Mercurial > repos > bgruening > sklearn_numeric_clustering
view keras_train_and_eval.py @ 47:89f20b2d9fc9 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 80417bf0158a9b596e485dd66408f738f405145a
author | bgruening |
---|---|
date | Mon, 02 Oct 2023 08:12:04 +0000 |
parents | 0e4066f5751d |
children |
line wrap: on
line source
import argparse import json import os import warnings from itertools import chain import joblib import numpy as np import pandas as pd from galaxy_ml.keras_galaxy_models import ( _predict_generator, KerasGBatchClassifier, ) from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 from galaxy_ml.model_validations import train_test_split from galaxy_ml.utils import ( clean_params, gen_compute_scores, get_main_estimator, get_module, get_scoring, read_columns, SafeEval ) from scipy.io import mmread from sklearn.metrics._scorer import _check_multimetric_scoring from sklearn.model_selection._validation import _score from sklearn.utils import _safe_indexing, indexable N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) CACHE_DIR = os.path.join(os.getcwd(), "cached") NON_SEARCHABLE = ( "n_jobs", "pre_dispatch", "memory", "_path", "_dir", "nthread", "callbacks", ) ALLOWED_CALLBACKS = ( "EarlyStopping", "TerminateOnNaN", "ReduceLROnPlateau", "CSVLogger", "None", ) def _eval_swap_params(params_builder): swap_params = {} for p in params_builder["param_set"]: swap_value = p["sp_value"].strip() if swap_value == "": continue param_name = p["sp_name"] if param_name.lower().endswith(NON_SEARCHABLE): warnings.warn( "Warning: `%s` is not eligible for search and was " "omitted!" % param_name ) continue if not swap_value.startswith(":"): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(swap_value) else: # Have `:` before search list, asks for estimator evaluatio safe_eval_es = SafeEval(load_estimators=True) swap_value = swap_value[1:].strip() # TODO maybe add regular express check ev = safe_eval_es(swap_value) swap_params[param_name] = ev return swap_params def train_test_split_none(*arrays, **kwargs): """extend train_test_split to take None arrays and support split by group names. """ nones = [] new_arrays = [] for idx, arr in enumerate(arrays): if arr is None: nones.append(idx) else: new_arrays.append(arr) if kwargs["shuffle"] == "None": kwargs["shuffle"] = None group_names = kwargs.pop("group_names", None) if group_names is not None and group_names.strip(): group_names = [name.strip() for name in group_names.split(",")] new_arrays = indexable(*new_arrays) groups = kwargs["labels"] n_samples = new_arrays[0].shape[0] index_arr = np.arange(n_samples) test = index_arr[np.isin(groups, group_names)] train = index_arr[~np.isin(groups, group_names)] rval = list( chain.from_iterable( (_safe_indexing(a, train), _safe_indexing(a, test)) for a in new_arrays ) ) else: rval = train_test_split(*new_arrays, **kwargs) for pos in nones: rval[pos * 2: 2] = [None, None] return rval def _evaluate_keras_and_sklearn_scores( estimator, data_generator, X, y=None, sk_scoring=None, steps=None, batch_size=32, return_predictions=False, ): """output scores for bother keras and sklearn metrics Parameters ----------- estimator : object Fitted `galaxy_ml.keras_galaxy_models.KerasGBatchClassifier`. data_generator : object From `galaxy_ml.preprocessors.ImageDataFrameBatchGenerator`. X : 2-D array Contains indecies of images that need to be evaluated. y : None Target value. sk_scoring : dict Galaxy tool input parameters. steps : integer or None Evaluation/prediction steps before stop. batch_size : integer Number of samples in a batch return_predictions : bool, default is False Whether to return predictions and true labels. """ scores = {} generator = data_generator.flow(X, y=y, batch_size=batch_size) # keras metrics evaluation # handle scorer, convert to scorer dict generator.reset() score_results = estimator.model_.evaluate_generator(generator, steps=steps) metrics_names = estimator.model_.metrics_names if not isinstance(metrics_names, list): scores[metrics_names] = score_results else: scores = dict(zip(metrics_names, score_results)) if sk_scoring["primary_scoring"] == "default" and not return_predictions: return scores generator.reset() predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) # for sklearn metrics if sk_scoring["primary_scoring"] != "default": scorer = get_scoring(sk_scoring) if not isinstance(scorer, (dict, list)): scorer = [sk_scoring["primary_scoring"]] scorer = _check_multimetric_scoring(estimator, scoring=scorer) sk_scores = gen_compute_scores(y_true, predictions, scorer) scores.update(sk_scores) if return_predictions: return scores, predictions, y_true else: return scores, None, None def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_history=None, outfile_object=None, outfile_y_true=None, outfile_y_preds=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter. infile_estimator : str File path to estimator. infile1 : str File path to dataset containing features. infile2 : str File path to dataset containing target values. outfile_result : str File path to save the results, either cv_results or test result. outfile_history : str, optional File path to save the training history. outfile_object : str, optional File path to save searchCV object. outfile_y_true : str, optional File path to target values for prediction. outfile_y_preds : str, optional File path to save predictions. groups : str File path to dataset containing groups labels. ref_seq : str File path to dataset containing genome sequence file. intervals : str File path to dataset containing interval file. targets : str File path to dataset compressed target bed file. fasta_path : str File path to dataset containing fasta file. """ warnings.simplefilter("ignore") with open(inputs, "r") as param_handler: params = json.load(param_handler) # load estimator estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) # swap hyperparameter swapping = params["experiment_schemes"]["hyperparams_swapping"] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # fasta_file input elif input_type == "seq_fasta": pyfaidx = get_module("pyfaidx") sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith("fasta_path"): estimator.set_params(**{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!" ) elif input_type == "refseq_and_interval": path_params = { "data_batch_generator__ref_genome_path": ref_seq, "data_batch_generator__intervals_path": intervals, "data_batch_generator__target_path": targets, } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == "refseq_and_interval": estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: groups_selector = ( params["experiment_schemes"]["test_split"]["split_algos"] ).pop("groups_selector") header = "infer" if groups_selector["header_g"] else None column_option = groups_selector["column_selector_options_g"][ "selected_column_selector_option_g" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = groups_selector["column_selector_options_g"]["col_g"] else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns( groups, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) groups = groups.ravel() # del loaded_df del loaded_df # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == "IRAPSClassifier": main_est.set_params(memory=memory) # handle scorer, convert to scorer dict scoring = params["experiment_schemes"]["metrics"]["scoring"] scorer = get_scoring(scoring) if not isinstance(scorer, (dict, list)): scorer = [scoring["primary_scoring"]] scorer = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] if test_split_options["shuffle"] == "group": test_split_options["labels"] = groups if test_split_options["shuffle"] == "stratified": if y is not None: test_split_options["labels"] = y else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) X_train, X_test, y_train, y_test, groups_train, groups_test = train_test_split_none( X, y, groups, **test_split_options ) exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] # handle validation (second) split if exp_scheme == "train_val_test": val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] if val_split_options["shuffle"] == "group": val_split_options["labels"] = groups_train if val_split_options["shuffle"] == "stratified": if y_train is not None: val_split_options["labels"] = y_train else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) ( X_train, X_val, y_train, y_val, groups_train, groups_val, ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval if hasattr(estimator, "config") and hasattr(estimator, "model_type"): if exp_scheme == "train_val_test": history = estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: history = estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: history = estimator.fit(X_train, y_train) if "callbacks" in estimator_params: for cb in estimator_params["callbacks"]: if cb["callback_selection"]["callback_type"] == "CSVLogger": hist_df = pd.DataFrame(history.history) hist_df["epoch"] = np.arange(1, estimator_params["epochs"] + 1) epo_col = hist_df.pop('epoch') hist_df.insert(0, 'epoch', epo_col) hist_df.to_csv(path_or_buf=outfile_history, sep="\t", header=True, index=False) break if isinstance(estimator, KerasGBatchClassifier): scores = {} steps = estimator.prediction_steps batch_size = estimator.batch_size data_generator = estimator.data_generator_ scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( estimator, data_generator, X_test, y=y_test, sk_scoring=scoring, steps=steps, batch_size=batch_size, return_predictions=bool(outfile_y_true), ) else: scores = {} if hasattr(estimator, "model_") and hasattr(estimator.model_, "metrics_names"): batch_size = estimator.batch_size score_results = estimator.model_.evaluate( X_test, y=y_test, batch_size=batch_size, verbose=0 ) metrics_names = estimator.model_.metrics_names if not isinstance(metrics_names, list): scores[metrics_names] = score_results else: scores = dict(zip(metrics_names, score_results)) if hasattr(estimator, "predict_proba"): predictions = estimator.predict_proba(X_test) else: predictions = estimator.predict(X_test) y_true = y_test sk_scores = _score(estimator, X_test, y_test, scorer) scores.update(sk_scores) # handle output if outfile_y_true: try: pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) pd.DataFrame(predictions).astype(np.float32).to_csv( outfile_y_preds, sep="\t", index=False, float_format="%g", chunksize=10000, ) except Exception as e: print("Error in saving predictions: %s" % e) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) memory.clear(warn=False) if outfile_object: dump_model_to_h5(estimator, outfile_object) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-hi", "--outfile_history", dest="outfile_history") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") aparser.add_argument("-g", "--groups", dest="groups") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-b", "--intervals", dest="intervals") aparser.add_argument("-t", "--targets", dest="targets") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() main( args.inputs, args.infile_estimator, args.infile1, args.infile2, args.outfile_result, outfile_history=args.outfile_history, outfile_object=args.outfile_object, outfile_y_true=args.outfile_y_true, outfile_y_preds=args.outfile_y_preds, groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, targets=args.targets, fasta_path=args.fasta_path, )