Mercurial > repos > bgruening > sklearn_numeric_clustering
view fitted_model_eval.py @ 44:86368953b4a6 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 8850f42c2c3763e614f7454c9c006f3d2ff572c0
author | bgruening |
---|---|
date | Fri, 27 May 2022 10:27:27 +0000 |
parents | 156835c25f62 |
children | 0e4066f5751d |
line wrap: on
line source
import argparse import json import warnings import pandas as pd from galaxy_ml.utils import get_scoring, load_model, read_columns from scipy.io import mmread from sklearn.metrics.scorer import _check_multimetric_scoring from sklearn.model_selection._validation import _score from sklearn.pipeline import Pipeline def _get_X_y(params, infile1, infile2): """read from inputs and output X and y Parameters ---------- params : dict Tool inputs parameter infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values """ # store read dataframe object loaded_df = {} input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() return X, y def main( inputs, infile_estimator, outfile_eval, infile_weights=None, infile1=None, infile2=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : strgit File path to trained estimator input outfile_eval : str File path to save the evalulation results, tabular infile_weights : str File path to weights input infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values """ warnings.filterwarnings("ignore") with open(inputs, "r") as param_handler: params = json.load(param_handler) X_test, y_test = _get_X_y(params, infile1, infile2) # load model with open(infile_estimator, "rb") as est_handler: estimator = load_model(est_handler) main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, "config") and hasattr(main_est, "load_weights"): if not infile_weights or infile_weights == "None": raise ValueError( "The selected model skeleton asks for weights, " "but no dataset for weights was provided!" ) main_est.load_weights(infile_weights) # handle scorer, convert to scorer dict # Check if scoring is specified scoring = params["scoring"] if scoring is not None: # get_scoring() expects secondary_scoring to be a comma separated string (not a list) # Check if secondary_scoring is specified secondary_scoring = scoring.get("secondary_scoring", None) if secondary_scoring is not None: # If secondary_scoring is specified, convert the list into comman separated string scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) scorer = get_scoring(scoring) scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) if hasattr(estimator, "evaluate"): scores = estimator.evaluate( X_test, y_test=y_test, scorer=scorer, is_multimetric=True ) else: scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_eval, sep="\t", header=True, index=False) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") aparser.add_argument("-w", "--infile_weights", dest="infile_weights") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") args = aparser.parse_args() main( args.inputs, args.infile_estimator, args.outfile_eval, infile_weights=args.infile_weights, infile1=args.infile1, infile2=args.infile2, )