator.reset() |
| 125 '_PredictScorer' else pred_probas | 157 score_results = estimator.model_.evaluate_generator(generator, steps=steps) |
| 126 score = scorer._score_func(targets, preds, **scorer._kwargs) | 158 metrics_names = estimator.model_.metrics_names |
| 127 | 159 if not isinstance(metrics_names, list): |
| 128 return score | 160 scores[metrics_names] = score_results |
| 129 else: | 161 else: |
| 130 scores = {} | 162 scores = dict(zip(metrics_names, score_results)) |
| 131 for name, one_scorer in scorer.items(): | 163 |
| 132 preds = pred_labels if one_scorer.__class__.__name__\ | 164 if sk_scoring["primary_scoring"] == "default" and not return_predictions: |
| 133 == '_PredictScorer' else pred_probas | 165 return scores |
| 134 score = one_scorer._score_func(targets, preds, | 166 |
| 135 **one_scorer._kwargs) | 167 generator.reset() |
| 136 scores[name] = score | 168 predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) |
| 137 | 169 |
| 138 # TODO: multi-class metrics | 170 # for sklearn metrics |
| 139 # multi-label | 171 if sk_scoring["primary_scoring"] != "default": |
| 140 else: | 172 scorer = get_scoring(sk_scoring) |
| 141 pred_labels = (pred_probas > 0.5).astype('int32') | 173 if not isinstance(scorer, (dict, list)): |
| 142 targets = y_true.astype('int32') | 174 scorer = [sk_scoring["primary_scoring"]] |
| 143 if not is_multimetric: | 175 scorer = _check_multimetric_scoring(estimator, scoring=scorer) |
| 144 preds = pred_labels if scorer.__class__.__name__ == \ | 176 sk_scores = gen_compute_scores(y_true, predictions, scorer) |
| 145 '_PredictScorer' else pred_probas | 177 scores.update(sk_scores) |
| 146 score, _ = compute_score(preds, targets, | 178 |
| 147 scorer._score_func) | 179 if return_predictions: |
| 148 return score | 180 return scores, predictions, y_true |
| 149 else: | 181 else: |
| 150 scores = {} | 182 return scores, None, None |
| 151 for name, one_scorer in scorer.items(): | 183 |
| 152 preds = pred_labels if one_scorer.__class__.__name__\ | 184 |
| 153 == '_PredictScorer' else pred_probas | 185 def main( |
| 154 score, _ = compute_score(preds, targets, | 186 inputs, |
| 155 one_scorer._score_func) | 187 infile_estimator, |
| 156 scores[name] = score | 188 infile1, |
| 157 | 189 infile2, |
| 158 return scores | 190 outfile_result, |
| 159 | 191 outfile_object=None, |
| 160 | 192 outfile_y_true=None, |
| 161 def main(inputs, infile_estimator, infile1, infile2, | 193 outfile_y_preds=None, |
| 162 outfile_result, outfile_object=None, | 194 groups=None, |
| 163 outfile_weights=None, outfile_y_true=None, | 195 ref_seq=None, |
| 164 outfile_y_preds=None, groups=None, | 196 intervals=None, |
| 165 ref_seq=None, intervals=None, targets=None, | 197 targets=None, |
| 166 fasta_path=None): | 198 fasta_path=None, |
| 199 ): | |
| 167 """ | 200 """ |
| 168 Parameter | 201 Parameter |
| 169 --------- | 202 --------- |
| 170 inputs : str | 203 inputs : str |
| 171 File path to galaxy tool parameter | 204 File path to galaxy tool parameter. |
| 172 | 205 |
| 173 infile_estimator : str | 206 infile_estimator : str |
| 174 File path to estimator | 207 File path to estimator. |
| 175 | 208 |
| 176 infile1 : str | 209 infile1 : str |
| 177 File path to dataset containing features | 210 File path to dataset containing features. |
| 178 | 211 |
| 179 infile2 : str | 212 infile2 : str |
| 180 File path to dataset containing target values | 213 File path to dataset containing target values. |
| 181 | 214 |
| 182 outfile_result : str | 215 outfile_result : str |
| 183 File path to save the results, either cv_results or test result | 216 File path to save the results, either cv_results or test result. |
| 184 | 217 |
| 185 outfile_object : str, optional | 218 outfile_object : str, optional |
| 186 File path to save searchCV object | 219 File path to save searchCV object. |
| 187 | |
| 188 outfile_weights : str, optional | |
| 189 File path to save deep learning model weights | |
| 190 | 220 |
| 191 outfile_y_true : str, optional | 221 outfile_y_true : str, optional |
| 192 File path to target values for prediction | 222 File path to target values for prediction. |
| 193 | 223 |
| 194 outfile_y_preds : str, optional | 224 outfile_y_preds : str, optional |
| 195 File path to save deep learning model weights | 225 File path to save predictions. |
| 196 | 226 |
| 197 groups : str | 227 groups : str |
| 198 File path to dataset containing groups labels | 228 File path to dataset containing groups labels. |
| 199 | 229 |
| 200 ref_seq : str | 230 ref_seq : str |
| 201 File path to dataset containing genome sequence file | 231 File path to dataset containing genome sequence file. |
| 202 | 232 |
| 203 intervals : str | 233 intervals : str |
| 204 File path to dataset containing interval file | 234 File path to dataset containing interval file. |
| 205 | 235 |
| 206 targets : str | 236 targets : str |
| 207 File path to dataset compressed target bed file | 237 File path to dataset compressed target bed file. |
| 208 | 238 |
| 209 fasta_path : str | 239 fasta_path : str |
| 210 File path to dataset containing fasta file | 240 File path to dataset containing fasta file. |
| 211 """ | 241 """ |
| 212 warnings.simplefilter('ignore') | 242 warnings.simplefilter("ignore") |
| 213 | 243 |
| 214 with open(inputs, 'r') as param_handler: | 244 with open(inputs, "r") as param_handler: |
| 215 params = json.load(param_handler) | 245 params = json.load(param_handler) |
| 216 | 246 |
| 217 # load estimator | 247 # load estimator |
| 218 with open(infile_estimator, 'rb') as estimator_handler: | 248 estimator = load_model_from_h5(infile_estimator) |
| 219 estimator = load_model(estimator_handler) | |
| 220 | 249 |
| 221 estimator = clean_params(estimator) | 250 estimator = clean_params(estimator) |
| 222 | 251 |
| 223 # swap hyperparameter | 252 # swap hyperparameter |
| 224 swapping = params['experiment_schemes']['hyperparams_swapping'] | 253 swapping = params["experiment_schemes"]["hyperparams_swapping"] |
| 225 swap_params = _eval_swap_params(swapping) | 254 swap_params = _eval_swap_params(swapping) |
| 226 estimator.set_params(**swap_params) | 255 estimator.set_params(**swap_params) |
| 227 | 256 |
| 228 estimator_params = estimator.get_params() | 257 estimator_params = estimator.get_params() |
| 229 | 258 |
| 230 # store read dataframe object | 259 # store read dataframe object |
| 231 loaded_df = {} | 260 loaded_df = {} |
| 232 | 261 |
| 233 input_type = params['input_options']['selected_input'] | 262 input_type = params["input_options"]["selected_input"] |
| 234 # tabular input | 263 # tabular input |
| 235 if input_type == 'tabular': | 264 if input_type == "tabular": |
| 236 header = 'infer' if params['input_options']['header1'] else None | 265 header = "infer" if params["input_options"]["header1"] else None |
| 237 column_option = (params['input_options']['column_selector_options_1'] | 266 column_option = params["input_options"]["column_selector_options_1"][ |
| 238 ['selected_column_selector_option']) | 267 "selected_column_selector_option" |
| 239 if column_option in ['by_index_number', 'all_but_by_index_number', | 268 ] |
| 240 'by_header_name', 'all_but_by_header_name']: | 269 if column_option in [ |
| 241 c = params['input_options']['column_selector_options_1']['col1'] | 270 "by_index_number", |
| 271 "all_but_by_index_number", | |
| 272 "by_header_name", | |
| 273 "all_but_by_header_name", | |
| 274 ]: | |
| 275 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 242 else: | 276 else: |
| 243 c = None | 277 c = None |
| 244 | 278 |
| 245 df_key = infile1 + repr(header) | 279 df_key = infile1 + repr(header) |
| 246 df = pd.read_csv(infile1, sep='\t', header=header, | 280 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
| 247 parse_dates=True) | |
| 248 loaded_df[df_key] = df | 281 loaded_df[df_key] = df |
| 249 | 282 |
| 250 X = read_columns(df, c=c, c_option=column_option).astype(float) | 283 X = read_columns(df, c=c, c_option=column_option).astype(float) |
| 251 # sparse input | 284 # sparse input |
| 252 elif input_type == 'sparse': | 285 elif input_type == "sparse": |
| 253 X = mmread(open(infile1, 'r')) | 286 X = mmread(open(infile1, "r")) |
| 254 | 287 |
| 255 # fasta_file input | 288 # fasta_file input |
| 256 elif input_type == 'seq_fasta': | 289 elif input_type == "seq_fasta": |
| 257 pyfaidx = get_module('pyfaidx') | 290 pyfaidx = get_module("pyfaidx") |
| 258 sequences = pyfaidx.Fasta(fasta_path) | 291 sequences = pyfaidx.Fasta(fasta_path) |
| 259 n_seqs = len(sequences.keys()) | 292 n_seqs = len(sequences.keys()) |
| 260 X = np.arange(n_seqs)[:, np.newaxis] | 293 X = np.arange(n_seqs)[:, np.newaxis] |
| 261 for param in estimator_params.keys(): | 294 for param in estimator_params.keys(): |
| 262 if param.endswith('fasta_path'): | 295 if param.endswith("fasta_path"): |
| 263 estimator.set_params( | 296 estimator.set_params(**{param: fasta_path}) |
| 264 **{param: fasta_path}) | |
| 265 break | 297 break |
| 266 else: | 298 else: |
| 267 raise ValueError( | 299 raise ValueError( |
| 268 "The selected estimator doesn't support " | 300 "The selected estimator doesn't support " |
| 269 "fasta file input! Please consider using " | 301 "fasta file input! Please consider using " |
| 270 "KerasGBatchClassifier with " | 302 "KerasGBatchClassifier with " |
| 271 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 303 "FastaDNABatchGenerator/FastaProteinBatchGenerator " |
| 272 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 304 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " |
| 273 "in pipeline!") | 305 "in pipeline!" |
| 274 | 306 ) |
| 275 elif input_type == 'refseq_and_interval': | 307 |
| 308 elif input_type == "refseq_and_interval": | |
| 276 path_params = { | 309 path_params = { |
| 277 'data_batch_generator__ref_genome_path': ref_seq, | 310 "data_batch_generator__ref_genome_path": ref_seq, |
| 278 'data_batch_generator__intervals_path': intervals, | 311 "data_batch_generator__intervals_path": intervals, |
| 279 'data_batch_generator__target_path': targets | 312 "data_batch_generator__target_path": targets, |
| 280 } | 313 } |
| 281 estimator.set_params(**path_params) | 314 estimator.set_params(**path_params) |
| 282 n_intervals = sum(1 for line in open(intervals)) | 315 n_intervals = sum(1 for line in open(intervals)) |
| 283 X = np.arange(n_intervals)[:, np.newaxis] | 316 X = np.arange(n_intervals)[:, np.newaxis] |
| 284 | 317 |
| 285 # Get target y | 318 # Get target y |
| 286 header = 'infer' if params['input_options']['header2'] else None | 319 header = "infer" if params["input_options"]["header2"] else None |
| 287 column_option = (params['input_options']['column_selector_options_2'] | 320 column_option = params["input_options"]["column_selector_options_2"][ |
| 288 ['selected_column_selector_option2']) | 321 "selected_column_selector_option2" |
| 289 if column_option in ['by_index_number', 'all_but_by_index_number', | 322 ] |
| 290 'by_header_name', 'all_but_by_header_name']: | 323 if column_option in [ |
| 291 c = params['input_options']['column_selector_options_2']['col2'] | 324 "by_index_number", |
| 325 "all_but_by_index_number", | |
| 326 "by_header_name", | |
| 327 "all_but_by_header_name", | |
| 328 ]: | |
| 329 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 292 else: | 330 else: |
| 293 c = None | 331 c = None |
| 294 | 332 |
| 295 df_key = infile2 + repr(header) | 333 df_key = infile2 + repr(header) |
| 296 if df_key in loaded_df: | 334 if df_key in loaded_df: |
| 297 infile2 = loaded_df[df_key] | 335 infile2 = loaded_df[df_key] |
| 298 else: | 336 else: |
| 299 infile2 = pd.read_csv(infile2, sep='\t', | 337 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
| 300 header=header, parse_dates=True) | |
| 301 loaded_df[df_key] = infile2 | 338 loaded_df[df_key] = infile2 |
| 302 | 339 |
| 303 y = read_columns( | 340 y = read_columns( |
| 304 infile2, | 341 infile2, |
| 305 c=c, | 342 c=c, |
| 306 c_option=column_option, | 343 c_option=column_option, |
| 307 sep='\t', | 344 sep="\t", |
| 308 header=header, | 345 header=header, |
| 309 parse_dates=True) | 346 parse_dates=True, |
| 347 ) | |
| 310 if len(y.shape) == 2 and y.shape[1] == 1: | 348 if len(y.shape) == 2 and y.shape[1] == 1: |
| 311 y = y.ravel() | 349 y = y.ravel() |
| 312 if input_type == 'refseq_and_interval': | 350 if input_type == "refseq_and_interval": |
| 313 estimator.set_params( | 351 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
| 314 data_batch_generator__features=y.ravel().tolist()) | |
| 315 y = None | 352 y = None |
| 316 # end y | 353 # end y |
| 317 | 354 |
| 318 # load groups | 355 # load groups |
| 319 if groups: | 356 if groups: |
| 320 groups_selector = (params['experiment_schemes']['test_split'] | 357 groups_selector = ( |
| 321 ['split_algos']).pop('groups_selector') | 358 params["experiment_schemes"]["test_split"]["split_algos"] |
| 322 | 359 ).pop("groups_selector") |
| 323 header = 'infer' if groups_selector['header_g'] else None | 360 |
| 324 column_option = \ | 361 header = "infer" if groups_selector["header_g"] else None |
| 325 (groups_selector['column_selector_options_g'] | 362 column_option = groups_selector["column_selector_options_g"][ |
| 326 ['selected_column_selector_option_g']) | 363 "selected_column_selector_option_g" |
| 327 if column_option in ['by_index_number', 'all_but_by_index_number', | 364 ] |
| 328 'by_header_name', 'all_but_by_header_name']: | 365 if column_option in [ |
| 329 c = groups_selector['column_selector_options_g']['col_g'] | 366 "by_index_number", |
| 367 "all_but_by_index_number", | |
| 368 "by_header_name", | |
| 369 "all_but_by_header_name", | |
| 370 ]: | |
| 371 c = groups_selector["column_selector_options_g"]["col_g"] | |
| 330 else: | 372 else: |
| 331 c = None | 373 c = None |
| 332 | 374 |
| 333 df_key = groups + repr(header) | 375 df_key = groups + repr(header) |
| 334 if df_key in loaded_df: | 376 if df_key in loaded_df: |
| 335 groups = loaded_df[df_key] | 377 groups = loaded_df[df_key] |
| 336 | 378 |
| 337 groups = read_columns( | 379 groups = read_columns( |
| 338 groups, | 380 groups, |
| 339 c=c, | 381 c=c, |
| 340 c_option=column_option, | 382 c_option=column_option, |
| 341 sep='\t', | 383 sep="\t", |
| 342 header=header, | 384 header=header, |
| 343 parse_dates=True) | 385 parse_dates=True, |
| 386 ) | |
| 344 groups = groups.ravel() | 387 groups = groups.ravel() |
| 345 | 388 |
| 346 # del loaded_df | 389 # del loaded_df |
| 347 del loaded_df | 390 del loaded_df |
| 348 | 391 |
| 349 # cache iraps_core fits could increase search speed significantly | 392 # cache iraps_core fits could increase search speed significantly |
| 350 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 393 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
| 351 main_est = get_main_estimator(estimator) | 394 main_est = get_main_estimator(estimator) |
| 352 if main_est.__class__.__name__ == 'IRAPSClassifier': | 395 if main_est.__class__.__name__ == "IRAPSClassifier": |
| 353 main_est.set_params(memory=memory) | 396 main_est.set_params(memory=memory) |
| 354 | 397 |
| 355 # handle scorer, convert to scorer dict | 398 # handle scorer, convert to scorer dict |
| 356 scoring = params['experiment_schemes']['metrics']['scoring'] | 399 scoring = params["experiment_schemes"]["metrics"]["scoring"] |
| 357 scorer = get_scoring(scoring) | 400 scorer = get_scoring(scoring) |
| 358 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | 401 if not isinstance(scorer, (dict, list)): |
| 402 scorer = [scoring["primary_scoring"]] | |
| 403 scorer = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 359 | 404 |
| 360 # handle test (first) split | 405 # handle test (first) split |
| 361 test_split_options = (params['experiment_schemes'] | 406 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] |
| 362 ['test_split']['split_algos']) | 407 |
| 363 | 408 if test_split_options["shuffle"] == "group": |
| 364 if test_split_options['shuffle'] == 'group': | 409 test_split_options["labels"] = groups |
| 365 test_split_options['labels'] = groups | 410 if test_split_options["shuffle"] == "stratified": |
| 366 if test_split_options['shuffle'] == 'stratified': | |
| 367 if y is not None: | 411 if y is not None: |
| 368 test_split_options['labels'] = y | 412 test_split_options["labels"] = y |
| 369 else: | 413 else: |
| 370 raise ValueError("Stratified shuffle split is not " | 414 raise ValueError( |
| 371 "applicable on empty target values!") | 415 "Stratified shuffle split is not " "applicable on empty target values!" |
| 372 | 416 ) |
| 373 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | 417 |
| 374 train_test_split_none(X, y, groups, **test_split_options) | 418 X_train, X_test, y_train, y_test, groups_train, groups_test = train_test_split_none( |
| 375 | 419 X, y, groups, **test_split_options |
| 376 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | 420 ) |
| 421 | |
| 422 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
| 377 | 423 |
| 378 # handle validation (second) split | 424 # handle validation (second) split |
| 379 if exp_scheme == 'train_val_test': | 425 if exp_scheme == "train_val_test": |
| 380 val_split_options = (params['experiment_schemes'] | 426 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] |
| 381 ['val_split']['split_algos']) | 427 |
| 382 | 428 if val_split_options["shuffle"] == "group": |
| 383 if val_split_options['shuffle'] == 'group': | 429 val_split_options["labels"] = groups_train |
| 384 val_split_options['labels'] = groups_train | 430 if val_split_options["shuffle"] == "stratified": |
| 385 if val_split_options['shuffle'] == 'stratified': | |
| 386 if y_train is not None: | 431 if y_train is not None: |
| 387 val_split_options['labels'] = y_train | 432 val_split_options["labels"] = y_train |
| 388 else: | 433 else: |
| 389 raise ValueError("Stratified shuffle split is not " | 434 raise ValueError( |
| 390 "applicable on empty target values!") | 435 "Stratified shuffle split is not " |
| 391 | 436 "applicable on empty target values!" |
| 392 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | 437 ) |
| 393 train_test_split_none(X_train, y_train, groups_train, | 438 |
| 394 **val_split_options) | 439 ( |
| 440 X_train, | |
| 441 X_val, | |
| 442 y_train, | |
| 443 y_val, | |
| 444 groups_train, | |
| 445 groups_val, | |
| 446 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
| 395 | 447 |
| 396 # train and eval | 448 # train and eval |
| 397 if hasattr(estimator, 'validation_data'): | 449 if hasattr(estimator, "config") and hasattr(estimator, "model_type"): |
| 398 if exp_scheme == 'train_val_test': | 450 if exp_scheme == "train_val_test": |
| 399 estimator.fit(X_train, y_train, | 451 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) |
| 400 validation_data=(X_val, y_val)) | 452 else: |
| 401 else: | 453 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) |
| 402 estimator.fit(X_train, y_train, | |
| 403 validation_data=(X_test, y_test)) | |
| 404 else: | 454 else: |
| 405 estimator.fit(X_train, y_train) | 455 estimator.fit(X_train, y_train) |
| 406 | 456 |
| 407 if hasattr(estimator, 'evaluate'): | 457 if isinstance(estimator, KerasGBatchClassifier): |
| 458 scores = {} | |
| 408 steps = estimator.prediction_steps | 459 steps = estimator.prediction_steps |
| 409 batch_size = estimator.batch_size | 460 batch_size = estimator.batch_size |
| 410 generator = estimator.data_generator_.flow(X_test, y=y_test, | 461 data_generator = estimator.data_generator_ |
| 411 batch_size=batch_size) | 462 |
| 412 predictions, y_true = _predict_generator(estimator.model_, generator, | 463 scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( |
| 413 steps=steps) | 464 estimator, |
| 414 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | 465 data_generator, |
| 415 | 466 X_test, |
| 416 else: | 467 y=y_test, |
| 417 if hasattr(estimator, 'predict_proba'): | 468 sk_scoring=scoring, |
| 469 steps=steps, | |
| 470 batch_size=batch_size, | |
| 471 return_predictions=bool(outfile_y_true), | |
| 472 ) | |
| 473 | |
| 474 else: | |
| 475 scores = {} | |
| 476 if hasattr(estimator, "model_") and hasattr(estimator.model_, "metrics_names"): | |
| 477 batch_size = estimator.batch_size | |
| 478 score_results = estimator.model_.evaluate( | |
| 479 X_test, y=y_test, batch_size=batch_size, verbose=0 | |
| 480 ) | |
| 481 metrics_names = estimator.model_.metrics_names | |
| 482 if not isinstance(metrics_names, list): | |
| 483 scores[metrics_names] = score_results | |
| 484 else: | |
| 485 scores = dict(zip(metrics_names, score_results)) | |
| 486 | |
| 487 if hasattr(estimator, "predict_proba"): | |
| 418 predictions = estimator.predict_proba(X_test) | 488 predictions = estimator.predict_proba(X_test) |
| 419 else: | 489 else: |
| 420 predictions = estimator.predict(X_test) | 490 predictions = estimator.predict(X_test) |
| 421 | 491 |
| 422 y_true = y_test | 492 y_true = y_test |
| 423 scores = _score(estimator, X_test, y_test, scorer, | 493 sk_scores = _score(estimator, X_test, y_test, scorer) |
| 424 is_multimetric=True) | 494 scores.update(sk_scores) |
| 495 | |
| 496 # handle output | |
| 425 if outfile_y_true: | 497 if outfile_y_true: |
| 426 try: | 498 try: |
| 427 pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', | 499 pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) |
| 428 index=False) | |
| 429 pd.DataFrame(predictions).astype(np.float32).to_csv( | 500 pd.DataFrame(predictions).astype(np.float32).to_csv( |
| 430 outfile_y_preds, sep='\t', index=False, | 501 outfile_y_preds, |
| 431 float_format='%g', chunksize=10000) | 502 sep="\t", |
| 503 index=False, | |
| 504 float_format="%g", | |
| 505 chunksize=10000, | |
| 506 ) | |
| 432 except Exception as e: | 507 except Exception as e: |
| 433 print("Error in saving predictions: %s" % e) | 508 print("Error in saving predictions: %s" % e) |
| 434 | |
| 435 # handle output | 509 # handle output |
| 436 for name, score in scores.items(): | 510 for name, score in scores.items(): |
| 437 scores[name] = [score] | 511 scores[name] = [score] |
| 438 df = pd.DataFrame(scores) | 512 df = pd.DataFrame(scores) |
| 439 df = df[sorted(df.columns)] | 513 df = df[sorted(df.columns)] |
| 440 df.to_csv(path_or_buf=outfile_result, sep='\t', | 514 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
| 441 header=True, index=False) | |
| 442 | 515 |
| 443 memory.clear(warn=False) | 516 memory.clear(warn=False) |
| 444 | 517 |
| 445 if outfile_object: | 518 if outfile_object: |
| 446 main_est = estimator | 519 dump_model_to_h5(estimator, outfile_object) |
| 447 if isinstance(estimator, Pipeline): | 520 |
| 448 main_est = estimator.steps[-1][-1] | 521 |
| 449 | 522 if __name__ == "__main__": |
| 450 if hasattr(main_est, 'model_') \ | |
| 451 and hasattr(main_est, 'save_weights'): | |
| 452 if outfile_weights: | |
| 453 main_est.save_weights(outfile_weights) | |
| 454 del main_est.model_ | |
| 455 del main_est.fit_params | |
| 456 del main_est.model_class_ | |
| 457 del main_est.validation_data | |
| 458 if getattr(main_est, 'data_generator_', None): | |
| 459 del main_est.data_generator_ | |
| 460 | |
| 461 with open(outfile_object, 'wb') as output_handler: | |
| 462 pickle.dump(estimator, output_handler, | |
| 463 pickle.HIGHEST_PROTOCOL) | |
| 464 | |
| 465 | |
| 466 if __name__ == '__main__': | |
| 467 aparser = argparse.ArgumentParser() | 523 aparser = argparse.ArgumentParser() |
| 468 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 524 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
| 469 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 525 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
| 470 aparser.add_argument("-X", "--infile1", dest="infile1") | 526 aparser.add_argument("-X", "--infile1", dest="infile1") |
| 471 aparser.add_argument("-y", "--infile2", dest="infile2") | 527 aparser.add_argument("-y", "--infile2", dest="infile2") |
| 472 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | 528 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") |
| 473 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | 529 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") |
| 474 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 475 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") | 530 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") |
| 476 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") | 531 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") |
| 477 aparser.add_argument("-g", "--groups", dest="groups") | 532 aparser.add_argument("-g", "--groups", dest="groups") |
| 478 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | 533 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") |
| 479 aparser.add_argument("-b", "--intervals", dest="intervals") | 534 aparser.add_argument("-b", "--intervals", dest="intervals") |
| 480 aparser.add_argument("-t", "--targets", dest="targets") | 535 aparser.add_argument("-t", "--targets", dest="targets") |
| 481 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 536 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
| 482 args = aparser.parse_args() | 537 args = aparser.parse_args() |
| 483 | 538 |
| 484 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 539 main( |
| 485 args.outfile_result, outfile_object=args.outfile_object, | 540 args.inputs, |
| 486 outfile_weights=args.outfile_weights, | 541 args.infile_estimator, |
| 487 outfile_y_true=args.outfile_y_true, | 542 args.infile1, |
| 488 outfile_y_preds=args.outfile_y_preds, | 543 args.infile2, |
| 489 groups=args.groups, | 544 args.outfile_result, |
| 490 ref_seq=args.ref_seq, intervals=args.intervals, | 545 outfile_object=args.outfile_object, |
| 491 targets=args.targets, fasta_path=args.fasta_path) | 546 outfile_y_true=args.outfile_y_true, |
| 547 outfile_y_preds=args.outfile_y_preds, | |
| 548 groups=args.groups, | |
| 549 ref_seq=args.ref_seq, | |
| 550 intervals=args.intervals, | |
| 551 targets=args.targets, | |
| 552 fasta_path=args.fasta_path, | |
| 553 ) |
