Mercurial > repos > bgruening > sklearn_pairwise_metrics
diff pairwise_metrics.xml @ 4:1573e8255a34 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 0e582cf1f3134c777cce3aa57d71b80ed95e6ba9
author | bgruening |
---|---|
date | Fri, 16 Feb 2018 09:13:01 -0500 (2018-02-16) |
parents | 18afd0c1cc56 |
children | 49e5ce162e0e |
line wrap: on
line diff
--- a/pairwise_metrics.xml Thu Jun 23 15:27:24 2016 -0400 +++ b/pairwise_metrics.xml Fri Feb 16 09:13:01 2018 -0500 @@ -52,7 +52,7 @@ my_function = getattr(pairwise, metric_function) metric_res = my_function(X,Y,**options) -pandas.DataFrame(metric_res).to_csv(path_or_buf = "$outfile", sep="\t", index=False, header=False) +pandas.DataFrame(metric_res).to_csv(path_or_buf = "$outfile", sep="\t", index=False, header=False) ]]> </configfile> </configfiles> @@ -76,7 +76,7 @@ </section> </when> <when value="linear_kernel"> - </when> + </when> <when value="manhattan_distances"> <section name="options" title="Advanced Options" expanded="False"> <param argument="sum_over_features" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Sum over features" help="If True, return the pairwise distance matrix, else return the componentwise L1 pairwise-distances. "/> @@ -119,7 +119,7 @@ <expand macro="sparse_pairwise_condition"/> <expand macro="argmin_distance_condition"/> </conditional> - </when> + </when> </conditional> </inputs> <outputs> @@ -132,7 +132,7 @@ <param name="input_files_0|input" value="test.tabular" ftype="tabular"/> <param name="input_files_1|input" value="test2.tabular" ftype="tabular"/> <param name="gamma" value="0.5"/> - <output name="outfile" file="pw_metric01.tabular"/> + <output name="outfile" file="pw_metric01.tabular" compare="sim_size" /> </test> <test> <param name="selected_input_type" value="tabular"/> @@ -156,7 +156,7 @@ This tool consists of utilities to evaluate pairwise distances or affinity of sets of samples. The base utilities are contained in Scikit-learn python library in sklearn.metrics package. This module contains both distance metrics and kernels. For a brief summary, please refer to: -http://scikit-learn.org/stable/modules/metrics.html#metrics +http://scikit-learn.org/stable/modules/metrics.html#metrics ]]> </help> <expand macro="sklearn_citation"/>