# HG changeset patch # User bgruening # Date 1531468186 14400 # Node ID 49e5ce162e0eebbf791705b3c5afd0f49a581779 # Parent ca5debf1fc8820c2031e2e0862d41dcd9dc14b35 planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f54ff2ba2f8e7542d68966ce5a6b17d7f624ac48 diff -r ca5debf1fc88 -r 49e5ce162e0e main_macros.xml --- a/main_macros.xml Tue Jul 10 03:05:50 2018 -0400 +++ b/main_macros.xml Fri Jul 13 03:49:46 2018 -0400 @@ -35,7 +35,8 @@ if not options['threshold'] or options['threshold'] == 'None': options['threshold'] = None if 'extra_estimator' in inputs and inputs['extra_estimator']['has_estimator'] == 'no_load': - fitted_estimator = pickle.load(open("inputs['extra_estimator']['fitted_estimator']", 'r')) + with open("inputs['extra_estimator']['fitted_estimator']", 'rb') as model_handler: + fitted_estimator = pickle.load(model_handler) new_selector = selector(fitted_estimator, prefit=True, **options) else: estimator=inputs["estimator"] @@ -83,7 +84,7 @@ parse_dates=True ) else: - X = mmread(open(file1, 'r')) + X = mmread(file1) header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] @@ -432,19 +433,6 @@ - - - - - - - - - - - - - @@ -472,13 +460,13 @@ - + - + @@ -553,11 +541,6 @@ - - - - -
@@ -822,9 +805,17 @@ + + + + + + + + + -
@@ -834,7 +825,6 @@
-
@@ -854,7 +844,6 @@
-
@@ -865,14 +854,12 @@
-
-
@@ -885,6 +872,41 @@ + + + + +
+
+
+ +
+ + +
+
+ +
+ + + +
+
+ +
+ + + + +
+
+
+
+ @@ -892,6 +914,7 @@ + @@ -1014,6 +1037,7 @@ + @@ -1023,6 +1047,7 @@ + @@ -1032,6 +1057,7 @@ + @@ -1039,6 +1065,7 @@ + @@ -1047,6 +1074,7 @@ + diff -r ca5debf1fc88 -r 49e5ce162e0e pairwise_metrics.xml --- a/pairwise_metrics.xml Tue Jul 10 03:05:50 2018 -0400 +++ b/pairwise_metrics.xml Fri Jul 13 03:49:46 2018 -0400 @@ -22,10 +22,11 @@ from sklearn.metrics import pairwise from sklearn.metrics import pairwise_distances_argmin from scipy.io import mmread -from scipy.io import mmwrite input_json_path = sys.argv[1] -params = json.load(open(input_json_path, "r")) +with open(input_json_path, "r") as param_handler: + params = json.load(param_handler) + options = params["input_type"]["metric_functions"]["options"] metric_function = params["input_type"]["metric_functions"]["selected_metric_function"] @@ -35,7 +36,7 @@ input_index=$i input_path="${s.input.file_name}" #if $input_type.selected_input_type == "sparse": -input_iter.append(mmread(open(input_path, 'r'))) +input_iter.append(mmread(input_path)) #else: input_iter.append(pandas.read_csv(input_path, sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ).values) #end if diff -r ca5debf1fc88 -r 49e5ce162e0e test-data/mv_result07.tabular --- a/test-data/mv_result07.tabular Tue Jul 10 03:05:50 2018 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -0.7824428015300172