Mercurial > repos > bgruening > sklearn_searchcv
diff ml_visualization_ex.py @ 23:bc3b489825b2 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 80417bf0158a9b596e485dd66408f738f405145a
author | bgruening |
---|---|
date | Mon, 02 Oct 2023 07:59:32 +0000 |
parents | 006db575e1f3 |
children |
line wrap: on
line diff
--- a/ml_visualization_ex.py Thu Aug 11 07:41:31 2022 +0000 +++ b/ml_visualization_ex.py Mon Oct 02 07:59:32 2023 +0000 @@ -9,13 +9,19 @@ import pandas as pd import plotly import plotly.graph_objs as go -from galaxy_ml.utils import load_model, read_columns, SafeEval -from keras.models import model_from_json -from keras.utils import plot_model -from sklearn.feature_selection.base import SelectorMixin -from sklearn.metrics import (auc, average_precision_score, confusion_matrix, - precision_recall_curve, roc_curve) +from galaxy_ml.model_persist import load_model_from_h5 +from galaxy_ml.utils import read_columns, SafeEval +from sklearn.feature_selection._base import SelectorMixin +from sklearn.metrics import ( + auc, + average_precision_score, + confusion_matrix, + precision_recall_curve, + roc_curve, +) from sklearn.pipeline import Pipeline +from tensorflow.keras.models import model_from_json +from tensorflow.keras.utils import plot_model safe_eval = SafeEval() @@ -357,8 +363,7 @@ plot_format = params["plotting_selection"]["plot_format"] if plot_type == "feature_importances": - with open(infile_estimator, "rb") as estimator_handler: - estimator = load_model(estimator_handler) + estimator = load_model_from_h5(infile_estimator) column_option = params["plotting_selection"]["column_selector_options"][ "selected_column_selector_option"