Mercurial > repos > bgruening > sklearn_to_categorical
comparison train_test_eval.py @ 0:bdf3f88c60e0 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 21:33:38 +0000 |
parents | |
children | 2cb67aeee0d9 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:bdf3f88c60e0 |
---|---|
1 import argparse | |
2 import json | |
3 import os | |
4 import pickle | |
5 import warnings | |
6 from itertools import chain | |
7 | |
8 import joblib | |
9 import numpy as np | |
10 import pandas as pd | |
11 from galaxy_ml.model_validations import train_test_split | |
12 from galaxy_ml.utils import ( | |
13 get_module, | |
14 get_scoring, | |
15 load_model, | |
16 read_columns, | |
17 SafeEval, | |
18 try_get_attr, | |
19 ) | |
20 from scipy.io import mmread | |
21 from sklearn import pipeline | |
22 from sklearn.metrics.scorer import _check_multimetric_scoring | |
23 from sklearn.model_selection import _search, _validation | |
24 from sklearn.model_selection._validation import _score | |
25 from sklearn.utils import indexable, safe_indexing | |
26 | |
27 | |
28 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
29 setattr(_search, "_fit_and_score", _fit_and_score) | |
30 setattr(_validation, "_fit_and_score", _fit_and_score) | |
31 | |
32 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
33 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
34 del os | |
35 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
36 ALLOWED_CALLBACKS = ( | |
37 "EarlyStopping", | |
38 "TerminateOnNaN", | |
39 "ReduceLROnPlateau", | |
40 "CSVLogger", | |
41 "None", | |
42 ) | |
43 | |
44 | |
45 def _eval_swap_params(params_builder): | |
46 swap_params = {} | |
47 | |
48 for p in params_builder["param_set"]: | |
49 swap_value = p["sp_value"].strip() | |
50 if swap_value == "": | |
51 continue | |
52 | |
53 param_name = p["sp_name"] | |
54 if param_name.lower().endswith(NON_SEARCHABLE): | |
55 warnings.warn( | |
56 "Warning: `%s` is not eligible for search and was " | |
57 "omitted!" % param_name | |
58 ) | |
59 continue | |
60 | |
61 if not swap_value.startswith(":"): | |
62 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
63 ev = safe_eval(swap_value) | |
64 else: | |
65 # Have `:` before search list, asks for estimator evaluatio | |
66 safe_eval_es = SafeEval(load_estimators=True) | |
67 swap_value = swap_value[1:].strip() | |
68 # TODO maybe add regular express check | |
69 ev = safe_eval_es(swap_value) | |
70 | |
71 swap_params[param_name] = ev | |
72 | |
73 return swap_params | |
74 | |
75 | |
76 def train_test_split_none(*arrays, **kwargs): | |
77 """extend train_test_split to take None arrays | |
78 and support split by group names. | |
79 """ | |
80 nones = [] | |
81 new_arrays = [] | |
82 for idx, arr in enumerate(arrays): | |
83 if arr is None: | |
84 nones.append(idx) | |
85 else: | |
86 new_arrays.append(arr) | |
87 | |
88 if kwargs["shuffle"] == "None": | |
89 kwargs["shuffle"] = None | |
90 | |
91 group_names = kwargs.pop("group_names", None) | |
92 | |
93 if group_names is not None and group_names.strip(): | |
94 group_names = [name.strip() for name in group_names.split(",")] | |
95 new_arrays = indexable(*new_arrays) | |
96 groups = kwargs["labels"] | |
97 n_samples = new_arrays[0].shape[0] | |
98 index_arr = np.arange(n_samples) | |
99 test = index_arr[np.isin(groups, group_names)] | |
100 train = index_arr[~np.isin(groups, group_names)] | |
101 rval = list( | |
102 chain.from_iterable( | |
103 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays | |
104 ) | |
105 ) | |
106 else: | |
107 rval = train_test_split(*new_arrays, **kwargs) | |
108 | |
109 for pos in nones: | |
110 rval[pos * 2: 2] = [None, None] | |
111 | |
112 return rval | |
113 | |
114 | |
115 def main( | |
116 inputs, | |
117 infile_estimator, | |
118 infile1, | |
119 infile2, | |
120 outfile_result, | |
121 outfile_object=None, | |
122 outfile_weights=None, | |
123 groups=None, | |
124 ref_seq=None, | |
125 intervals=None, | |
126 targets=None, | |
127 fasta_path=None, | |
128 ): | |
129 """ | |
130 Parameter | |
131 --------- | |
132 inputs : str | |
133 File path to galaxy tool parameter | |
134 | |
135 infile_estimator : str | |
136 File path to estimator | |
137 | |
138 infile1 : str | |
139 File path to dataset containing features | |
140 | |
141 infile2 : str | |
142 File path to dataset containing target values | |
143 | |
144 outfile_result : str | |
145 File path to save the results, either cv_results or test result | |
146 | |
147 outfile_object : str, optional | |
148 File path to save searchCV object | |
149 | |
150 outfile_weights : str, optional | |
151 File path to save deep learning model weights | |
152 | |
153 groups : str | |
154 File path to dataset containing groups labels | |
155 | |
156 ref_seq : str | |
157 File path to dataset containing genome sequence file | |
158 | |
159 intervals : str | |
160 File path to dataset containing interval file | |
161 | |
162 targets : str | |
163 File path to dataset compressed target bed file | |
164 | |
165 fasta_path : str | |
166 File path to dataset containing fasta file | |
167 """ | |
168 warnings.simplefilter("ignore") | |
169 | |
170 with open(inputs, "r") as param_handler: | |
171 params = json.load(param_handler) | |
172 | |
173 # load estimator | |
174 with open(infile_estimator, "rb") as estimator_handler: | |
175 estimator = load_model(estimator_handler) | |
176 | |
177 # swap hyperparameter | |
178 swapping = params["experiment_schemes"]["hyperparams_swapping"] | |
179 swap_params = _eval_swap_params(swapping) | |
180 estimator.set_params(**swap_params) | |
181 | |
182 estimator_params = estimator.get_params() | |
183 | |
184 # store read dataframe object | |
185 loaded_df = {} | |
186 | |
187 input_type = params["input_options"]["selected_input"] | |
188 # tabular input | |
189 if input_type == "tabular": | |
190 header = "infer" if params["input_options"]["header1"] else None | |
191 column_option = params["input_options"]["column_selector_options_1"][ | |
192 "selected_column_selector_option" | |
193 ] | |
194 if column_option in [ | |
195 "by_index_number", | |
196 "all_but_by_index_number", | |
197 "by_header_name", | |
198 "all_but_by_header_name", | |
199 ]: | |
200 c = params["input_options"]["column_selector_options_1"]["col1"] | |
201 else: | |
202 c = None | |
203 | |
204 df_key = infile1 + repr(header) | |
205 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
206 loaded_df[df_key] = df | |
207 | |
208 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
209 # sparse input | |
210 elif input_type == "sparse": | |
211 X = mmread(open(infile1, "r")) | |
212 | |
213 # fasta_file input | |
214 elif input_type == "seq_fasta": | |
215 pyfaidx = get_module("pyfaidx") | |
216 sequences = pyfaidx.Fasta(fasta_path) | |
217 n_seqs = len(sequences.keys()) | |
218 X = np.arange(n_seqs)[:, np.newaxis] | |
219 for param in estimator_params.keys(): | |
220 if param.endswith("fasta_path"): | |
221 estimator.set_params(**{param: fasta_path}) | |
222 break | |
223 else: | |
224 raise ValueError( | |
225 "The selected estimator doesn't support " | |
226 "fasta file input! Please consider using " | |
227 "KerasGBatchClassifier with " | |
228 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
229 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
230 "in pipeline!" | |
231 ) | |
232 | |
233 elif input_type == "refseq_and_interval": | |
234 path_params = { | |
235 "data_batch_generator__ref_genome_path": ref_seq, | |
236 "data_batch_generator__intervals_path": intervals, | |
237 "data_batch_generator__target_path": targets, | |
238 } | |
239 estimator.set_params(**path_params) | |
240 n_intervals = sum(1 for line in open(intervals)) | |
241 X = np.arange(n_intervals)[:, np.newaxis] | |
242 | |
243 # Get target y | |
244 header = "infer" if params["input_options"]["header2"] else None | |
245 column_option = params["input_options"]["column_selector_options_2"][ | |
246 "selected_column_selector_option2" | |
247 ] | |
248 if column_option in [ | |
249 "by_index_number", | |
250 "all_but_by_index_number", | |
251 "by_header_name", | |
252 "all_but_by_header_name", | |
253 ]: | |
254 c = params["input_options"]["column_selector_options_2"]["col2"] | |
255 else: | |
256 c = None | |
257 | |
258 df_key = infile2 + repr(header) | |
259 if df_key in loaded_df: | |
260 infile2 = loaded_df[df_key] | |
261 else: | |
262 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
263 loaded_df[df_key] = infile2 | |
264 | |
265 y = read_columns(infile2, | |
266 c=c, | |
267 c_option=column_option, | |
268 sep='\t', | |
269 header=header, | |
270 parse_dates=True) | |
271 if len(y.shape) == 2 and y.shape[1] == 1: | |
272 y = y.ravel() | |
273 if input_type == "refseq_and_interval": | |
274 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
275 y = None | |
276 # end y | |
277 | |
278 # load groups | |
279 if groups: | |
280 groups_selector = ( | |
281 params["experiment_schemes"]["test_split"]["split_algos"] | |
282 ).pop("groups_selector") | |
283 | |
284 header = "infer" if groups_selector["header_g"] else None | |
285 column_option = groups_selector["column_selector_options_g"][ | |
286 "selected_column_selector_option_g" | |
287 ] | |
288 if column_option in [ | |
289 "by_index_number", | |
290 "all_but_by_index_number", | |
291 "by_header_name", | |
292 "all_but_by_header_name", | |
293 ]: | |
294 c = groups_selector["column_selector_options_g"]["col_g"] | |
295 else: | |
296 c = None | |
297 | |
298 df_key = groups + repr(header) | |
299 if df_key in loaded_df: | |
300 groups = loaded_df[df_key] | |
301 | |
302 groups = read_columns(groups, | |
303 c=c, | |
304 c_option=column_option, | |
305 sep='\t', | |
306 header=header, | |
307 parse_dates=True) | |
308 groups = groups.ravel() | |
309 | |
310 # del loaded_df | |
311 del loaded_df | |
312 | |
313 # handle memory | |
314 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
315 # cache iraps_core fits could increase search speed significantly | |
316 if estimator.__class__.__name__ == "IRAPSClassifier": | |
317 estimator.set_params(memory=memory) | |
318 else: | |
319 # For iraps buried in pipeline | |
320 new_params = {} | |
321 for p, v in estimator_params.items(): | |
322 if p.endswith("memory"): | |
323 # for case of `__irapsclassifier__memory` | |
324 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
325 # cache iraps_core fits could increase search | |
326 # speed significantly | |
327 new_params[p] = memory | |
328 # security reason, we don't want memory being | |
329 # modified unexpectedly | |
330 elif v: | |
331 new_params[p] = None | |
332 # handle n_jobs | |
333 elif p.endswith("n_jobs"): | |
334 # For now, 1 CPU is suggested for iprasclassifier | |
335 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
336 new_params[p] = 1 | |
337 else: | |
338 new_params[p] = N_JOBS | |
339 # for security reason, types of callback are limited | |
340 elif p.endswith("callbacks"): | |
341 for cb in v: | |
342 cb_type = cb["callback_selection"]["callback_type"] | |
343 if cb_type not in ALLOWED_CALLBACKS: | |
344 raise ValueError("Prohibited callback type: %s!" % cb_type) | |
345 | |
346 estimator.set_params(**new_params) | |
347 | |
348 # handle scorer, convert to scorer dict | |
349 # Check if scoring is specified | |
350 scoring = params["experiment_schemes"]["metrics"].get("scoring", None) | |
351 if scoring is not None: | |
352 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
353 # Check if secondary_scoring is specified | |
354 secondary_scoring = scoring.get("secondary_scoring", None) | |
355 if secondary_scoring is not None: | |
356 # If secondary_scoring is specified, convert the list into comman separated string | |
357 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
358 scorer = get_scoring(scoring) | |
359 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
360 | |
361 # handle test (first) split | |
362 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] | |
363 | |
364 if test_split_options["shuffle"] == "group": | |
365 test_split_options["labels"] = groups | |
366 if test_split_options["shuffle"] == "stratified": | |
367 if y is not None: | |
368 test_split_options["labels"] = y | |
369 else: | |
370 raise ValueError( | |
371 "Stratified shuffle split is not " "applicable on empty target values!" | |
372 ) | |
373 | |
374 X_train, X_test, y_train, y_test, groups_train, _groups_test = train_test_split_none( | |
375 X, y, groups, **test_split_options | |
376 ) | |
377 | |
378 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
379 | |
380 # handle validation (second) split | |
381 if exp_scheme == "train_val_test": | |
382 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] | |
383 | |
384 if val_split_options["shuffle"] == "group": | |
385 val_split_options["labels"] = groups_train | |
386 if val_split_options["shuffle"] == "stratified": | |
387 if y_train is not None: | |
388 val_split_options["labels"] = y_train | |
389 else: | |
390 raise ValueError( | |
391 "Stratified shuffle split is not " | |
392 "applicable on empty target values!" | |
393 ) | |
394 | |
395 ( | |
396 X_train, | |
397 X_val, | |
398 y_train, | |
399 y_val, | |
400 groups_train, | |
401 _groups_val, | |
402 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
403 | |
404 # train and eval | |
405 if hasattr(estimator, "validation_data"): | |
406 if exp_scheme == "train_val_test": | |
407 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) | |
408 else: | |
409 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) | |
410 else: | |
411 estimator.fit(X_train, y_train) | |
412 | |
413 if hasattr(estimator, "evaluate"): | |
414 scores = estimator.evaluate( | |
415 X_test, y_test=y_test, scorer=scorer, is_multimetric=True | |
416 ) | |
417 else: | |
418 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | |
419 # handle output | |
420 for name, score in scores.items(): | |
421 scores[name] = [score] | |
422 df = pd.DataFrame(scores) | |
423 df = df[sorted(df.columns)] | |
424 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
425 | |
426 memory.clear(warn=False) | |
427 | |
428 if outfile_object: | |
429 main_est = estimator | |
430 if isinstance(estimator, pipeline.Pipeline): | |
431 main_est = estimator.steps[-1][-1] | |
432 | |
433 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
434 if outfile_weights: | |
435 main_est.save_weights(outfile_weights) | |
436 if getattr(main_est, "model_", None): | |
437 del main_est.model_ | |
438 if getattr(main_est, "fit_params", None): | |
439 del main_est.fit_params | |
440 if getattr(main_est, "model_class_", None): | |
441 del main_est.model_class_ | |
442 if getattr(main_est, "validation_data", None): | |
443 del main_est.validation_data | |
444 if getattr(main_est, "data_generator_", None): | |
445 del main_est.data_generator_ | |
446 | |
447 with open(outfile_object, "wb") as output_handler: | |
448 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) | |
449 | |
450 | |
451 if __name__ == "__main__": | |
452 aparser = argparse.ArgumentParser() | |
453 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
454 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
455 aparser.add_argument("-X", "--infile1", dest="infile1") | |
456 aparser.add_argument("-y", "--infile2", dest="infile2") | |
457 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
458 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
459 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
460 aparser.add_argument("-g", "--groups", dest="groups") | |
461 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
462 aparser.add_argument("-b", "--intervals", dest="intervals") | |
463 aparser.add_argument("-t", "--targets", dest="targets") | |
464 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
465 args = aparser.parse_args() | |
466 | |
467 main( | |
468 args.inputs, | |
469 args.infile_estimator, | |
470 args.infile1, | |
471 args.infile2, | |
472 args.outfile_result, | |
473 outfile_object=args.outfile_object, | |
474 outfile_weights=args.outfile_weights, | |
475 groups=args.groups, | |
476 ref_seq=args.ref_seq, | |
477 intervals=args.intervals, | |
478 targets=args.targets, | |
479 fasta_path=args.fasta_path, | |
480 ) |