Mercurial > repos > bgruening > sklearn_numeric_clustering
view keras_deep_learning.py @ 34:d5d98ed61fa2 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 02087ce2966cf8b4aac9197a41171e7f986c11d1-dirty"
author | bgruening |
---|---|
date | Wed, 02 Oct 2019 03:17:59 -0400 |
parents | fbd849199283 |
children | 80bb86a40de6 |
line wrap: on
line source
import argparse import json import keras import pandas as pd import pickle import six import warnings from ast import literal_eval from keras.models import Sequential, Model from galaxy_ml.utils import try_get_attr, get_search_params, SafeEval safe_eval = SafeEval() def _handle_shape(literal): """Eval integer or list/tuple of integers from string Parameters: ----------- literal : str. """ literal = literal.strip() if not literal: return None try: return literal_eval(literal) except NameError as e: print(e) return literal def _handle_regularizer(literal): """Construct regularizer from string literal Parameters ---------- literal : str. E.g. '(0.1, 0)' """ literal = literal.strip() if not literal: return None l1, l2 = literal_eval(literal) if not l1 and not l2: return None if l1 is None: l1 = 0. if l2 is None: l2 = 0. return keras.regularizers.l1_l2(l1=l1, l2=l2) def _handle_constraint(config): """Construct constraint from galaxy tool parameters. Suppose correct dictionary format Parameters ---------- config : dict. E.g. "bias_constraint": {"constraint_options": {"max_value":1.0, "min_value":0.0, "axis":"[0, 1, 2]" }, "constraint_type": "MinMaxNorm" } """ constraint_type = config['constraint_type'] if constraint_type == 'None': return None klass = getattr(keras.constraints, constraint_type) options = config.get('constraint_options', {}) if 'axis' in options: options['axis'] = literal_eval(options['axis']) return klass(**options) def _handle_lambda(literal): return None def _handle_layer_parameters(params): """Access to handle all kinds of parameters """ for key, value in six.iteritems(params): if value == 'None': params[key] = None continue if type(value) in [int, float, bool]\ or (type(value) is str and value.isalpha()): continue if key in ['input_shape', 'noise_shape', 'shape', 'batch_shape', 'target_shape', 'dims', 'kernel_size', 'strides', 'dilation_rate', 'output_padding', 'cropping', 'size', 'padding', 'pool_size', 'axis', 'shared_axes'] \ and isinstance(value, str): params[key] = _handle_shape(value) elif key.endswith('_regularizer') and isinstance(value, dict): params[key] = _handle_regularizer(value) elif key.endswith('_constraint') and isinstance(value, dict): params[key] = _handle_constraint(value) elif key == 'function': # No support for lambda/function eval params.pop(key) return params def get_sequential_model(config): """Construct keras Sequential model from Galaxy tool parameters Parameters: ----------- config : dictionary, galaxy tool parameters loaded by JSON """ model = Sequential() input_shape = _handle_shape(config['input_shape']) layers = config['layers'] for layer in layers: options = layer['layer_selection'] layer_type = options.pop('layer_type') klass = getattr(keras.layers, layer_type) kwargs = options.pop('kwargs', '') # parameters needs special care options = _handle_layer_parameters(options) if kwargs: kwargs = safe_eval('dict(' + kwargs + ')') options.update(kwargs) # add input_shape to the first layer only if not getattr(model, '_layers') and input_shape is not None: options['input_shape'] = input_shape model.add(klass(**options)) return model def get_functional_model(config): """Construct keras functional model from Galaxy tool parameters Parameters ----------- config : dictionary, galaxy tool parameters loaded by JSON """ layers = config['layers'] all_layers = [] for layer in layers: options = layer['layer_selection'] layer_type = options.pop('layer_type') klass = getattr(keras.layers, layer_type) inbound_nodes = options.pop('inbound_nodes', None) kwargs = options.pop('kwargs', '') # parameters needs special care options = _handle_layer_parameters(options) if kwargs: kwargs = safe_eval('dict(' + kwargs + ')') options.update(kwargs) # merge layers if 'merging_layers' in options: idxs = literal_eval(options.pop('merging_layers')) merging_layers = [all_layers[i-1] for i in idxs] new_layer = klass(**options)(merging_layers) # non-input layers elif inbound_nodes is not None: new_layer = klass(**options)(all_layers[inbound_nodes-1]) # input layers else: new_layer = klass(**options) all_layers.append(new_layer) input_indexes = _handle_shape(config['input_layers']) input_layers = [all_layers[i-1] for i in input_indexes] output_indexes = _handle_shape(config['output_layers']) output_layers = [all_layers[i-1] for i in output_indexes] return Model(inputs=input_layers, outputs=output_layers) def get_batch_generator(config): """Construct keras online data generator from Galaxy tool parameters Parameters ----------- config : dictionary, galaxy tool parameters loaded by JSON """ generator_type = config.pop('generator_type') klass = try_get_attr('galaxy_ml.preprocessors', generator_type) if generator_type == 'GenomicIntervalBatchGenerator': config['ref_genome_path'] = 'to_be_determined' config['intervals_path'] = 'to_be_determined' config['target_path'] = 'to_be_determined' config['features'] = 'to_be_determined' else: config['fasta_path'] = 'to_be_determined' return klass(**config) def config_keras_model(inputs, outfile): """ config keras model layers and output JSON Parameters ---------- inputs : dict loaded galaxy tool parameters from `keras_model_config` tool. outfile : str Path to galaxy dataset containing keras model JSON. """ model_type = inputs['model_selection']['model_type'] layers_config = inputs['model_selection'] if model_type == 'sequential': model = get_sequential_model(layers_config) else: model = get_functional_model(layers_config) json_string = model.to_json() with open(outfile, 'w') as f: f.write(json_string) def build_keras_model(inputs, outfile, model_json, infile_weights=None, batch_mode=False, outfile_params=None): """ for `keras_model_builder` tool Parameters ---------- inputs : dict loaded galaxy tool parameters from `keras_model_builder` tool. outfile : str Path to galaxy dataset containing the keras_galaxy model output. model_json : str Path to dataset containing keras model JSON. infile_weights : str or None If string, path to dataset containing model weights. batch_mode : bool, default=False Whether to build online batch classifier. outfile_params : str, default=None File path to search parameters output. """ with open(model_json, 'r') as f: json_model = json.load(f) config = json_model['config'] options = {} if json_model['class_name'] == 'Sequential': options['model_type'] = 'sequential' klass = Sequential elif json_model['class_name'] == 'Model': options['model_type'] = 'functional' klass = Model else: raise ValueError("Unknow Keras model class: %s" % json_model['class_name']) # load prefitted model if inputs['mode_selection']['mode_type'] == 'prefitted': estimator = klass.from_config(config) estimator.load_weights(infile_weights) # build train model else: cls_name = inputs['mode_selection']['learning_type'] klass = try_get_attr('galaxy_ml.keras_galaxy_models', cls_name) options['loss'] = (inputs['mode_selection'] ['compile_params']['loss']) options['optimizer'] =\ (inputs['mode_selection']['compile_params'] ['optimizer_selection']['optimizer_type']).lower() options.update((inputs['mode_selection']['compile_params'] ['optimizer_selection']['optimizer_options'])) train_metrics = (inputs['mode_selection']['compile_params'] ['metrics']).split(',') if train_metrics[-1] == 'none': train_metrics = train_metrics[:-1] options['metrics'] = train_metrics options.update(inputs['mode_selection']['fit_params']) options['seed'] = inputs['mode_selection']['random_seed'] if batch_mode: generator = get_batch_generator(inputs['mode_selection'] ['generator_selection']) options['data_batch_generator'] = generator options['prediction_steps'] = \ inputs['mode_selection']['prediction_steps'] options['class_positive_factor'] = \ inputs['mode_selection']['class_positive_factor'] estimator = klass(config, **options) if outfile_params: hyper_params = get_search_params(estimator) # TODO: remove this after making `verbose` tunable for h_param in hyper_params: if h_param[1].endswith('verbose'): h_param[0] = '@' df = pd.DataFrame(hyper_params, columns=['', 'Parameter', 'Value']) df.to_csv(outfile_params, sep='\t', index=False) print(repr(estimator)) # save model by pickle with open(outfile, 'wb') as f: pickle.dump(estimator, f, pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': warnings.simplefilter('ignore') aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-m", "--model_json", dest="model_json") aparser.add_argument("-t", "--tool_id", dest="tool_id") aparser.add_argument("-w", "--infile_weights", dest="infile_weights") aparser.add_argument("-o", "--outfile", dest="outfile") aparser.add_argument("-p", "--outfile_params", dest="outfile_params") args = aparser.parse_args() input_json_path = args.inputs with open(input_json_path, 'r') as param_handler: inputs = json.load(param_handler) tool_id = args.tool_id outfile = args.outfile outfile_params = args.outfile_params model_json = args.model_json infile_weights = args.infile_weights # for keras_model_config tool if tool_id == 'keras_model_config': config_keras_model(inputs, outfile) # for keras_model_builder tool else: batch_mode = False if tool_id == 'keras_batch_models': batch_mode = True build_keras_model(inputs=inputs, model_json=model_json, infile_weights=infile_weights, batch_mode=batch_mode, outfile=outfile, outfile_params=outfile_params)