Mercurial > repos > bgruening > sklearn_sample_generator
view keras_train_and_eval.py @ 36:8720b49b70da draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 09:43:05 +0000 |
parents | |
children | 377ddf617ced |
line wrap: on
line source
import argparse import joblib import json import numpy as np import os import pandas as pd import pickle import warnings from itertools import chain from scipy.io import mmread from sklearn.pipeline import Pipeline from sklearn.metrics.scorer import _check_multimetric_scoring from sklearn import model_selection from sklearn.model_selection._validation import _score from sklearn.model_selection import _search, _validation from sklearn.utils import indexable, safe_indexing from galaxy_ml.externals.selene_sdk.utils import compute_score from galaxy_ml.model_validations import train_test_split from galaxy_ml.keras_galaxy_models import _predict_generator from galaxy_ml.utils import (SafeEval, get_scoring, load_model, read_columns, try_get_attr, get_module, clean_params, get_main_estimator) _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') setattr(_search, '_fit_and_score', _fit_and_score) setattr(_validation, '_fit_and_score', _fit_and_score) N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) CACHE_DIR = os.path.join(os.getcwd(), 'cached') del os NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', 'nthread', 'callbacks') ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', 'CSVLogger', 'None') def _eval_swap_params(params_builder): swap_params = {} for p in params_builder['param_set']: swap_value = p['sp_value'].strip() if swap_value == '': continue param_name = p['sp_name'] if param_name.lower().endswith(NON_SEARCHABLE): warnings.warn("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) continue if not swap_value.startswith(':'): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(swap_value) else: # Have `:` before search list, asks for estimator evaluatio safe_eval_es = SafeEval(load_estimators=True) swap_value = swap_value[1:].strip() # TODO maybe add regular express check ev = safe_eval_es(swap_value) swap_params[param_name] = ev return swap_params def train_test_split_none(*arrays, **kwargs): """extend train_test_split to take None arrays and support split by group names. """ nones = [] new_arrays = [] for idx, arr in enumerate(arrays): if arr is None: nones.append(idx) else: new_arrays.append(arr) if kwargs['shuffle'] == 'None': kwargs['shuffle'] = None group_names = kwargs.pop('group_names', None) if group_names is not None and group_names.strip(): group_names = [name.strip() for name in group_names.split(',')] new_arrays = indexable(*new_arrays) groups = kwargs['labels'] n_samples = new_arrays[0].shape[0] index_arr = np.arange(n_samples) test = index_arr[np.isin(groups, group_names)] train = index_arr[~np.isin(groups, group_names)] rval = list(chain.from_iterable( (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) else: rval = train_test_split(*new_arrays, **kwargs) for pos in nones: rval[pos * 2: 2] = [None, None] return rval def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): """ output scores based on input scorer Parameters ---------- y_true : array True label or target values pred_probas : array Prediction values, probability for classification problem scorer : dict dict of `sklearn.metrics.scorer.SCORER` is_multimetric : bool, default is True """ if y_true.ndim == 1 or y_true.shape[-1] == 1: pred_probas = pred_probas.ravel() pred_labels = (pred_probas > 0.5).astype('int32') targets = y_true.ravel().astype('int32') if not is_multimetric: preds = pred_labels if scorer.__class__.__name__ == \ '_PredictScorer' else pred_probas score = scorer._score_func(targets, preds, **scorer._kwargs) return score else: scores = {} for name, one_scorer in scorer.items(): preds = pred_labels if one_scorer.__class__.__name__\ == '_PredictScorer' else pred_probas score = one_scorer._score_func(targets, preds, **one_scorer._kwargs) scores[name] = score # TODO: multi-class metrics # multi-label else: pred_labels = (pred_probas > 0.5).astype('int32') targets = y_true.astype('int32') if not is_multimetric: preds = pred_labels if scorer.__class__.__name__ == \ '_PredictScorer' else pred_probas score, _ = compute_score(preds, targets, scorer._score_func) return score else: scores = {} for name, one_scorer in scorer.items(): preds = pred_labels if one_scorer.__class__.__name__\ == '_PredictScorer' else pred_probas score, _ = compute_score(preds, targets, one_scorer._score_func) scores[name] = score return scores def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, outfile_y_true=None, outfile_y_preds=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save deep learning model weights outfile_y_true : str, optional File path to target values for prediction outfile_y_preds : str, optional File path to save deep learning model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load estimator with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator = clean_params(estimator) # swap hyperparameter swapping = params['experiment_schemes']['hyperparams_swapping'] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options']['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) # fasta_file input elif input_type == 'seq_fasta': pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith('fasta_path'): estimator.set_params( **{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!") elif input_type == 'refseq_and_interval': path_params = { 'data_batch_generator__ref_genome_path': ref_seq, 'data_batch_generator__intervals_path': intervals, 'data_batch_generator__target_path': targets } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = 'infer' if params['input_options']['header2'] else None column_option = (params['input_options']['column_selector_options_2'] ['selected_column_selector_option2']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == 'refseq_and_interval': estimator.set_params( data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: groups_selector = (params['experiment_schemes']['test_split'] ['split_algos']).pop('groups_selector') header = 'infer' if groups_selector['header_g'] else None column_option = \ (groups_selector['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = groups_selector['column_selector_options_g']['col_g'] else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns( groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() # del loaded_df del loaded_df # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == 'IRAPSClassifier': main_est.set_params(memory=memory) # handle scorer, convert to scorer dict scoring = params['experiment_schemes']['metrics']['scoring'] scorer = get_scoring(scoring) scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split test_split_options = (params['experiment_schemes'] ['test_split']['split_algos']) if test_split_options['shuffle'] == 'group': test_split_options['labels'] = groups if test_split_options['shuffle'] == 'stratified': if y is not None: test_split_options['labels'] = y else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") X_train, X_test, y_train, y_test, groups_train, groups_test = \ train_test_split_none(X, y, groups, **test_split_options) exp_scheme = params['experiment_schemes']['selected_exp_scheme'] # handle validation (second) split if exp_scheme == 'train_val_test': val_split_options = (params['experiment_schemes'] ['val_split']['split_algos']) if val_split_options['shuffle'] == 'group': val_split_options['labels'] = groups_train if val_split_options['shuffle'] == 'stratified': if y_train is not None: val_split_options['labels'] = y_train else: raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") X_train, X_val, y_train, y_val, groups_train, groups_val = \ train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval if hasattr(estimator, 'validation_data'): if exp_scheme == 'train_val_test': estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: estimator.fit(X_train, y_train) if hasattr(estimator, 'evaluate'): steps = estimator.prediction_steps batch_size = estimator.batch_size generator = estimator.data_generator_.flow(X_test, y=y_test, batch_size=batch_size) predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) else: if hasattr(estimator, 'predict_proba'): predictions = estimator.predict_proba(X_test) else: predictions = estimator.predict(X_test) y_true = y_test scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) if outfile_y_true: try: pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_y_preds, sep='\t', index=False, float_format='%g', chunksize=10000) except Exception as e: print("Error in saving predictions: %s" % e) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) if outfile_object: main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") aparser.add_argument("-g", "--groups", dest="groups") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-b", "--intervals", dest="intervals") aparser.add_argument("-t", "--targets", dest="targets") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() main(args.inputs, args.infile_estimator, args.infile1, args.infile2, args.outfile_result, outfile_object=args.outfile_object, outfile_weights=args.outfile_weights, outfile_y_true=args.outfile_y_true, outfile_y_preds=args.outfile_y_preds, groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, targets=args.targets, fasta_path=args.fasta_path)