Mercurial > repos > bgruening > sklearn_numeric_clustering
diff train_test_split.py @ 40:006e27f0a7ef draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 20:52:41 +0000 |
parents | e38a2675db5e |
children | 156835c25f62 |
line wrap: on
line diff
--- a/train_test_split.py Wed Mar 11 17:22:07 2020 +0000 +++ b/train_test_split.py Tue Apr 13 20:52:41 2021 +0000 @@ -1,15 +1,14 @@ import argparse import json -import pandas as pd import warnings +import pandas as pd from galaxy_ml.model_validations import train_test_split from galaxy_ml.utils import get_cv, read_columns -def _get_single_cv_split(params, array, infile_labels=None, - infile_groups=None): - """ output (train, test) subset from a cv splitter +def _get_single_cv_split(params, array, infile_labels=None, infile_groups=None): + """output (train, test) subset from a cv splitter Parameters ---------- @@ -25,45 +24,50 @@ y = None groups = None - nth_split = params['mode_selection']['nth_split'] + nth_split = params["mode_selection"]["nth_split"] # read groups if infile_groups: - header = 'infer' if (params['mode_selection']['cv_selector'] - ['groups_selector']['header_g']) else None - column_option = (params['mode_selection']['cv_selector'] - ['groups_selector']['column_selector_options_g'] - ['selected_column_selector_option_g']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = (params['mode_selection']['cv_selector']['groups_selector'] - ['column_selector_options_g']['col_g']) + header = "infer" if (params["mode_selection"]["cv_selector"]["groups_selector"]["header_g"]) else None + column_option = params["mode_selection"]["cv_selector"]["groups_selector"]["column_selector_options_g"][ + "selected_column_selector_option_g" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["mode_selection"]["cv_selector"]["groups_selector"]["column_selector_options_g"]["col_g"] else: c = None - groups = read_columns(infile_groups, c=c, c_option=column_option, - sep='\t', header=header, parse_dates=True) + groups = read_columns( + infile_groups, + c=c, + c_option=column_option, + sep="\t", + header=header, + parse_dates=True, + ) groups = groups.ravel() - params['mode_selection']['cv_selector']['groups_selector'] = groups + params["mode_selection"]["cv_selector"]["groups_selector"] = groups # read labels if infile_labels: - target_input = (params['mode_selection'] - ['cv_selector'].pop('target_input')) - header = 'infer' if target_input['header1'] else None - col_index = target_input['col'][0] - 1 - df = pd.read_csv(infile_labels, sep='\t', header=header, - parse_dates=True) + target_input = params["mode_selection"]["cv_selector"].pop("target_input") + header = "infer" if target_input["header1"] else None + col_index = target_input["col"][0] - 1 + df = pd.read_csv(infile_labels, sep="\t", header=header, parse_dates=True) y = df.iloc[:, col_index].values # construct the cv splitter object - splitter, groups = get_cv(params['mode_selection']['cv_selector']) + splitter, groups = get_cv(params["mode_selection"]["cv_selector"]) total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups) if nth_split > total_n_splits: - raise ValueError("Total number of splits is {}, but got `nth_split` " - "= {}".format(total_n_splits, nth_split)) + raise ValueError("Total number of splits is {}, but got `nth_split` " "= {}".format(total_n_splits, nth_split)) i = 1 for train_index, test_index in splitter.split(array.values, y=y, groups=groups): @@ -79,8 +83,14 @@ return train, test -def main(inputs, infile_array, outfile_train, outfile_test, - infile_labels=None, infile_groups=None): +def main( + inputs, + infile_array, + outfile_train, + outfile_test, + infile_labels=None, + infile_groups=None, +): """ Parameter --------- @@ -102,45 +112,41 @@ outfile_test : str File path to dataset containing test split """ - warnings.simplefilter('ignore') + warnings.simplefilter("ignore") - with open(inputs, 'r') as param_handler: + with open(inputs, "r") as param_handler: params = json.load(param_handler) - input_header = params['header0'] - header = 'infer' if input_header else None - array = pd.read_csv(infile_array, sep='\t', header=header, - parse_dates=True) + input_header = params["header0"] + header = "infer" if input_header else None + array = pd.read_csv(infile_array, sep="\t", header=header, parse_dates=True) # train test split - if params['mode_selection']['selected_mode'] == 'train_test_split': - options = params['mode_selection']['options'] - shuffle_selection = options.pop('shuffle_selection') - options['shuffle'] = shuffle_selection['shuffle'] + if params["mode_selection"]["selected_mode"] == "train_test_split": + options = params["mode_selection"]["options"] + shuffle_selection = options.pop("shuffle_selection") + options["shuffle"] = shuffle_selection["shuffle"] if infile_labels: - header = 'infer' if shuffle_selection['header1'] else None - col_index = shuffle_selection['col'][0] - 1 - df = pd.read_csv(infile_labels, sep='\t', header=header, - parse_dates=True) + header = "infer" if shuffle_selection["header1"] else None + col_index = shuffle_selection["col"][0] - 1 + df = pd.read_csv(infile_labels, sep="\t", header=header, parse_dates=True) labels = df.iloc[:, col_index].values - options['labels'] = labels + options["labels"] = labels train, test = train_test_split(array, **options) # cv splitter else: - train, test = _get_single_cv_split(params, array, - infile_labels=infile_labels, - infile_groups=infile_groups) + train, test = _get_single_cv_split(params, array, infile_labels=infile_labels, infile_groups=infile_groups) print("Input shape: %s" % repr(array.shape)) print("Train shape: %s" % repr(train.shape)) print("Test shape: %s" % repr(test.shape)) - train.to_csv(outfile_train, sep='\t', header=input_header, index=False) - test.to_csv(outfile_test, sep='\t', header=input_header, index=False) + train.to_csv(outfile_train, sep="\t", header=input_header, index=False) + test.to_csv(outfile_test, sep="\t", header=input_header, index=False) -if __name__ == '__main__': +if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-X", "--infile_array", dest="infile_array") @@ -150,5 +156,11 @@ aparser.add_argument("-t", "--outfile_test", dest="outfile_test") args = aparser.parse_args() - main(args.inputs, args.infile_array, args.outfile_train, - args.outfile_test, args.infile_labels, args.infile_groups) + main( + args.inputs, + args.infile_array, + args.outfile_train, + args.outfile_test, + args.infile_labels, + args.infile_groups, + )