# HG changeset patch # User bgruening # Date 1531160824 14400 # Node ID 8a7b460ab53484dddd7cd97f147d503dcbd968bd # Parent 06d67d77907ceb14559c6f5609031aaa67266077 planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5d71c93a3dd804b1469852240a86021ab9130364 diff -r 06d67d77907c -r 8a7b460ab534 main_macros.xml --- a/main_macros.xml Sun Jul 01 03:15:09 2018 -0400 +++ b/main_macros.xml Mon Jul 09 14:27:04 2018 -0400 @@ -64,6 +64,45 @@ return new_selector + +def get_X_y(params, file1, file2): + input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"] + if input_type=="tabular": + header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None + column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["selected_column_selector_option"] + if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: + c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["col1"] + else: + c = None + X = read_columns( + file1, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + else: + X = mmread(open(file1, 'r')) + + header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None + column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] + if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: + c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["col2"] + else: + c = None + y = read_columns( + file2, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + y=y.ravel() + return X, y + + python @@ -81,34 +120,6 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff -r 06d67d77907c -r 8a7b460ab534 numeric_clustering.xml --- a/numeric_clustering.xml Sun Jul 01 03:15:09 2018 -0400 +++ b/numeric_clustering.xml Mon Jul 09 14:27:04 2018 -0400 @@ -22,6 +22,8 @@ from sklearn import metrics from scipy.io import mmread +@COLUMNS_FUNCTION@ + input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) @@ -37,17 +39,22 @@ data_matrix = mmread(open("$infile", 'r')) #else: data = pandas.read_csv("$infile", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) - -start_column = $input_types.start_column -end_column = $input_types.end_column - -if end_column and start_column: - if end_column >= start_column: - data_matrix = data.values[:, start_column-1:end_column] - else: - data_matrix = data.values +header = 'infer' if params["input_types"]["header"] else None +column_option = params["input_types"]["column_selector_options"]["selected_column_selector_option"] +if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: + c = params["input_types"]["column_selector_options"]["col"] else: - data_matrix = data.values + c = None +data_matrix = read_columns( + "$infile", + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True, + encoding=None, + tupleize_cols=False +) #end if prediction = cluster_object.fit_predict( data_matrix ) @@ -82,8 +89,10 @@ - - + + + + @@ -168,8 +177,7 @@ - - + @@ -179,8 +187,7 @@ - - + @@ -190,8 +197,7 @@ - - + @@ -201,8 +207,7 @@ - - + @@ -211,8 +216,7 @@ - - + @@ -220,8 +224,7 @@ - - + @@ -230,8 +233,7 @@ - - + @@ -239,8 +241,7 @@ - - + @@ -248,8 +249,7 @@ - - + @@ -257,8 +257,7 @@ - - + @@ -268,8 +267,7 @@ - - + @@ -278,8 +276,7 @@ - - + @@ -291,8 +288,7 @@ - - + @@ -302,8 +298,7 @@ - - + @@ -313,8 +308,7 @@ - - + @@ -325,8 +319,7 @@ - - +