Mercurial > repos > bgruening > sklearn_numeric_clustering
view numeric_clustering.xml @ 36:836ba896e2be draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit d6333e7294e67be5968a41f404b66699cad4ae53"
author | bgruening |
---|---|
date | Thu, 07 Nov 2019 05:13:53 -0500 |
parents | a36e1455971d |
children | 80bb86a40de6 |
line wrap: on
line source
<tool id="sklearn_numeric_clustering" name="Numeric Clustering" version="@VERSION@"> <description></description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command><![CDATA[ python "$cluster_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs"/> <configfile name="cluster_script"> <![CDATA[ import sys import json import numpy as np import sklearn.cluster import pandas from sklearn import metrics from scipy.io import mmread from galaxy_ml.utils import read_columns N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) input_json_path = sys.argv[1] with open(input_json_path, "r") as param_handler: params = json.load(param_handler) selected_algorithm = params["input_types"]["algorithm_options"]["selected_algorithm"] my_class = getattr(sklearn.cluster, selected_algorithm) cluster_object = my_class() options = params["input_types"]["algorithm_options"]["options"] cluster_object.set_params(**options) if 'n_jobs' in cluster_object.get_params(): cluster_object.set_params( n_jobs=N_JOBS ) #if $input_types.selected_input_type == "sparse": data_matrix = mmread("$infile") #else: data = pandas.read_csv("$infile", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) header = 'infer' if params["input_types"]["header"] else None column_option = params["input_types"]["column_selector_options"]["selected_column_selector_option"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["input_types"]["column_selector_options"]["col"] else: c = None data_matrix = read_columns( "$infile", c = c, c_option = column_option, sep='\t', header=header, parse_dates=True, encoding=None, tupleize_cols=False) #end if prediction = cluster_object.fit_predict( data_matrix ) if len(np.unique(prediction)) > 1: silhouette_score = metrics.silhouette_score(data_matrix,prediction,metric='euclidean') else: silhouette_score = -1 sys.stdout.write('silhouette score:' + '\t' + str(silhouette_score) + '\n') prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) #if $input_types.selected_input_type == "sparse": res = prediction_df #else: res = pandas.concat([data, prediction_df], axis=1) #end if res.to_csv(path_or_buf = "$outfile", sep="\t", index=False, header=False) ]]> </configfile> </configfiles> <inputs> <conditional name="input_types"> <param name="selected_input_type" type="select" label="Select the format of input data"> <option value="tabular" selected="true">Tabular Format (tabular, txt)</option> <option value="sparse">Sparse Vector Representation (mtx)</option> </param> <when value="sparse"> <param name="infile" type="data" format="txt" label="Sparse vector (scipy.sparse.csr_matrix) file:" help="The following clustering algorithms support sparse matrix operations: ''Birch'', ''DBSCAN'', ''KMeans'', ''Mini BatchK Means'', and ''Spectral Clustering''. If your data is in tabular format, please use other clustering algorithms."/> <expand macro="clustering_algorithms_options"/> </when> <when value="tabular"> <param name="infile" type="data" format="tabular" label="Data file with numeric values"/> <param name="header" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="True" label="Does the dataset contain header:" /> <conditional name="column_selector_options"> <expand macro="samples_column_selector_options" col_name="col" multiple="true" infile="infile"/> </conditional> <!--expand macro="clustering_algorithms_options"--> <conditional name="algorithm_options"> <param name="selected_algorithm" type="select" label="Clustering Algorithm"> <option value="AgglomerativeClustering">Hierarchical Agglomerative Clustering</option> <option value="AffinityPropagation">Affinity Propagation</option> <option value="SpectralClustering">Spectral Clustering</option> <option value="MiniBatchKMeans">Mini Batch KMeans</option> <option value="MeanShift">MeanShift</option> <option value="KMeans">KMeans</option> <option value="DBSCAN">DBSCAN</option> <option value="Birch">Birch</option> </param> <when value="KMeans"> <expand macro="kmeans_advanced_options"/> </when> <when value="DBSCAN"> <expand macro="dbscan_advanced_options"/> </when> <when value="Birch"> <expand macro="birch_advanced_options"/> </when> <when value="SpectralClustering"> <expand macro="spectral_clustering_advanced_options"/> </when> <when value="MiniBatchKMeans"> <expand macro="minibatch_kmeans_advanced_options"/> </when> <when value="AffinityPropagation"> <section name="options" title="Advanced Options" expanded="False"> <param argument="damping" type="float" optional="true" value="0.5" label="Damping factor" help="Damping factor between 0.5 and 1."/> <expand macro="max_iter" default_value="200"/> <param argument="convergence_iter" type="integer" optional="true" value="15" label="Number of iterations at each convergence step" help="Number of iterations with no change in the number of estimated clusters that stops the convergence."/> <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Copy" help="If False, the affinity matrix is modified inplace by the algorithm, for memory efficiency."/> <!--param argument="preference"/--> <param argument="affinity" type="select" label="Affinity" help="Affinity to use; euclidean uses the negative squared euclidean distance between points."> <option value="euclidean">Euclidean</option> <option value="precomputed">precomputed</option> </param> </section> </when> <when value="MeanShift"> <section name="options" title="Advanced Options" expanded="False"> <param argument="bandwidth" type="float" optional="true" value="" label="Kernel bandwidth" help="Bandwidth used in the RBF kernel. If not given, it will be computed using a heuristic based on the median of all pairwise distances."/> <!--param argument="seeds"/--> <param argument="bin_seeding" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Discretize initial kernel locations" help="If true, initial kernel locations are the bins grid whose coarseness corresponds to the bandwidth, speeding up the algorithm."/> <param argument="min_bin_freq" type="integer" optional="true" value="1" label="Minimum number of seeds per bin" help="To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds."/> <param argument="cluster_all" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Cluster all" help="If true, all points (including orphans) are clustered. If false, orphans are given cluster label -1."/> </section> </when> <when value="AgglomerativeClustering"> <section name="options" title="Advanced Options" expanded="False"> <expand macro="n_clusters" default_value="2" /> <param argument="affinity" type="select" label="Affinity" help="Metric used to compute the linkage. If linkage is ''ward'', only ''euclidean'' is accepted."> <option value="euclidean">Euclidean</option> <option value="manhattan">Manhattan</option> <option value="l1">L1</option> <option value="l2">L2</option> <option value="cosine">cosine</option> <option value="precomputed">precomputed</option> </param> <!--param argument="memory"--> <!--param argument="connectivity"--> <!--param argument="n_components"/--> <!--param argument="compute_full_tree"--> <param argument="linkage" type="select" optional="true" label="Linkage" help=""> <option value="ward" selected="true">ward</option> <option value="complete">complete</option> <option value="average">average</option> <option value="single">single</option> </param> <!--param argument="pooling_func"--> </section> </when> </conditional> </when> </conditional> </inputs> <outputs> <data format="tabular" name="outfile"/> </outputs> <tests> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_input_type" value="tabular"/> <param name="selected_algorithm" value="KMeans"/> <param name="col" value="2,3,4" /> <param name="n_clusters" value="4" /> <param name="init" value="k-means++" /> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result01.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="KMeans"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="n_clusters" value="4" /> <param name="init" value="random" /> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result02.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="DBSCAN"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="algorithm" value="kd_tree"/> <param name="leaf_size" value="10"/> <param name="eps" value="1.0"/> <output name="outfile" file="cluster_result03.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="Birch"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="n_clusters" value="4"/> <param name="threshold" value="0.008"/> <output name="outfile" file="cluster_result04.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="Birch"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="branching_factor" value="20"/> <output name="outfile" file="cluster_result05.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="AffinityPropagation"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="affinity" value="euclidean"/> <param name="copy" value="false"/> <output name="outfile" file="cluster_result06.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="AffinityPropagation"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="damping" value="0.8"/> <output name="outfile" file="cluster_result07.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="MeanShift"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="min_bin_freq" value="3"/> <output name="outfile" file="cluster_result08.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="MeanShift"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="cluster_all" value="False"/> <output name="outfile" file="cluster_result09.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="AgglomerativeClustering"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="affinity" value="euclidean"/> <param name="linkage" value="average"/> <param name="n_clusters" value="4"/> <output name="outfile" file="cluster_result10.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="AgglomerativeClustering"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="linkage" value="complete"/> <param name="n_clusters" value="4"/> <output name="outfile" file="cluster_result11.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="SpectralClustering"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="eigen_solver" value="arpack"/> <param name="n_neighbors" value="12"/> <param name="n_clusters" value="4"/> <param name="assign_labels" value="discretize"/> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result12.txt" compare="sim_size" /> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="SpectralClustering"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="assign_labels" value="discretize"/> <param name="random_state" value="100"/> <param name="degree" value="2"/> <output name="outfile" file="cluster_result13.txt" compare="sim_size" /> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="MiniBatchKMeans"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="2,3,4" /> <param name="tol" value="0.5"/> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result14.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="MiniBatchKMeans"/> <param name="selected_input_type" value="tabular"/> <param name="n_init" value="5"/> <param name="col" value="2,3,4" /> <param name="batch_size" value="10"/> <param name="n_clusters" value="4"/> <param name="random_state" value="100"/> <param name="reassignment_ratio" value="1.0"/> <output name="outfile" file="cluster_result15.txt"/> </test> <test> <param name="infile" value="numeric_values.tabular" ftype="tabular"/> <param name="selected_algorithm" value="KMeans"/> <param name="selected_input_type" value="tabular"/> <param name="col" value="1" /> <param name="n_clusters" value="4" /> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result16.txt"/> </test> <test> <param name="infile" value="sparse.mtx" ftype="txt"/> <param name="selected_input_type" value="sparse"/> <param name="selected_algorithm" value="KMeans"/> <param name="n_clusters" value="2" /> <param name="init" value="k-means++" /> <param name="random_state" value="100"/> <output name="outfile" file="cluster_result17.txt"/> </test> <test> <param name="infile" value="sparse.mtx" ftype="txt"/> <param name="selected_algorithm" value="DBSCAN"/> <param name="selected_input_type" value="sparse"/> <param name="algorithm" value="kd_tree"/> <param name="leaf_size" value="10"/> <param name="eps" value="1.0"/> <output name="outfile" file="cluster_result18.txt"/> </test> <test> <param name="infile" value="sparse.mtx" ftype="txt"/> <param name="selected_algorithm" value="Birch"/> <param name="selected_input_type" value="sparse"/> <param name="n_clusters" value="2"/> <param name="threshold" value="0.008"/> <output name="outfile" file="cluster_result19.txt"/> </test> <test> <param name="infile" value="sparse.mtx" ftype="txt"/> <param name="selected_algorithm" value="MiniBatchKMeans"/> <param name="selected_input_type" value="sparse"/> <param name="n_init" value="5"/> <param name="batch_size" value="10"/> <param name="n_clusters" value="2"/> <param name="random_state" value="100"/> <param name="reassignment_ratio" value="1.0"/> <output name="outfile" file="cluster_result20.txt"/> </test> <test> <param name="infile" value="sparse.mtx" ftype="txt"/> <param name="selected_algorithm" value="SpectralClustering"/> <param name="selected_input_type" value="sparse"/> <param name="assign_labels" value="discretize"/> <param name="n_clusters" value="2"/> <param name="random_state" value="100"/> <param name="degree" value="2"/> <output name="outfile" file="cluster_result21.txt"/> </test> </tests> <help><![CDATA[ **What it does** This tool offers different clustering algorithms which are provided by scikit-learn to find similarities among samples and cluster the samples based on these similarities. ]]></help> <expand macro="sklearn_citation"/> </tool>