Mercurial > repos > bgruening > sklearn_numeric_clustering
view search_model_validation.py @ 34:d5d98ed61fa2 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 02087ce2966cf8b4aac9197a41171e7f986c11d1-dirty"
author | bgruening |
---|---|
date | Wed, 02 Oct 2019 03:17:59 -0400 |
parents | fbd849199283 |
children | 80bb86a40de6 |
line wrap: on
line source
import argparse import collections import imblearn import joblib import json import numpy as np import pandas as pd import pickle import skrebate import sklearn import sys import xgboost import warnings from imblearn import under_sampling, over_sampling, combine from scipy.io import mmread from mlxtend import classifier, regressor from sklearn.base import clone from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from sklearn.exceptions import FitFailedWarning from sklearn.model_selection._validation import _score, cross_validate from sklearn.model_selection import _search, _validation from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, read_columns, try_get_attr, get_module) _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') setattr(_search, '_fit_and_score', _fit_and_score) setattr(_validation, '_fit_and_score', _fit_and_score) N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) CACHE_DIR = './cached' NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', 'nthread', 'callbacks') ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', 'CSVLogger', 'None') def _eval_search_params(params_builder): search_params = {} for p in params_builder['param_set']: search_list = p['sp_list'].strip() if search_list == '': continue param_name = p['sp_name'] if param_name.lower().endswith(NON_SEARCHABLE): print("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) continue if not search_list.startswith(':'): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(search_list) search_params[param_name] = ev else: # Have `:` before search list, asks for estimator evaluatio safe_eval_es = SafeEval(load_estimators=True) search_list = search_list[1:].strip() # TODO maybe add regular express check ev = safe_eval_es(search_list) preprocessings = ( preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), preprocessing.PolynomialFeatures(), preprocessing.RobustScaler(), feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation( random_state=0, n_jobs=N_JOBS), decomposition.MiniBatchDictionaryLearning( random_state=0, n_jobs=N_JOBS), decomposition.MiniBatchSparsePCA( random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.TruncatedSVD(random_state=0), kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), cluster.FeatureAgglomeration(), skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), imblearn.under_sampling.ClusterCentroids( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.CondensedNearestNeighbour( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.EditedNearestNeighbours( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.RepeatedEditedNearestNeighbours( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.InstanceHardnessThreshold( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.NearMiss( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.NeighbourhoodCleaningRule( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.OneSidedSelection( random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.RandomUnderSampler( random_state=0), imblearn.under_sampling.TomekLinks( random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.RandomOverSampler(random_state=0), imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.BorderlineSMOTE( random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SMOTENC( categorical_features=[], random_state=0, n_jobs=N_JOBS), imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)) newlist = [] for obj in ev: if obj is None: newlist.append(None) elif obj == 'all_0': newlist.extend(preprocessings[0:35]) elif obj == 'sk_prep_all': # no KernalCenter() newlist.extend(preprocessings[0:7]) elif obj == 'fs_all': newlist.extend(preprocessings[7:14]) elif obj == 'decomp_all': newlist.extend(preprocessings[14:25]) elif obj == 'k_appr_all': newlist.extend(preprocessings[25:29]) elif obj == 'reb_all': newlist.extend(preprocessings[30:35]) elif obj == 'imb_all': newlist.extend(preprocessings[35:54]) elif type(obj) is int and -1 < obj < len(preprocessings): newlist.append(preprocessings[obj]) elif hasattr(obj, 'get_params'): # user uploaded object if 'n_jobs' in obj.get_params(): newlist.append(obj.set_params(n_jobs=N_JOBS)) else: newlist.append(obj) else: sys.exit("Unsupported estimator type: %r" % (obj)) search_params[param_name] = newlist return search_params def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # conflict param checker if params['outer_split']['split_mode'] == 'nested_cv' \ and params['save'] != 'nope': raise ValueError("Save best estimator is not possible for nested CV!") if not (params['search_schemes']['options']['refit']) \ and params['save'] != 'nope': raise ValueError("Save best estimator is not possible when refit " "is False!") params_builder = params['search_schemes']['search_params_builder'] with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options']['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) # fasta_file input elif input_type == 'seq_fasta': pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith('fasta_path'): estimator.set_params( **{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!") elif input_type == 'refseq_and_interval': path_params = { 'data_batch_generator__ref_genome_path': ref_seq, 'data_batch_generator__intervals_path': intervals, 'data_batch_generator__target_path': targets } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = 'infer' if params['input_options']['header2'] else None column_option = (params['input_options']['column_selector_options_2'] ['selected_column_selector_option2']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == 'refseq_and_interval': estimator.set_params( data_batch_generator__features=y.ravel().tolist()) y = None # end y optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if (options['cv_selector']['groups_selector'] ['header_g']) else None column_option = (options['cv_selector']['groups_selector'] ['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns( groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups splitter, groups = get_cv(options.pop('cv_selector')) options['cv'] = splitter options['n_jobs'] = N_JOBS primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None # del loaded_df del loaded_df # handle memory memory = joblib.Memory(location=CACHE_DIR, verbose=0) # cache iraps_core fits could increase search speed significantly if estimator.__class__.__name__ == 'IRAPSClassifier': estimator.set_params(memory=memory) else: # For iraps buried in pipeline for p, v in estimator_params.items(): if p.endswith('memory'): # for case of `__irapsclassifier__memory` if len(p) > 8 and p[:-8].endswith('irapsclassifier'): # cache iraps_core fits could increase search # speed significantly new_params = {p: memory} estimator.set_params(**new_params) # security reason, we don't want memory being # modified unexpectedly elif v: new_params = {p, None} estimator.set_params(**new_params) # For now, 1 CPU is suggested for iprasclassifier elif p.endswith('n_jobs'): new_params = {p: 1} estimator.set_params(**new_params) # for security reason, types of callbacks are limited elif p.endswith('callbacks'): for cb in v: cb_type = cb['callback_selection']['callback_type'] if cb_type not in ALLOWED_CALLBACKS: raise ValueError( "Prohibited callback type: %s!" % cb_type) param_grid = _eval_search_params(params_builder) searcher = optimizer(estimator, param_grid, **options) # do nested split split_mode = params['outer_split'].pop('split_mode') # nested CV, outer cv using cross_validate if split_mode == 'nested_cv': outer_cv, _ = get_cv(params['outer_split']['cv_selector']) if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=options['error_score']) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=options['error_score']) except ValueError: pass for warning in w: print(repr(warning.message)) keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) else: if split_mode == 'train_test_split': train_test_split = try_get_attr( 'galaxy_ml.model_validations', 'train_test_split') # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options['refit'] and \ not all(hasattr(estimator, attr) for attr in ('config', 'model_type')): warnings.warn("Refit is change to `True` for nested " "validation!") setattr(searcher, 'refit', True) split_options = params['outer_split'] # splits if split_options['shuffle'] == 'stratified': split_options['labels'] = y X, X_test, y, y_test = train_test_split(X, y, **split_options) elif split_options['shuffle'] == 'group': if groups is None: raise ValueError("No group based CV option was " "choosen for group shuffle!") split_options['labels'] = groups if y is None: X, X_test, groups, _ =\ train_test_split(X, groups, **split_options) else: X, X_test, y, y_test, groups, _ =\ train_test_split(X, y, groups, **split_options) else: if split_options['shuffle'] == 'None': split_options['shuffle'] = None X, X_test, y, y_test =\ train_test_split(X, y, **split_options) # end train_test_split # shared by both train_test_split and non-split if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) # no outer split if split_mode == 'no': # save results cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) # train_test_split, output test result using best_estimator_ # or rebuild the trained estimator using weights if applicable. else: scorer_ = searcher.scorer_ if isinstance(scorer_, collections.Mapping): is_multimetric = True else: is_multimetric = False best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: raise ValueError("GridSearchCV object has no " "`best_estimator_` when `refit`=False!") if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ and hasattr(estimator.data_batch_generator, 'target_path'): test_score = best_estimator_.evaluate( X_test, scorer=scorer_, is_multimetric=is_multimetric) else: test_score = _score(best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric) if not is_multimetric: test_score = {primary_scoring: test_score} for key, value in test_score.items(): test_score[key] = [value] result_df = pd.DataFrame(test_score) result_df.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return main_est = best_estimator_ if isinstance(best_estimator_, pipeline.Pipeline): main_est = best_estimator_.steps[-1][-1] if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") aparser.add_argument("-g", "--groups", dest="groups") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-b", "--intervals", dest="intervals") aparser.add_argument("-t", "--targets", dest="targets") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() main(args.inputs, args.infile_estimator, args.infile1, args.infile2, args.outfile_result, outfile_object=args.outfile_object, outfile_weights=args.outfile_weights, groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, targets=args.targets, fasta_path=args.fasta_path)